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Abstract
Spatiotemporal super-resolution (SR) aims to up-
scale both the spatial and temporal dimensions
of input videos, and produces videos with higher
frame resolutions and rates. It involves two essen-
tial sub-tasks: spatial SR and temporal SR. We de-
sign a two-stream network for spatiotemporal SR
in this work. One stream contains a temporal SR
module followed by a spatial SR module, while the
other stream has the same two modules in the re-
verse order. Based on the interchangeability of per-
forming the two sub-tasks, the two network streams
are supposed to produce consistent spatiotemporal
SR results. Thus, we present a cross-stream con-
sistency to enforce the similarity between the out-
puts of the two streams. In this way, the train-
ing of the two streams is correlated, which allows
the two SR modules to share their supervisory sig-
nals and improve each other. In addition, the pro-
posed cross-stream consistency does not consume
labeled training data and can guide network train-
ing in an unsupervised manner. We leverage this
property to carry out semi-supervised spatiotem-
poral SR. It turns out that our method makes the
most of training data, and can derive an effective
model with few high-resolution and high-frame-
rate videos, achieving the state-of-the-art perfor-
mance. The source code of this work is available
at https://hankweb.github.io/STSRwithCrossTask/.

1 Introduction
Videos with high spatiotemporal resolutions are typically spa-
tially sharper and temporally coherent, and hence are prefer-
able to humans. However, acquiring such videos requires
higher power consumption and larger storage. To compro-
mise between the user experience and acquiring cost, spatial
SR (super-resolution) and temporal SR have drawn increas-
ing attention in computer vision. Spatiotemporal SR involves
two sub-tasks, including spatial SR and temporal SR. Specif-
ically, the former recovers the high-resolution frame by refer-
ring to a single low-resolution one, while the latter upscales
the video frame rate by synthesizing intermediate frames.
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Figure 1: Spatiotemporal super-resolution (SR) aims to estimate the
high-resolution frame IHt given its two temporally adjacent low-
resolution frames, ILt−1 and ILt+1. It involves two sub-tasks, spatial
SR fS and temporal SR fT . Two network streams (green and brown
blocks) are built by stacking modules fS and fT . The order of per-
forming fS and fT is interchangeable. We leverage this property to
develop a cross-stream consistency loss, which regularizes network
training and more importantly enables semi-supervised learning.

In this work, we address spatiotemporal SR to increase the
frame rate and resolution simultaneously for a given video.
Both spatial SR such as [Shi et al., 2016; Kim et al., 2016;
Haris et al., 2018] and temporal SR such as [Liu et al., 2017;
Jiang et al., 2018; Bao et al., 2019] have been investigated
extensively in the literature. However, few research advance-
ments [Shahar et al., 2011; Sharma et al., 2017] have been
made on spatiotemporal SR, which is more practical for low-
quality video processing and understanding. An effective and
intuitive way for spatiotemporal SR is to apply the two sub-
tasks, spatial SR and temporal SR, sequentially. We consider
the two sub-tasks highly correlated. On the one hand, spatial
SR offers high-resolution frame details, which are essential to
temporal SR. On the other hand, temporal SR enriches motion
information, which generally facilitates spatial SR. However,
the correlation between the two tasks has not been well ex-
ploited, especially in the era of deep learning.

This paper addresses the aforementioned issues. We corre-
late spatial SR and temporal SR for spatiotemporal SR based
on a key insight: The order of applying spatial and temporal
SR is interchangeable, as illustrated in Figure 1. We learn a
two-stream network. One stream is composed of a tempo-
ral SR module fT followed by a spatial SR module fS for
spatiotemporal SR. The other stream is formed by switch-
ing the two modules. No matter whether the ground truth
for spatiotemporal SR is available, the results predicted by
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the two streams should be consistent. Hence, we introduce
a cross-stream consistency loss to enforce the similarity be-
tween the outputs of the two streams. The introduced loss
correlates spatial SR and temporal SR. High-resolution de-
tails estimated by spatial SR help align pixels cross consec-
utive frames, which is crucial for temporal SR. High-frame-
rate videos produced by temporal SR in turn facilitate spatial
SR by regularizing it to predict temporally consistent SR re-
sults. Thereby, the two SR modules can improve each other
by mutually providing supervisory signals.

