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Abstract

Neural architecture search (NAS) proves to be
among the best approaches for many tasks by gen-
erating an application-adaptive neural architecture,
which is still challenged by high computational cost
and memory consumption. At the same time, 1-
bit convolutional neural networks (CNNs) with bi-
narized weights and activations show their poten-
tial for resource-limited embedded devices. One
natural approach is to use 1-bit CNNs to reduce
the computation and memory cost of NAS by tak-
ing advantage of the strengths of each in a unified
framework. To this end, a Child-Parent (CP) model
is introduced to a differentiable NAS to search the
binarized architecture (Child) under the supervision
of a full-precision model (Parent). In the search
stage, the Child-Parent model uses an indicator
generated by the child and parent model accuracy to
evaluate the performance and abandon operations
with less potential. In the training stage, a kernel-
level CP loss is introduced to optimize the bina-
rized network. Extensive experiments demonstrate
that the proposed CP-NAS achieves a comparable
accuracy with traditional NAS on both the CIFAR
and ImageNet databases. It achieves the accuracy
of 95.27% on CIFAR-10, 64.3% on ImageNet with
binarized weights and activations, and a 30% faster
search than prior arts.

1 Introduction

Neural architecture search (NAS) has attracted a great deal
of attention with a remarkable performance in many com-
puter vision tasks. The goal is to design network archi-
tectures automatically to replace conventional hand-crafted
counterparts, but at the expense of huge search space and
high computational cost. To achieve efficient NAS, one line
of existing NAS approaches focus on improving their search
efficiency to explore the large search spaces, reducing the
search time from thousands of GPU days [Zoph et al., 2018;
Zoph and Le, 2016] to few GPU days [Cai et al., 2018a;
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Liu et al., 2018b; Xu et al., 2019; Chen et al., 2019b]. These
approaches were also developed into a more elegant frame-
work named one-shot architecture search. Another line of
NAS aims to search a more efficient network. Proxyless-
NAS [Cai et al., 2018c] introduces latency loss to search
architectures on the target task instead of adopting the con-
ventional proxy-based framework. EfficientNet [Tan and Le,
2019] introduces a new scaling method that uniformly scales
all dimensions of depth/width/resolution using a simple yet
highly effective compound coefficient to obtain efficient net-
works. Binarized neural architecture search (BNAS) [Chen
et al., 2019a] searches binarized networks with a significant
memory saving, which provides a more promising way to ef-
ficiently find network architectures. However, BNAS only
focuses on the kernel binarization, while the extremely com-
pressed 1-bit CNNs with binarized weights and activations
have not been well explored in the field of NAS.

Comparatively speaking, 1-bit CNNs based on hand-craftd
architectures have been extensively researched. Filters bi-
narization has been used in conventional CNNs to compress
deep models [Rastegari et al., 2016; Courbariaux et al., 2016;
Courbariaux et al., 2015; Juefei-Xu ef al., 20171, showing up
to 58x speedup and 32x memory saving, which is widely
considered as one of the most efficient ways to perform com-
puting on embedded devices with low computational cost.
In [Juefei-Xu et al., 2017], the XNOR network is presented
where both the weights and inputs attached to the convolu-
tion are approximated with binarized values. This results in
an efficient implementation of convolutional operations by re-
constructing the unbinarized filters with a single scaling fac-
tor. In [Gu er al., 2019], a projection convolutional neural
network (PCNN) is proposed to implement binarized neural
networks (BNNs) based on a simple back propagation algo-
rithm. [Zhao et al., 2019] proposes Bayesian optimized 1-bit
CNNs, taking advantage of Bayesian learning to significantly
improve the performance of extreme 1-bit CNNs. Binarized
models show the advantages on computational cost reduction
and memory saving, however, they suffer from poor perfor-
mance in practical applications. There still remains a gap
between 1-bit weights/activations and full-precision counter-
parts, which motivates us to explore the potential relationship
between 1-bit and full-precision models to evalutate the per-
formance of binarized networks based on NAS.

In this paper, we introduce a Child-Parent model to effi-
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Figure 1: The main framework of the proposed Child-Parent search strategy. In a loop, we first sample the operation without replacement
for each edge from the search space, and then train the Child model and Parent model generated by the same architecture simultaneously.
Second, we use the Eqs. 1 and 2 to compute the evaluation indicator calculated by the accuracy of both models on the validation dataset. Until
all the operations are selected, we remove the operation in each edge with the worst performance.

