
Deep Polarized Network for Supervised Learning
of Accurate Binary Hashing Codes

Lixin Fan1 , Kam Woh Ng1 , Ce Ju1 , Tianyu Zhang1 , Chee Seng Chan2

1WeBank AI, Shenzhen, China
2University of Malaya, Kuala Lumpur, Malaysia

{lixinfan, jinhewu, ceju, brutuszhang}@webank.com, cs.chan@um.edu.my

Abstract
This paper proposes a novel deep polarized net-
work (DPN) for learning to hash, in which each
channel in the network outputs is pushed far away
from zero by employing a differentiable bit-wise
hinge-like loss which is dubbed as polarization
loss. Reformulated within a generic Hamming Dis-
tance Metric Learning framework [Norouzi et al.,
2012], the proposed polarization loss bypasses the
requirement to prepare pairwise labels for (dis-
)similar items and, yet, the proposed loss strictly
bounds from above the pairwise Hamming Dis-
tance based losses. The intrinsic connection be-
tween pairwise and pointwise label information, as
disclosed in this paper, brings about the follow-
ing methodological improvements: (a) we may di-
rectly employ the proposed differentiable polariza-
tion loss with no large deviations incurred from
the target Hamming distance based loss; and (b)
the subtask of assigning binary codes becomes ex-
tremely simple — even random codes assigned to
each class suffice to result in state-of-the-art perfor-
mances, as demonstrated in CIFAR10, NUS-WIDE
and ImageNet100 datasets.

1 Introduction
The ultimate goal of learning to hash (LtH) is to preserve the
similarity of neighboring data points such that semantically
similar items are grouped together and can be efficiently re-
trieved upon querying requests. Generally, the learning objec-
tive is often formulated as the minimization of a loss based on
the pairwise hash code differences e.g. in [Lin et al., 2013]:

min
Φ(·)

∑
i,j

L
(
Φ(xi),Φ(xj), yij

)
, (1)

in which yij = {−1,+1} is the given similar/dissimilar
relations for a sample data pairs (xi, xj), the loss
L(Φ(xi),Φ(xj), yij) simultaneously minimizes intra-class
and maximizes inter-class Hamming distances between sim-
ilar/dissimilar hash codes, and Φ : X → Hb are the binary
hash functions to be learned.

One central difficulty for optimizing (Eq. 1) lies in the
vanishing gradients of binary hashing functions Φ(xi) which

Figure 1: The proposed DPN architectures for training and infer-
ence. See Section 3.1 for the backbone network used.

in general lead to a NP-hard binary optimization problem.
Two principled solutions have been proposed in the litera-
ture — the first solution is to approximate Φ with continuous
relaxation e.g. either by evolving a smoothed activation func-
tion [Cao et al., 2017] or simply eliminating the hard binary
constrains and penalizing large deviations from the desired
binary outcomes [Liu et al., 2016]. This continuous relax-
ation allows gradient-based optimization methods e.g. back-
propagation to be directly applied, yet deviations from binary
codes inevitably induces quantization errors and arguably
gives rise to sub-optimal hash codes [Su et al., 2018]. The
second solution is to decompose the original optimization
problem into two sub-problems i.e. binary code inference and
hash function learning [Lin et al., 2013]. Although the opti-
mal hash functions can be learned with respect to a variety of
loss functions defined on the recovered binary codes, the as-
signment of appropriate codes to each data points in the initial
step is itself a non-trivial task and sophisticated algorithms
e.g. bit-wise block coordinate descent or discrete cyclic
coordinate descent have to be employed [Lin et al., 2013;
Shen et al., 2015]. Bearing in mind the merits and shortcom-
ings of these two aforementioned solutions, one may wonder
whether it is possible to come up with a simple differentiable
loss that is guaranteed to minimize the original Hamming dis-
tance based loss with no quantization errors incurred, and at
the same time, no sophisticated binary optimization solvers
are needed. This open problem is the primary motivation of
our work illustrated in this paper.