More importantly, the cross-stream consistency loss does
not rely on any high-resolution and high-frame-rate video for
training. That is, learning from unlabeled training data, i.e.,
videos of low resolutions and frame rates here, is enabled. By
taking abundant unlabeled videos as input, the cross-stream
consistency loss serves as the objective function to guide net-
work training in a self-taught manner. We leverage this prop-
erty to carry out semi-supervised learning. It turns out that
our method makes the most of training data, and can derive
an effective model with few high-quality video collections.

The main contribution of this work is three-fold. First, we
present the first end-to-end trainable network for spatiotem-
poral SR where the spatial and temporal SR modules are cor-
related and benefit each other. Second, the proposed method
exploits cross-stream consistency and enables learning from
unlabeled data, greatly reducing the cost of collecting videos
of high spatiotemporal resolution, which can be very expen-
sive in some applications like medical and satellite images.
Third, evaluated intensively on four benchmark datasets in-
cluding the Vimeo-90K [Xue et al., 2019], Middlebury op-
tical flow [Baker et al., 2007], Vid4 [Liu and Sun, 2011],
and DAVIS [Pont-Tuset et al., 2017] datasets, our method
achieves the state-of-the-art performance.

2 Related Work
2.1 Spatial Super-Resolution
Spatial SR has been explored extensively. Early approaches
are developed based on the sampling theory, e.g., using linear
or bicubic interpolation for SR [Keys, 1981]. However, inter-
polation exhibits limitations in predicting detailed, realistic
textures. Advanced methods aim to establish complex map-
ping between low-resolution (LR) and high-resolution (HR)
images by using machine learning algorithms, such as neigh-
bor embedding [Gao et al., 2012] and sparse coding [Zeyde
et al., 2012].

The pioneering work SRCNN [Dong et al., 2016] employs
a three-layer CNN model to approximate the non-linear map-
ping between LR and HR images in an end-to-end trainable
manner. Based on residual learning [He et al., 2016] for deep
network optimization, modern CNN-based models such as
VDSR [Kim et al., 2016] and DRRN [Tai et al., 2017] further
boost the performance of SR. Recently, residual-dense net-
work (RDN) [Zhang et al., 2018] employs dense connections
to learn the local representations from patches for improving
SR. Likewise, DBPN [Haris et al., 2018] presents a series of
densely connected upsampling and downsampling layers to
represent different image degradations for enhancing SR.

2.2 Temporal Super-Resolution
Conventional methods, e.g., [Baker et al., 2011; Yu et al.,
2013], for temporal SR usually estimate dense correspon-
dences between consecutive frames, and synthesize interme-
diate frames by the estimated correspondences. The quality
of the interpolation results is highly dependent on the quality
of the estimated optical flow. However, optical flow estima-
tion is difficult and often suffers from many issues, such as
occlusions, large motion, and blur.

CNNs have shown their effectiveness for optical flow esti-
mation. Thereby, some CNN-based methods carry out frame
interpolation by optical flow estimation [Bailer et al., 2019].
However, these CNN-based methods relying on flow field
prediction need training data in the form of dense correspon-
dences, which are hard to annotate. Instead of relying on
optical flow, some frame synthesis methods leverage CNNs
to directly generate the intermediate frames [Niklaus et al.,
2017]. They do not take dense correspondences as train-
ing data but the ground-truth intermediate frames. However,
these methods still suffer from blurred results and artifacts.
Liu et al. [Liu et al., 2017] address the problem of blurred
results by proposing the deep voxel flow, a 3D optical flow
to warp frames based on trilinear sampling. Their method
makes the synthesized frames sharper, but the issue of arti-
facts remains unsolved. Recently, DAIN [Bao et al., 2019]
is proposed to explicitly detect occlusions by exploring depth
cues, based on the observation that closer objects should be
preferably synthesized in intermediate frames.