ciently search a binarized network architecture in a unified
framework. The search strategy for Child-Parent model con-
sists of three steps shown in Fig. 1. First, we sample the oper-
ations without replacement and construct two classes of sub-
networks that share the same architecture, i.e., binarized net-
works (Child) and full-precision networks (Parent). Second,
we train both sub-networks and obtain the performance indi-
cator of the corresponding operations by calculating the child
network accuracy and the accuracy loss between child and
parent networks. It is observed that the worse operations in
the early stage usually have the worse performance at the end.
Based on this observation, we then remove the operation with
the worst performance according to the performance indica-
tor. This precoess is repeated until there is only one operation
left in each edge. For binarized optimization of Child-Parent
model, we reformulate the traditional binarization loss as a
kernel-level Child-Parent loss.The main contributions of our
paper include:

e A Child-Parent model is introduced to guide the bina-
rized architecture search and to optimize BNNs in a uni-
fied framework.

e An indicator is proposed to evaluate the operation per-
formance based on Child-Parent model. The search
space is greatly reduced through this search strategy
for Child-Parent model, which improves the search ef-
ficiency significantly.

e Extensive experiments demonstrate the superiority of
the proposed algorithm over other light models on the
CIFAR-10 and ImageNet datasets.

2 Child-Parent NAS

In this section, we first describe the proposed CP-NAS, our
Child-Parent model for NAS. Then, the search space and
strategy for CP-NAS is introduced to effectively find an pow-
erful binarized architecture. Finally, a kernel-level CP loss is
proposed for binarized optimization. The framework of CP-
NAS is shown in Fig. 1, and details are provided below.
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Figure 2: The main framework of Child-Parent model. The Child-
Parent model focuses on both the binarized architecture search (left)
and binarized optimization (right).

2.1 Child-Parent Model for Network Binarization

Network binarization, which calculates neural networks with
1-bit weights and activations to fit the full-precision network,
can significantly compress the deep convolutional nerual net-
works (CNNs). Prior work [Zhao er al., 2019] usually investi-
gates the binarization problem by exploring the full-precision
model to guide the optimization of binarized models. Based
on the investigation, we reformulate NAS-based network bi-
narization as a Child-Parent model as shown in Fig 2. The bi-
narized model and the full-precision counterpart are the child
and parent models respectively.

Conventional NAS is inefficient due to the complicated re-
ward computation in network training where the evaluation
of a structure is usually done after the network training con-
verges. There are also some methods to perform the evalu-
ation of a cell during the training of the network. [Zheng et
al., 2019] points out that the best choice in early stages is not
necessarily the final optimal one, however, the worst opera-
tion in the early stages usually has a bad performance at the
end. And this phenomenon will become more and more sig-
nificant as the training goes. Based on this observation, we
propose a simple yet effective operation removing process,
which is the key task of the proposed CP model.

Intuitively, the difference between the children and par-
ents ability, and how much children can independently han-
dle their problems, are two main aspects that should be con-
sidered to define a reasonable performance evaluation mea-
sure. Our Child-Parent model introduces a similar perfor-
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Figure 3: The cell architecture for CP-NAS. One cell includes 2
input nodes, 4 intermediate nodes and 14 edges (blue).

mance indicator to improve the search efficiency. The per-
formance indicator includes two parts, the performance loss
between the binarized network (Child) and the full-precision
network (Parent), and the performance of the binarized net-
work (Child). We can thuse define it for each operation of the
sampled network as

A = Acy + Bp(Aps — Acy) )

where Ap; and A, represent the network performance cal-
culated by the accuracy of the full-precision model (Parent)
and the binarized model (Child) on the validation dataset, and
Bp is the hyper-parameter to control the performance loss. ,j
represent the index of the node to generate edge (4, 7) shown
in Fig. 3, k is the operation index of corresponding edge, and
t represents the t¢th sampling process. Note that we use the
performance of the sampled network to evaluate the perfor-
mance of the corresponding selected operations.

CP-NAS not only uses the accuracy on the validation
dataset to guide the search process directly, but also takes the
information of full-precision model into consideration to bet-
ter investigate the full potential that the binarized model can
ultimately reach. Additional details are provided in the fol-
lowing section.

As shown in Fig. 2, unlike the traditional teacher-student
model [Hinton et al., 2015] which transfers the generalization
ability of the first model to a smaller model by using the class
probabilities as “soft targets”, the Child-Parent model focuses
on the performance measure particularly suitable for NAS-
based network binarization. Furthermore, the loss function
for the teacher-student model is constrained on the feature
map or the output, while ours focuses on the kernel weights
to minimize the variations between two networks.