To this end, the present paper proposes a novel deep po-
larized network (DPN) for learning to hash as illustrated in
Figure 1, in which each channel in the network outputs is en-
forced towards either positive or negative extremes by em-
ploying a differentiable bit-wise hinge-like loss which we
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Labels Handcraft Pre-trained

Pointwise
[Gong and Lazebnik, 2011] [Yang et al., 2018]

[Shen et al., 2015] [Shen et al., 2019]

Pairwise
[Kulis and Darrell, 2009] [Li et al., 2016]

[Liu et al., 2012] [Cakir et al., 2018]
[Lin et al., 2013] [Cakir et al., 2019]

Triplet
[Norouzi et al., 2012] [Yao et al., 2016]
[Wang et al., 2013] [Liu et al., 2018]

& Rank [Wang et al., 2015] [He et al., 2018]

Table 1: Categorization of LtH methods and representative losses.
Handcraft denotes methods do not use neural networks for feature
extraction; Pre-trained denotes methods use CNN image features
pre-trained for classification task; For pointwise labels, often the
classification objectives were used e.g. [Shen et al., 2019]. For
pairwise labels, losses push similar pairs together while dissimilar
ones apart [Liu et al., 2016]. For triplet & rank labels, often the
triplet-based hinge loss variants were used [Norouzi et al., 2012].
Please refer to [Li et al., 2016; Lin et al., 2017; Wang et al., 2018;
Cakir et al., 2019] for thorough reviews of related works.

dubbed as “polarization loss”. A number of methodolog-
ical advantages of the proposed polarized networks are as
follows. First, it is demonstrated by both theoretical proof
and empirical investigations, that the proposed polarization
loss strictly bounds from above the Hamming distance be-
tween similar/dissimilar hash code pairs. As such, minimiz-
ing the polarization loss is equivalent to simultaneous mini-
mizing the intra-class and maximizing inter-class Hamming
distances (see Proposition 3). Second, the subtask of binary
code inferences in the two-step approach becomes extremely
simple — even random codes assigned to each class suffice to
result in state-of-the-art performances, as demonstrated in CI-
FAR10, NUS-WIDE and ImageNet100 datasets. Moreover,
hash codes accuracies can be consistently elevated above the-
state-of-the-art, by encoding non-polarized network outputs
with an intermediate state i.e. 0 between {−1,+1}. This
ternary assignment results in 2% to 8% improvements of
mAP for experiments in all three datasets.

1.1 Related Work
Numerous hashing methods have been proposed over the
years and, due to limited space, we only review those related
to our method. Please refer to [Li et al., 2016; Lin et al., 2017;
Cakir et al., 2018; Wang et al., 2018; Cakir et al., 2019] for
thorough reviews of related works. As shown in Table 1, we
broadly categorize existing hashing methods according to two
dimensions i.e. (i) what type of label information is exploited,
and (ii) in which way low-level (image) features are extracted.

Among the four different types of label information i.e.
pointwise, pairwise, triplet and rank labels that were used
for LtH, the pairwise labels is probably the most commonly
employed e.g. in [Kulis and Darrell, 2009; Jeong and Song,
2018; Cakir et al., 2019], with computational complexity
O(N2) for N data points. In terms of neural network ar-
chitectures, Siamese networks are often needed to take pairs
or triplets images as inputs during the learning stage [Li et
al., 2016; Wang et al., 2016; Zhuang et al., 2016]. In con-
trast, pointwise labels lead to loss functions which are faster
to compute and easier to optimize. Although pointwise la-

bels enjoyed computational and network simplicities e.g. as
shown in [Shen et al., 2019], previous works did not dis-
close the intrinsic connection between pointwise and pairwise
losses, which is illustrated in Section 2.2 of this paper.

Recent LtH methods have witnessed significant improve-
ments in terms of hashing accuracies by replacing hand-
crafted (image) features with Deep CNN features which are
first pre-trained for classification task e.g. with ImageNet
dataset and subsequently fine-tuned for hashing [Lin et al.,
2015; Zhao et al., 2015; Cao et al., 2018]. It was also demon-
strated e.g. by [Shen et al., 2015; Yang et al., 2018] that
jointly learning features with hash functions may improve the
hashing accuracies.