2.3 Spatiotemporal Super-Resolution
Research efforts on spatial SR and temporal SR are quite
extensive. However, few advancements have been made
on simultaneous spatial and temporal SR, i.e., spatiotem-
poral SR, which upscales video frame rates and resolu-
tions at the same time. Spatiotemporal SR is important in
many vision applications such as surveillance where ana-
lyzing videos of low quality is required. In the conven-
tional approach, Shahar et al. [Shahar et al., 2011] pro-
pose an example-based approach where spatiotemporal SR
is realized by combining information from multiple space-
time patches. Sharma et al. [Sharma et al., 2017] propose
the first deep-learning-based method, called coupled deep
convolutional auto-encoder (CDCA), for spatiotemporal SR.
CDCA generates the convolutional feature maps of the spatial
patches in up-sampled LR and HR video frames using convo-
lutional auto-encoder (CAE) and learns the relationships be-
tween these feature maps by CNNs at the same time. CDCA
computes the up-sampled LR by tri-cubic interpolation, but
it ignores motion correspondences between consecutive LR
frames.

Unlike existing methods where the collaboration between
the spatial and temporal modules is ignored, our method miti-
gates the aforementioned drawbacks by introducing the cross-
stream consistency loss to jointly learn spatial and temporal
SR modules in an end-to-end trainable manner. Thus, our
method has the following advantages. First, the spatial SR
and temporal SR modules are correlated and trained at the
same time. More realistic frames are interpolated by refer-
ring to the high-resolution details recovered by the spatial SR

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

616



𝐼௧ିଵ௅

𝐼௧ାଵ௅
𝐼௧ିଵு

𝐼௧௅

𝐼௧ୋ୘
ℒ஼

ℒோ

𝐹்→ௌ: Temporal SR followed by spatial SR

: Temporal SR Network

: Spatial SR Network
𝐼௧ାଵு

𝑓 𝑓ௌ

𝑓𝑓ௌ

𝑓ௌ 𝑓

𝑓ௌ

𝐼௧ு

𝐼௧ு
ℒோ

𝐹ௌ→்: Spatial SR followed by temporal SR

Figure 2: Network architecture. The proposed network architecture consists of two learnable modules, including fS for spatial SR and fT
for temporal SR. It is a two-stream network with streams FT→S and FS→T . Both streams contain the two learnable modules but have them
in different orders. When the ground truth IGT

t is given, the reconstruct loss LR minimizes the difference between the ground truth and the
prediction made by the two network streams. No matter if the ground truth IGT

t is provided, the predictions made by the two streams are
supposed to the same. Thus, the cross-stream consistency loss LC is introduced to enforce the consistency between the outputs of the two
streams. After training, each stream can perform spatiotemporal SR.

module, while better high-resolution frames are produced by
using the motion information estimated by the temporal SR
module. Second, the proposed cross-stream consistency loss
allows learning from unlabeled data and greatly reduces the
requirement of high-resolution videos. In addition, the spatial
and temporal SR modules are present several times in the net-
work, but the multiple copies of each module share weights,
making the number of parameters manageable. These nice
properties distinguish our method from prior work.

2.4 Cycle Consistency
Exploiting cycle consistency properties to regularize struc-
tured prediction has been explored in the literature. In unsu-
pervised domain adaptation, exploiting cross-domain invari-
ance in the label space achieves more consistent task predic-
tions [Chen et al., 2019]. In video frame interpolation, the
cycle consistency loss enforces the similarity between the in-
put frames and the cyclic mapped-back frames [Liu et al.,
2019]. In semantic matching, object co-segmentation, and
co-saliency detection, cycle or transitivity based consistency
losses help regularize the network training, e.g., [Chen et al.,
2015; Chen et al., 2018; Chen et al., 2020; Tsai et al., 2019].
In motion analysis, computing bi-directional optical flow is
useful to infer occlusions [Zou et al., 2018] and enforce tem-
poral consistency [Lai et al., 2018].

In this work, we show a novel and feasible way of ex-
ploiting cross-stream consistency to address spatiotemporal
SR. To the best of our knowledge, this work makes the first
attempt to improve spatiotemporal SR by leveraging cross-
stream consistency and end-to-end training. We design a two-
stream network with spatial and temporal SR modules. Both
streams consist of the two SR modules but have them in dif-
ferent orders. We show that enforcing the two streams to
make consistent predictions leads to substantially improved
performance. Employing the cross-stream consistency loss
further enables semi-supervised learning.

3 Proposed Approach
This section describes the proposed approach. First, we give
the problem definition. Then, the proposed network architec-
ture and its objective function as well as the semi-supervised
extension are described. Finally, the implementation details
are provided.

