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Abstract
Image super-resolution (SR) and image inpainting
are two topical problems in medical image process-
ing. Existing methods for solving the problems are
either tailored to recovering a high-resolution ver-
sion of the low-resolution image or focus on filling
missing values, thus inevitably giving rise to poor
performance when the acquisitions suffer from
multiple degradations. In this paper, we explore the
possibility of super-resolving and inpainting im-
ages to handle multiple degradations and therefore
improve their usability. We construct a unified and
scalable framework to overcome the drawbacks of
propagated errors caused by independent learning.
We additionally provide improvements over pre-
viously proposed super-resolution approaches by
modeling image degradation directly from data ob-
servations rather than bicubic downsampling. To
this end, we propose HLH-GAN, which includes
a high-to-low (H-L) GAN together with a low-
to-high (L-H) GAN in a cyclic pipeline for solv-
ing the medical image degradation problem. Our
comparative evaluation demonstrates that the effec-
tiveness of the proposed method on different brain
MRI datasets. In addition, our method outperforms
many existing super-resolution and inpainting ap-
proaches.

1 Introduction
High-Resolution (HR) Magnetic Resonance Imaging (MRI),
such as 7-Tesla MRI, has shown benefits in brain imaging due
to its high signal-noise-to-ratio, resolution and sensitivity to
capturing disease patterns. However, HR MRI is limited to
long acquisition times, high costs and frequent unavailabil-
ity. In addition, the variations in anatomical observations,

∗Corresponding author

triggered by a patient’s motion, artifacts and corrupted or in-
complete scans, deteriorate clinical diagnosis and other post-
processing steps. Furthermore, the scarcity of HR imaging
limits the ability to model accurate healthy and disease pat-
terns (e.g. to create of anatomical atlases of health status from
clinical images presenting diverse conditions), which call for
advanced approaches to handle the aforementioned problems.

Existing approaches [Huang et al., 2017a] seek to solve the
problems either by super-resolving an input low-resolution
(LR) image or inpainting missing values from the surround-
ing pixels. Image Super-Resolution (SR) aims at reconstruct-
ing an equivalent HR image from its LR counterpart, which
is an ill-posed problem caused by a multiplicity of solutions.
Image inpainting (also known as image completion) aims at
filling missing values of an image, which remains a chal-
lenge due to its inherent ambiguity and the complexity of
content representation. Despite many remarkable achieve-
ments shown in these respective tasks, the existing methods
lack versatility in handling multiple degradations, while the
practical acquisitions may suffer from several serious dam-
ages, e.g., motion blur, compression artifacts, scanner noise,
intensity inhomogeneity, region lost, and degradation stem-
ming from the physical imaging (e.g. scattering in CT, Eddy
current distortions in fMRI, etc.). In addition, separating the
processes of SR and image inpainting requires two learning
steps, with the consequence being that the reconstructed error
from the first stage will be propagated to the second one, thus
leading to an overall larger error.

Early works of SR and image inpainting mostly attempted
to interpolate the lost information, relying on an image
prior [Huang et al., 2015], e.g., nearest-neighbor interpola-
tor [Parker et al., 1983], non-local self-similarity [Manjón et
al., 2010] or sparse representation [Yang et al., 2010]. By
exploiting powerful image priors, Zeyde et al. [Zeyde et al.,
2010] introduced a dictionary learning-based method by in-
corporating a sparse-land local model for the single image
scale-up problem. To avoid using external data but lever-
aging internal feature redundancy for SR purposes, a self-
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Figure 1: Overall architecture of our HLH-GAN.

similarity driven SR algorithm [Huang et al., 2015] was pro-
posed. Rather than learning the relationship between LR and
HR images, internal statistic [Huang et al., 2015] was em-
ployed to perform a decomposition of the geometric patch
transformation. Schulter et al. [Schulter et al., 2015] pre-
sented a fast and accurate image upscaling approach by con-
structing a locally linear multivariate regression using ran-
dom forests. Huang et al. [Huang et al., 2017b] proposed a
hetero-domain image alignment approach by learning from
both paired and unpaired data and achieved remarkable im-
provements in image SR. Although these methods do not re-
quire large-scale training sets to learn an activate expression,
such simple and efficient techniques usually result in blurry
reconstructions with very limited performance.