A hinge-like loss (Eq. 4) with a Hamming Ball radius pa-
rameter was adopted in [Norouzi and Blei, 2011] to differ-
entiate similar/dissimilar points. In a similar vein, hinge-like
losses were also adopted for triplet or rank based labels e.g.
within the well-developed Hamming Distance Metric Learn-
ing framework [Norouzi et al., 2012]. However all these
hinge-like losses are defined in the binary Hamming space,
which are different from the polarization loss defined on real-
valued network outputs (see definition in Section 2.2).

The proposed polarization network bears some similarities
with the binary weight networks used for network compres-
sion e.g. [Hu et al., 2018]. Also a sign loss was used to
embed signatures into deep neural networks to provide own-
ership verification for IP protection [Fan et al., 2019]. Never-
theless, motivations of these applications were different from
LtH and, moreover, the connection with pairwise hashing ob-
jectives disclosed in this paper was not mentioned there.

2 Deep Polarized Networks
This section illustrates a novel deep polarized network
(DPN), in which the network outputs are pushed away from
zero to either positive or negative sides. We first formulate be-
low the DPN within the well developed Hamming Distance
Metric Learning framework [Norouzi et al., 2012] and then
elaborate the proposed polarization loss, which, to our best
knowledge, is the only single differentiable loss term that
simultaneously minimizes inter-class and maximizes intra-
class Hamming distances.

2.1 Deep Polarized Network for Hamming
Distance Metric Learning

Our goal is to learn a hash mapping that maps real-valued
data points x ∈ Rp into K-bit binary codes b ∈ HK :=
{−1,+1}K , such that similar data are mapped to similar bi-
nary codes with small Hamming distances, and vice versa.

For K-bit binary codes b, the hash mapping function Φ is
parameterized by w,

b = Φ(x; w) := sign(Ψ(x; w)), (2)

in which the general function Ψ : Rp → RK admits differ-
ent forms of implementations as shown in the Hamming Dis-
tance Metric Learning framework [Norouzi et al., 2012]. In
this work, Ψ can be implemented in any existing deep CNN
appended with a fully connected output layer that consists of
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K channels representing K bits. See Figure 1 for a diagram
of the DPN architecture.

The choice of loss function is crucial for learning good
similarity measures. While majority of the existing LtH
methods formulate learning objectives in terms of pairwise
or triplet similarities e.g. in [Norouzi and Blei, 2011;
Norouzi et al., 2012], we show that pairwise or triplet label
information are actually not needed for the polarization loss
proposed below.

2.2 Polarization Loss
Definition 1 (Polarization loss). For each data x ∈ X and its
corresponding output vector v := Ψ(x; w) ∈ RK , the polar-
ization loss is defined on the vector v with respect to a pre-set
target binary code t ∈ H as follows,

LP(v, t) :=
K∑
i=1

max(m− vi · ti, 0), (3)

where the margin threshold is pre-set, m ≥ 1, for the bound
in Lemma 1 to be strict.

By minimizing the polarization loss (Eq. 3) during the
learning phase, magnitudes of each DPN output channels are
induced above the threshold m while corresponding signs are
aligned to the target vector t. Figure 5 illustrates the distribu-
tion of outputs v, for example images fed to a DPN. Clearly
large margins push the network outputs further away from
zero. It must be noted that, the outputs for correctly coded
images are polarized while non-polarized outputs are more
likely observed for mis-classified ones.
Lemma 1. For output vector v = Ψ(x; w), the Hamming
distance Dh(b, t) := 1

2 (K − b · t) between K-bits binary
hash code b = sign(v) and the corresponding binary vector
t is upper bounded by the polarization loss

Dh(b, t) ≤ LP(v, t), (4)

for any m ≥ 1 and v ∈ {(v1, · · · , vK)
∣∣vk ∈ R}.