3.1 Problem Definition
Given a video with a low frame resolution and/or low frame
rate, the goal of spatiotemporal SR is to generate a high-
quality video with a higher frame resolution and frame rate.
Let ILt−1 and ILt+1 be two consecutive low-resolution (LR)
frames at timestamps t − 1 and t + 1. The spatiotemporal
SR model F in this work is derived to generate three high-
resolution (HR) frames, IHt−1, IHt , and IHt+1. We use the
superscript and subscript to denote the frame resolution and
timestamp, respectively. The model F for upsacling both the
frame resolution and frame rate can be represented as

(IHt−1, I
H
t , I

H
t+1) = F(ILt−1, ILt+1). (1)

Spatiotemporal SR can be decomposed into two sub-tasks:
spatial SR and temporal SR, which are associated with learn-
able modules fS and fT , respectively.

Sub-task spatial SR targets at recovering the HR details and
producing sharper video frames. It estimates an HR frame
IH ∈ RsP×sQ given an LR one IL ∈ RP×Q, where P and
Q are the frame height and width respectively and s > 1 is
the upscaling factor. The module fS can be expressed as

IH = fS(I
L). (2)

By applying fS to an frame k times, the frame resolution is
increased by a factor of sk.

The other sub-task temporal SR aims at upscaling video
frame rates. Given two consecutive frames, It−1 and It+1, of
an arbitrary resolution, the temporal SR module fT generates
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the intermediate frame It between the two input frames. The
module fT can be formulated as

It = fT (It−1, It+1). (3)

Repeatedly applying module fT to a video k times upscales
the frame rate by a factor of 2k.

To produce an HR video in both its image resolution and
frame rate through Eq. (1), frames IHt−1 and IHt+1 can be ob-
tained by applying the spatial SR module fS to ILt−1 and ILt+1

respectively, while frame IHt relies on by the collaboration
of both spatial SR module fS and temporal SR module fT .
The two modules can work independently. One naive way for
carrying out spatiotemporal SR is the sequential combination
of the spatial and temporal SR modules, namely applying fT
followed by fS or its inverse. In Figure 2, FT→S and FS→T

represent two network streams, each of which combines the
two SR modules. Given two consecutive LR frames ILt−1 and
ILt+1, either FT→S or FS→T can generate the HR frame IHt
as defined below

IHt , FT→S(I
L
t−1, I

L
t+1) = fS(fT (I

L
t−1, I

L
t+1)) or

, FS→T (I
L
t−1, I

L
t+1) = fT (fS(I

L
t−1), fS(I

L
t+1)).

(4)

3.2 Network Architecture
To better accomplish spatiotemporal SR and even carry it
out in a semi-supervised fashion, we present an end-to-end
trainable network which is composed of two network streams
FT→S and FS→T , as illustrated in Figure 2. By taking two
consecutive LR frames ILt−1 and ILt−1 as input, stream FT→S

feeds them to the temporal SR module fT to generate the
interpolated frame ILt and passes ILt to the spatial SR mod-
ule fS to synthesize the HR frame IHt . In stream FS→T ,
ILt−1 and ILt−1 are fed into fS to produce HR frames IHt−1 and
IHt−1, which then serve as the input to fT to obtain the inter-
polated HR result IHt . The multiple copies of each module
share weights so that the number of learnable parameters in
the proposed network is manageable. We do not make any as-
sumption about the spatial and temporal SR modules fS and
fT . Our method is general to work with existing spatial and
temporal SR algorithms by adopting them as the modules fS
and fT , and accomplishes spatiotemporal SR. In the infer-
ence phase, either FT→S or FS→T can obtain the result. We
just need to pass through one of the two streams.

3.3 Objective Function
The objective function L for training the proposed network
consists of two loss terms, including the reconstruction loss
LR and cross-stream consistency loss LC . The former LR

guides the two network streams, FS→T and FT→S , to per-
form spatiotemporal SR by making their prediction as close
to the ground truth as possible. The latter LC enforces the
consistency between the results predicted by the two network
streams. The training objective function L is defined by

L = LR + λLC , (5)

where λ is the hyperparameter used to control the relative
importance between LR and LC , which are detailed below.