More recently, the field has witnessed a variety of improve-
ments, with deep learning [Goodfellow et al., 2014] being
employed to gain more ideal performance. Initial efforts
involved training convolutional neural networks (CNNs) to
predict texture details or inpaint small regions by leveraging
learned feature maps. To make the solution space closer to
its true manifold, various losses, such as the perceptual loss,
have been proposed over feature maps to replace the pixel-
wise mean square error loss [Ulyanov et al., 2016]. More
recently, GANs were introduced by inferring more reliable
structures and textures to encourage the nature fidelity be-
tween generated and real images [Ledig et al., 2017]. Specif-
ically, SRCNN [Dong et al., 2015] applied a convolutional
network architecture to learn an end-to-end mapping rela-
tionship between LR and HR images for achieving fast and
superior SR performance. Kim et al. [Kim et al., 2016a]
introduced a very deep convolutional network (i.e. increas-
ing the depth of a CNN to 20 layers) by employing resid-
ual learning and gradient clipping to solve exploding gradi-
ents, while obtaining more contextual information from LR
images. In [Johnson et al., 2016], a perceptual-driven ap-
proach was proposed to enhance the visual quality of SR
results. Based on the idea of being closer to reality, a gra-
dient profile prior-guided detail representation [Tai et al.,
2010], multi-scale redundant dictionary [Zhang et al., 2012],
Markov random field regularized deep CNN [Li and Wand,
2016] were investigated to reconstruct realistic texture details.

SRGAN [Ledig et al., 2017] was then developed to generate
images with photo-realistic textures, which gaining huge im-
provements in perceptual quality.

In parallel, image inpainting is treated as another research
branch which focuses on filling missing regions in a damaged
image with semantically reasonable content. The early devel-
oped methods, e.g., Region Filling [Criminisi et al., 2004]
applied exemplar-based texture synthesis to propagate tex-
ture and structure information, simultaneously, for filling in
the gaps. Borrowing data from surrounding pixels is a simple
and flexible way to recover relative missing values; however,
it lacks a deeper understanding of images and usually leads to
context-unreasonable results. Recently, benefiting from the
rapid development of deep learning, visual performance and
contextual coherence of image inpainting have been further
improved. Context Encoders [Pathak et al., 2016] leverage
image analogy to give semantically hole-filled results. Yu et
al. [Yu and Koltun, 2015] constructed a detailed convolution
to model multiscale contextual information and increase the
size of receptive fields. Iizuka et al. [Iizuka et al., 2017]
utilized a fully-convolutional neural network with their pro-
posed global and local context discriminators to approximate
visually plausible content in the holes. Inspired by the U-Net
model, Shift-Net [Yan et al., 2018] was proposed to optimize
texture details and make sharper structures by introducing a
guidance loss.

Throughout the literature, these advanced methods intu-
itively focus on the upgrading procedure (i.e., low-to-high or
incomplete-to-complete processing) by artificial downsam-
pling to treat the low-quality data. In practice, image degra-
dation can be very complex and even feature multiple issues
associated to degradation factors. This raises the challenge
of handling unknown nuisance factors. Inevitably, lacking
versatility to handle naturally degraded images leads to poor
performance during testing. To alleviate this problem and
achieve high-quality reconstruction with visual realism, we
propose to learn the degradation procedure from real high-
/low-quality acquisitions first, and then super-resolve and in-
paint degraded data in practical scenarios. Our method is
shown in Fig. 1.

Our contributions are summarized as follows:
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• To the best of our knowledge, we are the first to pro-
pose a unified framework (termed as HLH-GAN) to per-
form super-resolution and image inpainting simultane-
ously on medical images.
• A degradation GAN (H-L GAN) is presented for model-

ing the practical low-quality images using our H-L loss
functions rather than bicubic downsampling.
• An upgrading GAN (L-H GAN) is introduced with three

branches: adversarial loss, content loss, and texture loss.
L-H GAN is calculated on feature maps of the VGG
network for content-coherent and texture-realistic recon-
struction.
• We confirm using several quantitative metrics on images

from three datasets that HLH-GAN is the state-of-the-
art for the recovery of high-resolution, texture-clear and
content-complete images.