Proposition 1. Suppose class C consists of data points
{x1, · · · , x|C|} associated with a pre-set target t ∈ H
in Hamming space. The averaged intra-class pairwise
Hamming distances among the corresponding binary codes
{b1, · · · , b|C||bi = Φ(xi; w)} is upper bounded by,

1

|C|2 ·
∑

1≤i,j≤|C|

Dh(bi, bj) ≤
2

|C| ·
∑

1≤i≤|C|

LP(vi, t). (5)

Proposition 2. Suppose there are L classes in the dataset,
i.e. C1, · · · , CL. For any two classes Cx and Cy (1 ≤ x 6=
y ≤ L), respectively, with associated targets binary vec-
tors tx and ty and binary hash codes bx

i = Φ(xi; w), i ∈
{1, · · · , |Cx|}, by

i = Φ(yj ; w), j ∈ {1, · · · , |Cy|}, the aver-
aged inter-class pairwise Hamming distances among binary
codes

∑
1≤i≤|Cx|,
1≤j≤|Cy|

Dh(bx
i , by

j ) is lower bounded by,

∑
1≤x 6=y≤L

(
Dh(tx, ty)− 1

|Cx| · |Cy|
·
∑

1≤i≤|Cx|,
1≤j≤|Cy |

Dh(bx
i , by

j )
)

≤
∑

1≤x≤L

2 · (L− 1)

|Cx|
·
∑

1≤i≤|Cx|

LP(vx
i , tx). (6)

Proposition 3. The difference between averaged intra-class
pairwise Hamming distance and averaged inter-class pair-
wise Hamming distance is upper bounded, i.e.∑

1≤x≤L

1

|Cx|2
·

∑
1≤i,j≤|Cx|

Dh(bx
i , bx

j )

−
∑

1≤x 6=y≤L

1

|Cx| · |Cy|
∑

1≤i≤|Cx|,
1≤j≤|Cy |

Dh(bx
i , by

j )

≤
∑

1≤x≤L

2 · L
|Cx|

·
∑

1≤i≤|Cx|

LP(vx
i , tx)−

∑
1≤x 6=y≤L

Dh(tx, ty). (7)

Remarks:
I Inequality in (Eq. 5) shows that the averaged polariza-

tion loss is a strict upper-bound of the averaged pairwise
Hamming distances between points of the same class.
That is to say, minimizing the RHS of (Eq. 5) effec-
tively minimizes the averaged intra-class pairwise Ham-
ming distances.

II In terms of the computational complexity, pairwise
Hamming distances on the LHS of (Eq. 5) is O(|C|2)
while the polarization loss on the RHS of (Eq. 5) is
O(|C|) only.

III Inequality in (Eq. 6) shows that minimizing polarization
losses on the RHS of (Eq. 6) effectively maximizes the
averaged inter-class pair-wised Hamming distances on
LHS.

IV According to Proposition 3, the optimization problem of
simultaneous minimizing the intra-class and maximizing
inter-class Hamming distances, i.e.

min
w

∑
1≤x≤L

1

|Cx|2
·

∑
1≤i,j≤|Cx|

Dh(bx
i , bx

j )

−
∑

1≤x 6=y≤L

1

|Cx| · |Cy|
∑

1≤i≤|Cx|,
1≤j≤|Cy |

Dh(bx
i , by

j ),

is equivalent to the problem of minimizing the averaged
polarization loss over the whole data set, i.e.1

min
w

∑
1≤x≤L

1

|Cx|
·
∑

1≤i≤|Cx|

LP(vx
i , tx). (8)

2.3 Empirical Investigations of Error Terms
LHS of (Eq. 7) is the averaged intra-class Hamming Dis-
tance minus the inter-class Hamming distance. This quantity
has been used to minimize Hamming distances between sim-
ilar pairs while maximizing Hamming distances between dis-
similar pairs, for both pairwise and triplet based losses e.g.
[Norouzi and Blei, 2011; Norouzi et al., 2012]. Proposition 3
proves that LHS is strictly bounded by RHS of (Eq. 7), which
is the polarization loss minus the pairwise Hamming distance
between the target vectors.