Reconstruction Loss LR

To guide the training of the two network streams, FT→S

and FS→T , this loss enforces their predicted results to be
consistent with the ground truth. For each training triplet
{IHt−1, IHt , IHt+1}, we first down-sample IHt−1 and IHt+1 to
yield ILt−1 and ILt+1 by bicubic interpolation, respectively.
With ILt−1 and ILt+1, the reconstruction loss LR is formulated
as

LR(I
L
t−1, I

H
t , I

L
t+1) = ‖FS→T (I

L
t−1, I

L
t+1)− IHt ‖2

+ ‖FT→S(I
L
t−1, I

L
t+1)− IHt ‖2. (6)

Cross-stream Consistency Loss LC

Our key insight for cross-stream consistency loss is that while
both streams FS→T and FT→S can estimate the spatiotempo-
ral SR results, their prediction should be the same no matter if
the ground truth IHt is given. We thus propose a cross-stream
consistency loss LC that synchronizes the outputs of the two
network streams. Specifically, this loss LC is given below

LC(I
L
t−1,I

L
t+1) =

‖FS→T (I
L
t−1, I

L
t+1)− FT→S(I

L
t−1, I

L
t+1)‖2. (7)

3.4 Semi-supervised Learning
As shown in Eq. (7), the cross-stream consistency loss
does not rely on any high-resolution ground truth. It al-
lows the proposed method to work with unsupervised (i.e.,
low-resolution here) training data and hence enables semi-
supervised learning. Specifically, the resulting loss function
for semi-supervised spatiotemporal SR is designed as

L = LR(DL) + λLC(DL ∪DU ), (8)

where the labeled data DL = {(ILt−1, IHt , ILt+1)} are used in
the reconstruction loss LR and the cycle consistency loss LC .
Unlabeled data DU = {(ILt−1, ILt+1)} are used merely in LC

sinceDU does not have high-resolution ground truth required
in LR. By adopting the semi-supervised spatiotemporal SR,
our model can be derived by using a small set of labeled data
with a large amount of unlabeled data.

3.5 Implementation Details
Our method can work with existing spatial and temporal SR
models. In this work, we use VDSR [Kim et al., 2016], ES-
PCN [Shi et al., 2016], and DBPN [Haris et al., 2018] as the
spatial SR module, while adopt DVF [Liu et al., 2017], Super
Slomo [Jiang et al., 2018], and DAIN [Bao et al., 2019] as the
temporal SR module. Since DBPN and DAIN are released in
Pytorch, our implementation regarding DBPN and DAIN is
realized by Pytorch, while the rest are developed with Tensor-
flow. The spatial and temporal SR modules are first trained
separately, then used to reconstruct the proposed network ar-
chitecture, and finally fine-tuned. Although multiple spatial
SR modules are present in the network, they are identical and
share weights. This setting is also applied for the temporal SR
module. We set the batch size, learning rate, momentum, and
weight decay to 2, 10−3, 0.9, and 5×10−4, respectively. We
train and evaluate our model on a single NVIDIA GeForce
GTX 1080Ti graphics card with 11GB memory.
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Vimeo-90K Vid4 Middlebury DAVIS
method FT→S FS→T Avg. FT→S FS→T Avg. FT→S FS→T Avg. FT→S FS→T Avg.
metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