2 Method
The proposed work aims at handling multiple degradations
such as LR, noisy, blurry, corrupted and region-lost images.
We collectively refer to all these degraded images as low-
quality (LQ) data, in contrast to all superior images as High-
Quality (HQ) data, and image super-resolution and inpainting
tasks as SRI.

2.1 Preliminaries
Typically, GANs involve a generator G and a discriminator
D that compete with each other in a zero-sum game to op-
timize the learning parameters. GANs produce sharp im-
ages, albeit mostly in a supervised setting and with some-
what unstable performance. CycleGAN [Zhu et al., 2017]
builds upon GANs by modeling both forward and backward
mapping functions in a closed loop, and is constrained on a
cycle-consistency term to encourage more robust image style
transformation.

2.2 Problem Formulation
The goal of SRI is to estimate two maps F : L → H and
G : H → L from a LQ image domain L = {ILi }Mi=1, ∀i =
1, ...,M to a HQ image domainH = {IHj }Nj=1, ∀j = 1, ..., N
and vice versa, such that the distributions of mapped
instances p̂l and p̂h can match their ground truths pl
and ph. Following a cyclic strategy [Wu et al., 2018;
Zhu et al., 2017], the cycle-consistency loss is enforced
between G and F . The discriminators DG and DF are then
defined to distinguish the corresponding generations. In this
work, solving SRI can be decomposed into two stages:
(1) High→Low (H-L) GAN is constructed to contaminate
the HQ data with downsampling, noise and artifacts;
(2) Low→High (L-H) GAN is used for recovering the HQ
image from the LQ input.

2.3 H-L GAN
Given two sets of unpaired images {ILi }Mi=1 ∈ L and
{IHj }Nj=1 ∈ H, we first model the degradation procedure us-
ing our H-L GAN, which focuses on simulating the multi-
ple degradations that occur in practical image formation. For

each given HQ input image IHj , we feed IHj into the gener-
ator by first concatenating it with potential downsampling d,
blurring b, noise n, and a rectangular missing region r sam-
pled randomly. The architecture is similar to [Ledig et al.,
2017], but the first layer is replaced with the result of the
concatenation. Since IH , b, n may have different dimensions,
this results in multiple LQ counterparts for each HQ image.
Dimension matching is therefore established by vectorizing
and projecting the blur kernel onto an n-dimensional space
via principal component analysis (PCA) and then stretching
it into a real-valued tensor of the same size as the image chan-
nel with the noise level. By doing so, the generator G can be
trained with d and formulated asM = {b, n}. G is also pa-
rameterized by the layer parameters θHL, including weights
wHL and biases γHL, denoted as θHL = {wHL, γHL} in
a deep network. As with [Ledig et al., 2017], θHL can be
solved by a specific loss function LHL to optimize the map-
ping function G:

θ̂HL = argmin
θHL

LHL(G(IH), IL), (1)

where the LQ image ÎL can be produced by learning G(IH).
Instead of using a typical lp(p = 1, 2) norm to identify the
difference, we generalize the task of assessing the quality of
LQ data with our H-L GAN. That is, by defining a corre-
sponding discriminator DG to distinguish the generated LQ
images from real ones. This leads to LAHL =

EIL∼pl
[
logDG(I

L)
]
+ EIH∼ph

[
log(1−DG(G(I

H)))
]
.