Empirically, Figure 2 shows that the proposed polarization
loss is closely related to the intra-class and inter-class Ham-
ming distances between similar/dissimilar data pairs, up to

1Due to the limited space, proofs of propositions are omitted
from the paper and will be included in an elaborated report.
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Figure 2: Comparison of minimized loss and target loss i.e. LHS of (Eq. 7) for different methods. (Left): LHS and RHS of (Eq. 7) in
Proposition 3, plotted over different epochs of learning. Pearson correlation between these two plots is 0.9935. (Middle): Error term in
GreedyHash [Su et al., 2018] vs LHS of (Eq. 7). Pearson correlation between these two plots is 0.913. (Right): Error term in HashNet [Cao
et al., 2017] vs LHS of (Eq. 7). Pearson correlation between these two plots is 0.882.

a constant that depends on the pairwise Hamming distances
between target vectors. Indeed the measured Pearson corre-
lation between these two plots is as high as 0.9935. We view
this strong correlation as an unique and favorable feature of
the proposed polarization loss. In contrast, error terms used
in [Su et al., 2018] and [Cao et al., 2017] neither bounded
intra-class nor inter-class Hamming distances. Note that the
scales for these error terms are significantly different and the
corresponding Pearson correlation are measured at 0.913 and
0.882 respectively.

2.4 The Setting of Target Vectors
The minimization of (Eq. 8) is a simple problem in terms
of the number of parameters to be optimized — target bi-
nary vectors tx are constants while network parameters w
for real-valued outputs vx

i (x; w) are directly optimized using
the back-propagation, thanks to the differentiable polarization
loss LP.

Two strategies have been investigated in the setting of tar-
get vectors: (i) random assignments; (ii) adaptive updat-
ing with random initialization. Algorithm 1 summarizes the
pseudo-codes of both setting schemes.

Algorithm 1 Training of Deep Polarized Network

1: Input
2: x,t sample data and target binary vectors
3: Output
4: Ψ(; w)trained DPN
5: procedure TRAIN(Ψ)
6: for number of epochs do
7: v← Ψ(x; w)
8: w← w− lr ∗ ∇w(Lp(v, t))
9: if adaptive updating then

10: vcorrect ← find v with correct prediction
11: for each class, c do
12: b← sign(vcorrectc )
13: tc ← sign(mean(b, axis = batch))
14: end for
15: end if
16: end for
17: end procedure

Figure 3: The plot shows the retrieval performance (mAP), mea-
sured and expected inter-class hamming distances (see Claim for
random assignments of target vectors), with respect to different ra-
tio of positive bits (0.1 up to 0.9). Left to right: ImageNet100 with
16 and 64-bit hash codes respectively.

Random Assignments of Target Vectors
Random projections have long been adopted in the locality
sensitive hashing (LSH) as data-independent hashing func-
tions with a theoretical guarantee of successful approxi-
mate nearest-neighbour search [Indyk and Motwani, 1998;
Andoni and Indyk, 2006]. Following this principle, we adopt
a Random Assignment scheme for setting target vectors as-
sociated with each class. This random assignment scheme
is guaranteed to generate target vectors that are of sufficient
inter-class hamming distances as shown below.
Claim: Suppose K-bit Hamming space HK := {−1, 1}K ,
two binary target vectors tx, ty ∈ HK are sampled with prob-
ability p for 1 on each bit. The expectation of Hamming
distance is then given by Ep(Dh(tx, ty)) = 2K · p(1 − p),
whereas the expectation achieves maxima K when p = 0.5.

Figure 3 plots the expected hamming distances, the mea-
sured hamming distances and the hashing accuracies with re-
spect to different ratios of positive bits. Clearly, the maximal
inter-class hamming distance gives rise to the optimal hashing
accuracy, which is in line with the bound in (Eq. 7). Follow-
ing the theoretical analysis and the ablation study, we set the
ratio of random assignments of positive bits as 0.5 in all the
experiments.

Adaptive Updating of Target Vectors
For the adaptive scheme, target vectors are repeatedly up-
dated during the learning of hash functions (see Algorithm
1). It was observed that, (i) frequent updating is not neces-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

828



Figure 4: Visualization of the target vectors for each class with our
proposed method, projected along first two eigenvectors. (Left):
randomly assigned target vectors (i.e. DPN), (Right): adaptively
updated target vectors (i.e. DPN-A).

sary or sometimes bring about adverse effect to the conver-
gence of learning process; (ii) the improvements in hashing
accuracies brought by the adaptive updating is marginal (see
results in Section 3.3); (iii) updated vectors do reflect the in-
trinsic similarities among different classes e.g. dog and cat
for CIFAR10 dataset (see Figure 4).