2.2 Search Space

We search for computation cells as the building blocks of the
final architecture. As in [Zoph and Le, 2016; Zoph et al.,
2018; Liu et al., 2018b; Real et al., 2019], we construct the
network with a pre-defined number of cells and each cell is
a fully-connected directed acyclic graph (DAG) G with M
nodes, {N1, No, ..., Npr}. For simplicity, we assume that
each cell only takes the outputs of the two previous cells
as input and each input node has pre-defined convolutional
operations for preprocessing. Each node IV is obtained by
Ny =3 043 (N;). N is the dependent node of N; with
the constraint ¢ < j to avoid cycles in a cell. We also define
nodes N_; and Ny without inputs as the first two nodes of
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Figure 4: The operations of each edge. Each edge has 4 convolu-
tional operations, including 2 types of binarized convolutions with
3 x 3 or 5 x 5 receptive fields, and 4 non-convolutional operations.

a cell. Each node is a specific tensor like a feature map, and
each directed edge (4, j) denotes an operation 0(*)(.) shown
in Fig. 4, which is sampled from following K = 8 operations:

e no connection (zero) e 3 x 3 max pooling

e skip connection (identity) e 3 X 3 average pooling

e 3 X 3 dilated convolution e 3 X 3 depth-wise separa-
with rate 2 ble convolution

e 5 x 5 dilated convolution e 5 X 5 depth-wise separa-
with rate 2 ble convolution

We replace the convolution with a binarized form. We also
remove the ReLLU operation to avoid the vanishing of the neg-
ative in the 1-bit convolution. The optimization of BNNss is
more challenging than that of the conventional CNNs [Raste-
gari et al., 20161, [Gu et al., 20191, since binarization brings
additional computation burdens to NAS.

2.3 Search Strategy for CP-NAS

As shown in Fig. 1, we randomly sample one operation from
the K operations in O(+J) for every edge and then obtain the
performance based on Eq. 1 by training the sampled parent
and child networks for one epoch. Finally, we assign this
performance to all the sampled operations. These steps are
performed K times by sampling without replacement, lead-
ing to each operation having exactly one accuracy for every
edge for fairness.

We repeat the complete sampling process 7' times. Thus
each operation for every edge has T performance measures
{z,(jy’f)7 2 z,(j%)} calculated by Eq. 1. Furthermore, to
reduce the undesired fluctuation in the performance evalua-
tion, we normalize the performance of K operations for each
edge to obtain the final evaluation indicator as

_(4,7)
ofof?) = <P @)
Dok exp{é,(j’])}

where z{") = Ly, z,if’tj ). Along with the increasing
epochs, following [Zheng et al., 2019] and [Chen er al.,
2019al, we progressively abandon the worst evaluation op-
eration from each edge until there is only one operation for
each edge. The complete algorithm is shown in Alg. 1.
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Algorithm 1 Child-Parent NAS
Input: Training data, Validation data
Parameter: Searching hyper-graph: G, K = 8, e(ofj"j )) =0
for all edges
Qutput: Optimal structure o
1: while (K > 1) do
2. fort=1,..,T epoch do

3: for e =1,..., K epoch do

4: Select an architecture by sampling (without re-
placement) one operation from O(7) for every
edge;

5: Construct the Child model and Parent model with

the same selected architecture, and then train both
models to get the accuracy on the validation data;
Use Eq.1 to compute the performance and assign
that to all the sampled operations;

6 end for

7:  end for o

8:  Update e(o,(;’])) using Eq. 2;

9:  Reduce the search space {O("7)} with the worst per-

formance evaluation by e(og’j ),
10: K=K-1,;
11: end while
12: return solution

2.4 Optimization for 1-bit CNNs

Inspired by XNOR and PCNN, we reformulate the bina-
rized optimization as Child-Parent optimization in our unified
framework.

To binarize the weights and activations of CNNs, we in-
troduce the kernel-level Child-Parent loss for binarized opti-
mization from two respects. First, we minimize the distribu-
tions between the full-precision filters and their correspond-
ing binarized filters. Second, we minimize the intra-class
compactness based on the output features. We then have a
loss function as

A N
L= XZ:MSE(Hi,Hé) +5 2 Mo () = Fo (H)I?,

3)
where ) is a hyperparameter to balance the two terms. H! is
the cth full-precision filter of the /th convolutional layer and
H ! denotes its corresponding reconstructed filter; MSE(-)
represents the mean square error (MSE) loss. The second
term is used to minimize the intra-class compactness, since
the binarization process causes feature variations. fcys(H' )
denotes the feature map of the last convolutional layer for the
sth sample, and f (I:I ) denotes the class-specific mean fea-
ture map for corresponding samples. Combining L ; with the
conventional loss L g, we obtain the final loss as

L=Lep+ Ly )

L and its derivatives are easily calculated by the Pytorch
package directly.
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3 Experiments

In this section, we compare our CP-NAS with the state-of-
the-art NAS methods and 1-bit CNNs methods on two pub-
licly available datasets: CIFAR-10 [Krizhevsky et al., 2014]
and ILSVRC12 ImageNet [Russakovsky et al., 2015].

3.1 Training and Search Details

In our experiments, we first search binarized neural architec-
tures on an over-parameterized network on CIFAR-10, and
then evaluate the best architecture with a stacked deeper net-
work on the same dataset. We perform experiments to search
binarized architectures directly on ImageNet. We run the
experiment multiple times and find that the resulting archi-
tectures show only a slight variation in performance, which
demonstrates the stability of our method.