B(V+D) 28.91 0.847 28.84 0.849 28.87 0.848 22.20 0.661 22.03 0.654 22.11 0.657 25.42 0.712 25.19 0.705 25.30 0.709 22.33 0.665 22.18 0.660 22.25 0.663
F(V+D) 29.43 0.862 29.34 0.860 29.39 0.861 22.28 0.667 22.13 0.659 22.21 0.663 25.77 0.716 25.58 0.709 25.68 0.713 22.49 0.671 22.38 0.665 22.43 0.668
B(E+D) 27.37 0.789 28.51 0.830 27.94 0.810 22.20 0.645 22.68 0.686 22.44 0.665 27.02 0.751 27.13 0.764 27.07 0.757 23.02 0.697 22.63 0.691 22.82 0.694
F(E+D) 28.34 0.823 28.91 0.841 28.63 0.832 22.43 0.662 22.78 0.691 22.60 0.676 27.35 0.759 27.49 0.770 27.42 0.765 23.47 0.712 22.96 0.702 23.22 0.707
B(V+S) 28.46 0.835 28.45 0.836 28.45 0.835 22.63 0.682 22.63 0.685 22.63 0.684 26.55 0.754 26.49 0.755 26.52 0.755 22.67 0.692 22.58 0.691 22.63 0.691
F(V+S) 28.97 0.849 28.85 0.847 28.91 0.848 22.95 0.708 22.92 0.707 22.94 0.708 27.14 0.771 26.98 0.767 27.06 0.769 22.91 0.708 22.71 0.697 22.81 0.702
B(E+S) 28.17 0.826 27.12 0.797 27.64 0.811 22.08 0.642 22.44 0.674 22.26 0.658 26.56 0.746 25.32 0.721 25.94 0.733 22.60 0.690 21.66 0.653 22.13 0.671
F(E+S) 28.28 0.827 28.57 0.837 28.42 0.832 22.14 0.652 22.52 0.682 22.33 0.667 26.89 0.747 26.73 0.752 26.81 0.750 23.11 0.700 22.43 0.683 22.77 0.692
B(P+A) 28.79 0.855 29.23 0.875 29.01 0.865 22.03 0.671 22.43 0.695 22.23 0.683 26.67 0.747 27.16 0.775 26.91 0.761 23.50 0.727 23.61 0.736 23.55 0.731
F(P+A) 29.07 0.863 29.65 0.876 29.36 0.870 22.28 0.687 22.74 0.704 22.51 0.695 26.96 0.750 27.40 0.784 27.18 0.767 23.81 0.735 23.87 0.744 23.84 0.740

Table 1: Quantitative comparison between the baseline B and our method F with different spatial SR modules (including VDSR V, ESPCN E,
and DBPN P) and temporal SR modules (DVF D, Super SloMo S, and DAIN A) on four test sets.

(a) Input (b) GT (c) B(V+D) (d) F(V+D) (e) B(E+D) (f) F(E+D) (g) B(V+S) (h) F(V+S) (i) B(E+S) (j) F(E+S) (k) B(P+A) (l) F(P+A)

Figure 3: Qualitative comparison between the baseline B and our method F with different spatial SR modules (VDSR V, ESPCN E, and DBPN
P) and temporal SR modules (DVF D, Super SloMo S, and DAIN A) on two examples, each with input frames and ground truth.

4 Experimental Results
In this section, we first describe the datasets used in the ex-
periments, and then conduct ablation studies and comparisons
between our method and existing methods.

4.1 Datasets
We train the proposed method for spatiotemporal SR by using
the training set of the Vimeo-90k dataset [Xue et al., 2019],
which is recently built for evaluating the performance of
video processing tasks, such as video frame interpolation and
super-resolution. The Vimeo-90k dataset contains 51, 313
samples for training and 3, 782 samples for testing. Each
sample contains three high-resolution consecutive frames of
resolution 256 × 448. For each training sample in the su-
pervised setting, the middle frame serves as the ground truth
while the low-resolution counterparts of the other two frames
act as inputs. In our experiments, we downscale each frame
side by a factor of 4 to yield the low-resolution counterparts.
In the semi-supervised setting, only the low-resolution coun-
terparts of unlabeled samples are used.

In addition to the testing set of Vimeo-90K, we use the
Middlebury optical flow [Baker et al., 2007], Vid4 [Liu and
Sun, 2011], and DAVIS [Pont-Tuset et al., 2017] datasets to
evaluate the performance of the proposed method. For test-
ing sets in the form of videos, we downscale the resolution
of the odd-numbered frames by a factor of 4, and then re-
move all even-frames to generate low spatiotemporal reso-

lution frame sequences. The downscaled consecutive odd-
numbered frames serve as the inputs while the original even-
numbered frames act as ground truth for evaluation. We adopt
Peak Signal-to-Noise Ratio (PSNR) and structural similarity
(SSIM) as the performance measure.