3 Experiment Results
This section illustrates the experiment results and ablation
study of the hyper-parameter i.e. margin m. Also, an ef-
fective ternary assignment is demonstrated with hashing ac-
curacies levitated above the state-of-the-art solutions.

3.1 Datasets and Experiment Settings
CIFAR10 [Krizhevsky, 2009] consists of 10 classes with 60K
images. We follow the settings from [Cao et al., 2017] where
100 images per class are selected randomly as query set while
the remaining images are used as retrieval set. We randomly
sample 500 images per class from the retrieval set for training.

NUS-WIDE [Chua et al., 2009] consists of 81 concepts
with 269K multi-labeled images. We follow the settings from
[Cao et al., 2017], where 21 of the most frequent concepts
are being used as image annotations, and hence 195K images
are selected. We selected 100 images per concept randomly
as query set while the remaining images as retrieval set. Then
we randomly sample 500 images per concept from the re-
trieval set for training.

ImageNet100 is a subset of ImageNet [Russakovsky et al.,
2015] with only 100 classes. We follow the settings from
[Cao et al., 2017] and randomly select 100 classes. All the
validation images from 100 classes are used as query set
while 13K images are randomly sampled from the retrieval
set which consists of 128K images.

Our approach is implemented in PyTorch [Paszke et al.,
2019], and we used pretrained AlexNet [Krizhevsky et al.,
2012] from PyTorch as the initialization and replaced the
classification fully-connected layer with a hashing layer con-
sisting of K channels to represent K bits.

3.2 Ablation Study of Margin m

The margin is pre-set m ≥ 1 for Lemma 1 to hold. As shown
in Figure 5, the margin essentially determines the magni-
tudes of polarization between positive and negative outputs
i.e. large margins push the outputs v further away from zero,
and vice versa.

Margin m CIFAR10 NUS-WIDE ImageNet100
0.1 0.642 0.785 0.587
0.5 0.816 0.836 0.721
1.0 0.812 0.839 0.729
2.0 0.799 0.838 0.722
3.0 0.805 0.838 0.717

Table 2: Hashing accuracies in terms of mAP with different settings
of margin m.

Specifically, m = 1 results in the bit-wise hinge loss i.e.
max(1− vi · ti, 0). This form of loss function has long been
studied in Support Vector Machine (SVM) for binary classi-
fication, as well as has been applied to deep neural networks
to replace the cross-entropy loss [Tang, 2013]. Nevertheless,
the hinge loss was defined over the dot product of network
weights and input features, instead of channel wise outputs in
our case. Empirically, we found that m = 1 does give rise
to the most accurate results while other values of m are sub-
optimal (see Table 2). Unless stated otherwise, m = 1 is used
for all experiments illustrated below.

3.3 Hashing
Hashing accuracies measured by mAP (mean average pre-
cision), for different methods are summarized in Table 3.
Specifically, four existing methods i.e. HashNet [Cao et al.,
2017], MIHash [Cakir et al., 2019], GreedyHash [Su et al.,
2018] and JMLH [Shen et al., 2019] are compared with four
variants of DPNs. DPN denotes the basic deep polarization
network with random assignment of target vectors, and DPN-
A denotes DPN with adaptive updating of target vectors (see
Section 2.4). DPN-T denotes DPN outputs processed with
ternary assignment illustrated in Section 3.3 and DPN-A-T is
the combinatorial of both aforementioned variants.

It was observed that the hash accuracies achieved by DPN
is comparable with the-state-of-the-art, e.g. on ImageNet100
datasets, achieving 0.729 and 0.732 with 64 and 128-bits hash
codes, respectively. DPN also slightly outperformed the best
performed JMLH on the multi-labeled NUS-Wide dataset,
with 1.9% improvement for 64-bits. For 16-bits, however,
DPN performances slightly deteriorate, due to the decreased
of averaged Hamming distances between target vectors as in-
dicated by (Eq. 7) in Section 2.2.