(2)
Similar to [Liu et al., 2017; Yi et al., 2017; Zhu et al., 2017],
LAHL is regarded as a unidirectional adversarial loss and op-
timized alternatively along with G by feeding the unpaired
training data. In addition to being able to identify the gener-
ated images, another important property which was explored
in the traditional reconstruction task is the preservation of
common components between LQ and HQ images. To en-
sure that the resulting LQ data retains the same content as the
HQ versions, we add a high-level content loss:

LCHL = EIH∼ph
[
‖φ(G(IH))− φ(IH)‖1

]
, (3)

where φ(·) represents the high-level feature maps obtained
from a VGG network. Different from the most related
works [Ledig et al., 2017], we adopt an l1 distance to mea-
sure the cross-quality content loss using VGG feature maps
between the HQ ground truth and the generated LQ counter-
parts. This is due to the fact that missing regions in LQ data
show very different characteristics from the completed HQ
data and, thus, the l1-norm is able to handle such changes
much better than others. LAHL is then combined with LCHL
to formulate the loss function of H-L GAN.

2.4 L-H GAN
The L-H GAN is built upon results obtained from H-L GAN
to recover HQ images ÎH . Specifically, LQ images ÎL gen-
erated by H-L GAN are fed to the generator F of the L-H
GAN. The generative network is a deep residual CNN simi-
lar to the ones used in [Johnson et al., 2016]. The parameters
θLH = {wLH , γLH} are used for estimating ÎH by learning a
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mapping function F as ÎH = F (ÎL). Specifically, ÎH can be
solved by optimizing F using a multi-upgraded loss function
LLH on the training samples:

θ̂LH = argmin
θLH

LLH(F (ÎL), IH). (4)

Different from previous GAN-based SR/inpainting works
which only rely on local content matching for adversarial su-
pervision, we propose using a dedicated L-H GAN together
with an adversarial loss LALH , a content loss LCLH , and a
texture lossLTLH , to enforce the realism and the consistency.

Generally, L-H GAN is based on adversarial learning,
LALH is therefore provided to affect the upgrade process in
F . The calculation of LALH is in accordance with Eq. (2) by
simply changing the direction of the LQ/HQ data transforma-
tion, i.e.

EIH∼ph
[
logDF (I

H)
]
+ EIH∼pl

[
log(1−DF (F (Î

L)))
]
,

(5)
where DF is the discriminator corresponding to F . As pre-
sented in Eq. (3), the content loss LCLH is also constrained
for L-H GAN to capture the global structure of the underlying
common components between the reconstructed HQ images
and real ones. It is worth noting that the l1-norm is utilized
in Eq. (3), which is suitable for images with different char-
acteristics, e.g. for measuring the distance between IH and
ÎL instead of IH and ÎH . The l2-loss, on the other hand, is
widely used to penalize the discrepancy in image appearance
between the ground truth and its pseudo-product. We then
define

LCLH = EIH∼ph

[
‖φ(F (ÎL))− φ(IH)‖22

]
. (6)

Eq. (6) is applied in the feature maps φ(·) of the VGG-
19 network. In order to generate highly accurate textures,
the texture loss LTLH is used here to guide the generation of
fine-scale details. Following [Ulyanov et al., 2016], we adopt
a texture descriptor, involving several Gram matrices Tl, in
the descriptor VGG network to induce

LTLH =
∑
l∈LT

‖Tl(φ(F (ÎL)))− Tl(φ(IH))‖22. (7)

2.5 Final Objective
Our framework is based on a cyclic learning system, in-
spired by [He et al., 2016; Huang et al., 2017a; Liu et al.,
2017], where the cycle-consistency constraint is added to en-
force forward-backward transformation consistency. As with
in [Zhu et al., 2017], the cycle-consistency loss Lcyc is de-
fined as

EIH∼ph
[
‖F (G(IH))− IH‖1

]
+ EIL∼pl

[
‖G(F (IL))− IL‖1

]
.

(8)
With H-L GAN loss LHL, L-H GAN loss LLH , and cycle-

consistency loss Lcyc, the model objective of our HLH-GAN
is defined as

LHLH = LHL + LLH + λLcyc. (9)

where LHL and LLH can be extended as LHL = LAHL +
αLCHL,LLH = LALH + δLCLH + βLTLH .