4.2 Ablation Studies
We conduct ablation studies for analyzing our method. Our
method can work with existing spatial or temporal SR mod-
ules. We choose VDSR [Kim et al., 2016], ESPCN [Shi et al.,
2016], and DBPN [Haris et al., 2018] as the spatial SR mod-
ules, and select DVF [Liu et al., 2017], Super Slomo [Jiang
et al., 2018], and DAIN [Bao et al., 2019] as the temporal
SR modules. Each baseline model is realized by sequen-
tially applying the spatial and temporal models. Our method
instead derives a two-stream model using the objective in
Eq. (5). Both the baseline and our method are trained using
the Vimeo-90K training set.

In the following, we compare our method to the baseline
under different spatial and temporal module combinations.
To measure the benefit of the proposed consistency loss LC ,
we also compare the results with and without using this loss.
To analyze the proposed semi-supervised spatiotemporal SR,
we perform the evaluation with various ratios of labeled data
to the whole training set and different numbers of unlabeled
data. Finally, we conduct the sensitivity analysis of hyper-
parameter λ, and assess the effect of adopting cross-stream
consistency loss LC .
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Figure 4: Frames synthesized by (a)
FS→T , LR+LC ; (b) FT→S , LR+LC ; (c)
FS→T , LR; (d) FT→S , LR.

Input (a) B, 20% (b) B, 100%

GT (c) F, 20% (d) F, 100%

10 20 30 40 50 60 70 80 90100
Percentage of labeled data (%)

26.5
27.0
27.5
28.0
28.5
29.0

PS
NR Ours

Baseline

(e)

Figure 5: Frames synthesized by the base-
line B and our method F using different
amounts of labeled data.
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Figure 6: Synthesized frames and the per-
formance with different numbers of unla-
beled training data.

Comparisons with the baseline. We first verify whether
the proposed network architecture has better performance by
jointly learning the spatial and temporal SR modules across
network streams. Table 1 reports the individual and the av-
erage qualities of spatiotemporal SR from the two network
streams, FS→T and FT→S , on four datasets. The results
in Table 1 show that our proposed method achieves consis-
tent performance gains over different module combinations
and datasets. Figure 3 displays some spatiotemporal SR re-
sults synthesized by the baseline and the proposed method.
Both the qualitative and quantitative results indicate that our
method employing the two-stream network to correlate the
spatial and temporal modules can produce remarkably better
and sharper synthesized frames which contain less visual ar-
tifacts and exhibit characteristics more similar to the ground
truth frames.

Cross-stream consistency loss LC . We verify if the cross-
stream consistency loss LC improves spatiotemporal SR un-
der supervised and semi-supervised settings. Unless further
specified, our method using VDSR and DVF as the spatial
and temporal SR modules respectively is evaluated in the fol-
lowing experiments. Figure 4(e) shows the performance with
and without LC under different ratios of the labeled train-
ing data to the whole training set, from 0.1% to 100%. The
results confirm that this loss LC consistently improves the
performance with different amounts of labeled training data.

Figure 4 visualizes the SR results with and without using LC

in the case of using 100% labeled training data. As shown in
Figure 4(c) and 4(d), the absence of LC leads to blurrier syn-
thesized frames no matter which network stream, FS→T or
FT→S , is used for prediction. We also notice that FS→T pro-
duces worse results. We consider that in this case of scenes
with less texture and high motion, applying the spatial SR
module first in stream FS→T cannot recover useful HR de-
tails. Instead, firstly applying the temporal SR in FT→S re-
veals this issue. However, which module should be applied
first is unknown in general. As shown in Figure 4(a) and
4 (b), our method with the aid of LC can alleviate the above
problems to produce consistent results of two streams by en-
forcing the consistence between the two streams.

Two-stream network. We explore the impact of the ratio
of labeled data to unlabeled data in semi-supervised learn-
ing. We randomly select 2,048 samples from Vimeo-90K as
the training set, in which k% of these samples are labeled
while the rest are unlabeled where k ∈ {10, 20, ..., 100}. Fig-
ure 5(e) shows that our method with two network streams
achieves much better performance than the baseline with a
single stream with various ratios. It is notable that our ap-
proach can use much less labeled data to reach the same per-
formance by the baseline. Figure 5(b) and 5(c) show that our
method with 20% of labeled data produces sharper and better
frames than the baseline using 100% of labeled data.
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Figure 7: Comparisons between the existing methods with our method F using different spatial and temporal modules including VDSR V,
DVF D, DBPN P, ESPCN E, Super SloMo S, and DAIN A.