Although adaptive updating of target vectors reflect intrin-
sic similarities between classes, as shown in Figure 4, its per-
formances do not consistently improve the random assign-
ment results. Moreover, the adaptive updating actually lead
to unstable results for multi-labeled NUS-Wide images. Ex-
ploring more stable and effective adaptive updating strategy
is one of our future research.

Ternary Assignment
As shown in Figure 5, wrongly retrieved samples often lead to
non-polarized outputs. This observation inspired us to adopt
an effective ternary assignment as follows:

Φ̈(x; w) =


−1, if x ≤ −m
0, if −m < x ≤ m,
1, otherwise, for each element x.

(9)
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Figure 5: Distributions of the DPN outputs v. Blue distributions represent correctly retrieved samples while orange distributions represent
wrongly retrieved samples. Left to right column: Image samples in CIFAR10, NUS-WIDE and ImageNet100 datasets, respectively. Top to
bottom row: Different values of margin m (0.1 and 1.0 respectively), which are highlighted with the red dotted line.

Method CIFAR10 (mAP@all) NUS-WIDE (mAP@5K) ImageNet100 (mAP@1K)

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

DCH [Cao et al., 2018] - 0.665* 0.673* 0.638* - - - - - - - -
HashNet [Cao et al., 2017] 0.643 0.675 0.687 - 0.662 0.699 0.716 - 0.506 0.631 0.684 -
MIHash [Cakir et al., 2019] 0.760 0.776 0.761 - 0.722 0.759 0.779 - 0.569 0.661 0.694 -
DTQ [Liu et al., 2018] 0.789 0.792 0.789* 0.785* 0.798 0.801 - - - - - -
GreedyHash [Su et al., 2018] 0.786 0.810 0.814* 0.807* - - - - 0.625 0.662 0.688 0.699*
JMLH [Shen et al., 2019] 0.805 0.841 0.837 - 0.795 0.818 0.820 - 0.668 0.714 0.727 -

DPN 0.774 0.803 0.812 0.808 0.810 0.832 0.839 0.840 0.606 0.693 0.729 0.732
DPN-A 0.801 0.821 0.814 0.813 - - - - 0.606 0.687 0.722 0.727

DPN-T 0.789 0.818 0.829 0.823 0.847 0.859 0.863 0.862 0.684 0.740 0.756 0.756
DPN-A-T 0.825 0.838 0.830 0.829 - - - - 0.675 0.734 0.751 0.755

Table 3: Hashing accuracies in terms of Mean average precision (mAP) for different methods. Results with * indicate that we run the code
released from the authors with default hyperparameters.

Hamming distance between a K-bits ternary code b̈ and bi-
nary code t is defined as Dh(b̈, t) := 1

2 (K − b̈ · t).
After applying this minor modification to our network out-

puts, the resulting accuracies of DPN-T are consistently lev-
itated above the-state-of-the-art, by elevations more than 2%
for both ImageNet100 and NUS-wide datasets. While for CI-
FAR10, DPN-T compared favorably with respect to Greedy-
Hash but not as good as that of JMLH2. Finally, the adaptive
updating for DPN-A-T does not bring about consistent im-
provements as compared to DPN-T.

4 Conclusions
We proposed a novel learning to hash deep neural network,
which uses a differentiable hinge-like loss to enforce polar-
ization of each output channel. Contributions of the proposed
DPN are three-folds. On the theoretical side, we proved that
the proposed polarization loss is intrinsically related to the
intra-class and inter-class Hamming distances between simi-

2We are unable to reproduce the results of JMLH.

lar/dissimilar pairs. We advocate the polarization loss due to
its simplicity and differentiability, which allows direct back-
propagation to optimize the network weights. Algorithm-
wise, a simple random assignment strategy for each class of
target binary codes turns out to be surprisingly effective and it
achieves the state-of-the-art performances. Finally, a ternary
assignment is proposed to consistently levitate hashing accu-
racies by improvements more than 2% for most cases.

Applying channel-wise hinge-like loss is proved to be a
simple and effective strategy for hashing in this paper. As
one future research direction, we are exploring an effective
adaptive updating of target vectors. Other topics within this
deep polarization network (DPN) framework, e.g. ternary as-
signments, call for more research efforts from colleagues in-
terested in DPNs.
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