3 Experiments
3.1 Network Architecture
H-L GAN: We designed the generator as an encoder-decoder
network with the stretched real-valued tensor as the first layer,
and 12 identical residual blocks as the middle layers, followed
by a convolutional layer with stride 2, 4 and scale factor of 2,
4, respectively. The stride of last layer is 1, and all other
convolutional layers follow the above setting using 3×3×3
kernels with 32 filters. For φ, we utilize the feature maps
obtained by the 4-th convolution before the 4-th maxpooling
layer within the VGG19 network. We use Adam with 105

iterations and a learning rate of 10−4, which is decayed by
a factor of 2 every 2 × 105 minibatch updates. To train the
discriminative network, we follow [Ledig et al., 2017] using
six residual blocks without batch normalization, followed by
a fully connected layer.
L-H GAN: The generator uses 17 residual blocks distributed
as 12-3-2 with skip connections between them. The archi-
tecture is generally the same as in [Ledig et al., 2017], but
we choose different hidden layers depending on the loss. The
content loss is calculated based on the feature maps from the
relu5 1 layer, and the texture loss is computed by combining
the relu3 1 and relu4 1 layers of VGG19. The discriminator
is that of a general GAN.
Weights For the parameters, we set α = 10, δ = 10, β = 0.1,
λ = 1.

3.2 Datasets
We evaluate the proposed method on two publicly avail-
able datasets: IXI 1, and HCP 2, which include real ac-
quired LQ/HQ data. Specifically, the IXI dataset contains 578
healthy subjects acquired by a Philips 3T/1.5T system and a
GE 1.5T system. One branch of the HCP dataset has a total
of 200 subjects acquired via a Siemens 3T scanner. The HQ
images were observed by a IXI-Philips 3T and HCP-Siemens
3T with complete content and no added blur or noise. The
LQ images were acquired by IXI-Philips 1.5T/GE 1.5T and
HCP-Siemens 3T scanners 3. In addition, we collected 12
clinical LQ images from the local hospital, which consist of
various LR images with unknown degradation and noise. We
split the datasets into 500 (IXI) and 120 (HCP) for training,
78 (IXI) and 80 (HCP) for testing.

3.3 Comparison and Results
We compare HLH-GAN against several state-of-the-art ap-
proaches, including Bicubic, ScSR [Yang et al., 2010],
SelfEx [Huang et al., 2015], Zeyde [Zeyde et al., 2010],
DRCN [Kim et al., 2016b], SRCNN [Dong et al., 2015],
and SRGAN [Ledig et al., 2017]. We use the default set-
tings of the compared methods to obtain their best super-
resolved effects. To fully evaluate the effectiveness of our
method in different scenarios, we conduct a comprehensive
evaluation in three ways: (1) image super-resolution with-
out deblurring and denoising (termed as SR-B-D); (2) image

1http://brain-development.org/ixi-dataset
2https://www.humanconnectome.org
3HCP data were downsampled with destructed content, blur and

noise
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Figure 2: Example results for SR-B-D by HLH-GAN and compared methods.

Exp. Bicubic ScSR SelfEX Zeyde DRCN SRCNN SRGAN HLH-GAN

IXI: SR-N-B (PSNR(dB), SSIM)
PD 31.85 0.8891 31.93 0.8901 32.43 0.8976 32.07 0.8964 33.01 0.9011 33.78 0.9119 34.00 0.9025 35.14 0.9337
T1 30.03 0.8653 30.05 0.8677 31.40 0.8832 31.18 0.8827 32.74 0.8993 33.06 0.9007 33.69 0.9009 34.82 0.9201
T2 31.17 0.8972 32.41 0.8968 32.17 0.8967 32.25 0.8979 33.96 0.9123 34.25 0.9188 34.26 0.9183 35.01 0.9305

IXI: SR-B (PSNR(dB), SSIM)
PD 29.86 0.8553 29.87 0.8553 30.02 0.8654 30.01 0.8647 31.82 0.8912 32.59 0.9003 33.16 0.9004 34.99 0.9273
T1 27.77 0.8201 27.79 0.8203 29.16 0.8578 29.01 0.8558 31.00 0.8872 32.11 0.8972 32.44 0.8969 34.02 0.9116
T2 29.92 0.8617 29.96 0.8621 29.98 0.8623 29.96 0.8617 31.76 0.8964 32.52 0.8996 32.97 0.9001 34.86 0.9259