0 2 4 6 8 10 12 14 16 18 20 22 24
λ

26.0

26.2

PS
NR

Figure 8: Sensitivity analysis of hyperparameter λ.

Effect of using unlabeled samples. To investigate the im-
pact of unlabeled samples in semi-supervised spatiotempo-
ral SR, we fix the number of labeled data to 32, and eval-
uate the performance of our method with different numbers
of unlabeled data. Figure 6(e) shows that using the proposed
cross-stream consistency loss to exploit unlabeled data im-
proves the performance especially when more unlabeled data
are provided. The visualization example in Figure 6 reveals
that the synthesized frames become sharper and clearer when
the number of unlabeled data increases.
Hyperparameter λ. We measure the effect of the hyper-
parameter λ, which controls the relative importance of the
cross-stream consistency loss LC to the reconstruction loss
LR in Eq. (5). We randomly select 512 samples from Vimeo-
90K as the training set, in which 32 of these samples are la-
beled while the rest are unlabeled. Figure 8 reports the perfor-
mance of our method with different values of hyperparameter
λ. It can be observed that the loss function LC is crucial,
since the performance gain by changing λ from zero to a pos-
itive value is significant. Once the value of λ is larger than
a threshold, say 8 ∼ 10 in this case, the performance de-
creases instead. The curve in Figure 8 is smooth. In addition,
a broader range of the λ value results in the improved perfor-
mance, which implies that finding a suitable value of λ to get
performance gain is not difficult.

4.3 Comparisons with Existing Methods
The literature of spatiotemporal SR is limited. We compare
our method with two existing methods: One is example-
based method [Shahar et al., 2011] and the other is a deep-
learning-based method [Sharma et al., 2017], called coupled
deep convolutional auto-encoder (CDCA). For comparison
with CDCA, we re-implement the approach. Note that the
quantitative results of the method [Shahar et al., 2011] are
not available. We compare our method with that in [Shahar et
al., 2011] on the video data provided in its project website1,
and show qualitative comparison in the supplementary mate-
rials and Figure 7, where the proposed approach can produce
more accurate and sharper frames, such as the regions of stars

1http://www.wisdom.weizmann.ac.il/∼vision/SingleVideoSR.
html

Input GT CDCA F(V+D) F(E+D) F(V+S) F(E+S) F(P+A)
Figure 9: Comparisons between CDCA and our method F.

Vimeo-90K Vid4 Middlebury DAVIS
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CDCA 25.86 0.741 21.51 0.581 24.63 0.678 21.69 0.648
F(V+D) 29.39 0.861 22.21 0.663 25.68 0.713 22.43 0.668
F(E+D) 28.63 0.832 22.60 0.676 27.42 0.765 23.22 0.707
F(V+S) 28.91 0.848 22.94 0.708 27.06 0.769 22.81 0.702
F(E+S) 28.42 0.832 22.33 0.667 26.81 0.750 22.77 0.692
F(P+A) 29.36 0.870 22.51 0.695 27.18 0.767 23.84 0.740

Table 2: Comparisons between CDCA and our method F.

on the flag. Table 2 and Figure 9 show that our method per-
forms favorably against CDCA on all the four datasets, and
our method achieves the state-of-the art performance. CDCA
ignores motion correspondences between consecutive low-
resolution frames, leading to more artifacts especially in the
regions with large motion. In contrast, our method leverages
jointly the temporal SR module to smooth content transition
and the spatial SR module to recover more high-resolution
details, resulting in realistic and high-quality frames. About
the inference time with the input two images of size 64× 112
and the output image of size 256 × 448, our method takes
about 60ms, CDCA takes 18ms. Although CDCA is more
efficient, our method significantly outperforms CDCA.

5 Conclusions
We present the first end-to-end trainable network for spa-
tiotemporal SR. By exploiting cross-stream consistency to
jointly train spatial and temporal SR modules, the proposed
approach allows the two modules to share the supervisory sig-
nals and benefit each other. In addition, the cross-stream con-
sistency loss enables semi-supervised learning, and can guide
network training in a self-taught manner with unlabeled data.
Both quantitative and qualitative results show that our method
performs favorably against the existing methods, and achiev-
ing the state-of-the-art performance.
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