IXI: SRI (PSNR(dB), SSIM)
PD 26.02 0.7687 26.07 0.7689 27.64 0.7837 27.62 0.7834 29.62 0.8201 30.11 0.8394 31.45 0.8388 32.17 0.8972
T1 25.78 0.7642 25.79 0.7642 26.39 0.7701 26.21 0.7683 28.39 0.7943 29.45 0.8157 30.26 0.8003 31.86 0.8819
T2 25.92 0.7660 25.94 0.7676 27.58 0.7826 27.39 0.7815 29.47 0.8189 30.00 0.8316 31.20 0.8309 32.04 0.8961

Table 1: Quantitative evaluations of SR-B-D, SR-B and SRI on the IXI dataset. Best results are highlighted.

LQ input

HQ ground truth (PSNR)

Bicubic (30.4) ScSR (30.6)

SRCNN (35.6)SRGAN (36.1) DRCN (33.5)

SelfEx (32.6)

Ours (37.5)

Zeyde (32.3)

Figure 3: Visual comparison of HLH-GAN and competitors on SR-
B.

super-resolution without deblurring (termed as SR-B); (3) si-
multaneous super-resolution and inpainting (termed as SRI).
To demonstrate the effectiveness of HLH-GAN, the quantita-
tive results are provided in Tables 1-3 and visual results are
given in Figs. 2-5.

Specifically, Fig. 2 presents a set of results for SR-B-D.
As can be seen, all compared methods are able to generate

Bicubic ScSR SelfEx Zeyde

DRCN SRCNN SRGAN HLH-GAN

HQ Ground Truth

Figure 4: Performance comparison of different methods with
zoomed-in details.

clear results but some tend to have blurry details. DRCN, SR-
CNN, SRGAN and HLH-GAN can recover clearer and more
textural details. Another point worth noting is that, among
the four superior methods (i.e., DRCN, SRCNN, SRGAN
and HLH-GAN), HLH-GAN obtains the best quality perfor-
mance and displays the most obvious visual fidelity. We then
show the overall PSNR and SSIM indices of all the compet-
ing models for the three scenarios, experimented on the IXI
dataset. The quantitative results are listed in Table 1. As
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Exp. Bicubic ScSR SelfEX Zeyde DRCN SRCNN SRGAN HLH-GAN

HCP: SR-N-B (PSNR(dB), SSIM)
T1 30.66 0.8694 30.67 0.8695 31.16 0.8839 31.14 0.8820 32.25 0.8972 32.81 0.9007 33.21 0.9019 34.58 0.9213
T2 31.42 0.8801 31.44 0.8801 31.89 0.8897 31.77 0.8864 32.47 0.8996 32.83 0.9016 33.66 0.9111 34.76 0.9280

HCP: SR-B (PSNR(dB), SSIM)
T1 28.01 0.8255 28.06 0.8259 28.37 0.8351 28.34 0.8349 28.78 0.8397 29.16 0.8426 30.45 0.8501 32.01 0.8974
T2 28.24 0.8279 28.24 0.8280 28.41 0.8374 28.40 0.8371 28.94 0.8401 29.39 0.8497 30.55 0.8523 32.47 0.8998

HCP: SRI (PSNR(dB), SSIM)
T1 26.62 0.7983 26.69 0.7986 27.04 0.8012 27.04 0.8010 28.26 0.8507 28.99 0.8668 29.68 0.8701 31.50 0.8918
T2 26.68 0.7986 26.71 0.8000 27.15 0.8153 27.09 0.8142 28.51 0.8582 29.37 0.8753 29.69 0.8701 31.69 0.8924

Table 2: Quantitative evaluations of SR-B-D, SR-B and SRI on the HCP dataset. Best results are highlighted.

LR T2 (PSNR,SSIM)

SR-N-B T2 (38.95,0.8597)

LQ T2 Input

SR T2 (38.32,0.8422)

LQ with hole T2-w Input SR+I T2 (36.36,0.7640)

SRI T2 (37.57,0.8333) I+SR T2 (36.42,0.7656)

Figure 5: Visualization results of HLH-GAN on SR-N-B, SR-B,
SRI, SR+I and I+SR cases.

Exp. SRI SR+I I+SR
IXI: T2-w MRI

PSNR(dB) SSIM 32.04 0.8961 28.59 0.8501 28.32 0.8377
HCP: T2-w MRI

PSNR(dB) SSIM 31.69 0.8924 28.26 0.8376 27.98 0.8306

Table 3: Performance verification (PSNR (dB) and SSIM): HLH-
GAN under various conditions on T2-w brain MRI from IXI and
HCP datasets. Best results are highlighted.

can be seen, HLH-GAN consistently produces much better
results than other approaches, with PSNR and SSIM gains
of 1.28±0.6(dB) and 0.04±0.03, respectively. Note that the
two special cases constructed i.e., SR-B and SRI, are more
challenging than SR-B-D. Visual comparisons are provided
in Figs. 3-5. As shown in Fig. 3, the typical Bicubic, ScSR,
SelfEx and Zeyde produce HR data but with overly smooth
surfaces, while deep generative methods are effective in re-
constructing denoised HR images with precise smoothness.
We also show the zoomed-in results of different methods in
Fig. 4, from which we can see that most compared approaches
can reconstruct content with higher resolution but suffer from
blurry artifacts. Instead, our method (HLH-GAN) achieves
sharper and more realistic details. To further prove the ef-
fectiveness of HLH-GAN, we also evaluate the above three
cases on the HCP dataset and report all the quantitative re-
sults in Table 2. Compared with other methods, HLH-GAN
also performs the best on various modality (i.e., T1 and T2)
data throughout the experiments.

To validate our framework, we compare the results of si-
multaneous SR and inpainting (denoted as SRI) with (a) first
SR and then inpainting (termed as SR+I) and (b) first inpaint-
ing and then SR (called as I+SR). We show their visual re-
sults in Fig. 5 and averaged PSNR and SSIM in Table 3. The

first column of Fig. 5 demonstrates results generated by HLH-
GAN for SR-N-B, the second column displays our results for
SR-B, while the last yellow block shows the compared per-
formance of SRI, SR+I and I+SR. As can be seen from the
figures, HLH-GAN can produce visually pleasant results for
various cases, but the performance is still affected by intri-
cate artifacts. Particularly when recovering the holed region,
our unified framework produces better inpainting results than
independent processing. However, it also generates obvious
errors around the borders of completely absent areas. We also
analyze how our HLH-GAN contributes to the final perfor-
mance of SRI, conducting experiments on the T2-w MRI of
both the IXI and HCP datasets. We compare our HLH-GAN
to the model with separate processes, as shown in Table 3.
For both datasets, our method consistently overcomes SR+I
and I+SR, which indicates that the unified model improves
the effectiveness of both image SR and inpainting, and that
the integration is crucial to the success of HLH-GAN.

In summary, our method yields the best results against the
compared approaches proving our claim of being able to si-
multaneously conduct SR and inpainting for better results
(with our model performing particularly well on SRI task).
Since the HCP dataset includes HQ data, the advantage of
HLH-GAN is shown in the high-level details rather than over-
all appearance (referring to Fig. 2). Our method evaluated on
the IXI dataset outperforms the existing state-of-the-art ap-
proaches by a large margin.

4 Conclusion
We proposed an HLH-GAN, including two submodules (H-L
GAN and L-H GAN), for integrated image SR and inpaint-
ing. We showed that our method improves LQ images by
first learning a natural image degradation process and then
upgrading them. We also demonstrated good results for si-
multaneous SR and image inpainting using brain images, es-
pecially when leveraging the LQ ground truth during train-
ing. Our model significantly outperforms various state-of-
the-art models both quantitatively and qualitatively. As a fu-
ture work, we plan to apply our method to augment HQ data
in longitudinal imaging studies.
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