We use the same datasets and evaluation metrics as pre-
vious NAS works [Liu et al., 2018b; Cai et al., 2018b;
Zoph et al., 2018; Liu ef al., 2018a]. The color intensities of
all images are normalized to [—1, +1]. During the architec-
ture search, the training set of the dataset is divided into two
subsets, one for training the network weights and the other
for perfomrance evaluation as a validation set.

In the search process, we consider a total of 6 cells with the
initial 16 channels in the network, where the reduction cell are
inserted in the second and the fourth layers, and the others are
normal cells. There are M = 4 intermediate nodes in each
cell. We set " = 3 and the initial number of operations K
is set to 8, so the final number of search epochs is (8 + 7 +
6+5+4+3+2)*x3 = 105. Bp is set as 2, and the
batch size is set to 512. We use SGD with momentum to
optimize the network weights, with an initial learning rate of
0.025 (annealed down to zero following a cosine schedule), a
momentum of 0.9, and a weight decay of 5 x 10~*. When we
search for the architecture directly on ImageNet, we use the
same parameters for searching with CIFAR-10 except that the
initial learning rate is set to 0.05 and Sp is set to 0.33. Due
to the efficient guidance of CP model, we only use 50% of
the training set with CIFAR-10 and ImageNet for architecture
search and 5% of the training set for evaluation, leading to a
faster search.

After search, in the architecture evaluation step, our ex-
perimental settings are similar to [Liu et al., 2018b; Zoph et
al., 2018; Pham et al., 2018]. A larger network of 10 cells
(8 normal cells and 2 reduction cells) is trained on CIFAR-
10 for 600 epochs with a batch size of 96 and an additional
regularization cutout [DeVries and Taylor, 2017]. The initial
number of channels is set as 56, 72, 112 for different model
sizes. We use the SGD optimizer with an initial learning rate
of 0.025 (annealed down to zero following a cosine sched-
ule without restart), a momentum of 0.9, a weight decay of
3 x 107* and a gradient clipping at 5. When stacking the
cells to evaluate on ImageNet, the evaluation stage follows
that of DARTS [Liu et al., 2018b], which starts with three
convolutional layers with a stride of 2 to reduce the input im-
age resolution from 224 x 224 to 28 x 28. 10 cells (8 normal
cells and 2 reduction cells) are stacked after these three lay-
ers, with the initial channel number being 102. The network
is trained from scratch for 250 epochs using a batch size of
256. We use the SGD optimizer with a momentum of 0.9, an
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Architecture Test Error #Params W A  Search Cost Search

(%) ™M) (GPU days) Method
WRN-22 [Zagoruyko and Komodakis, 2016] 5.04 433 32 32 - Manual
DARTS [Liu et al., 2018b] 2.83 3.4 32 32 4 Gradient-based
PC-DARTS [Xu et al., 2019] 2.78 3.5 32 32 0.15 Gradient-based
WRN-22 (PCNN) [Gu et al., 2019] 5.69 433 1 32 - Manual
BNAS (PCNN) [Chen et al., 2019a] 3.94 2.6 1 32 0.09 Performance-based
BNAS (PCNN, larger) [Chen et al., 2019a] 3.47 4.6 1 32 0.09 Performance-based
WRN-22 (BONN) [Zhao et al., 2019] 8.07 4.33 1 1 - Manual
BNAST 8.29 4.5 1 1 0.09 Performance-based
CP-NAS (Small) 6.5 2.9 1 1 0.1 Child-Parent model
CP-NAS (Medium) 5.72 4.4 1 1 0.1 Child-Parent model
CP-NAS (large) 4.73 10.6 1 1 0.1 Child-Parent model

Table 1: Test error on CIFAR-10. "W’ and " A’ refer to the weight and activation bitwidth respectively. "M’ means million (10%). BNAS is

approximately implemented by us by setting Sp =
selection.

initial learning rate of 0.05 (decayed down to zero following a
cosine schedule), and a weight decay of 3 x 1075, Additional
enhancements are adopted including label smoothing and an
auxiliary loss tower during training. All the experiments and
models are implemented in PyTorch [Paszke et al., 2017].

3.2 Results on CIFAR-10

We first evaluate our CP-NAS on CIFAR-10 and compare re-
sults with both manually designed networks [Zagoruyko and
Komodakis, 2016] and networks searched by NAS [Liu er al.,
2018b; Xu et al., 2019] at different levels of binarization.
The results for different architectures on CIFAR-10 are
summarized in Tab. 1. We search for three binarized net-
works with different model sizes which binarize both weight
and activation. Note that for the model size, in addition to the
number of parameters, we should also consider the number
of bits of each parameter. The binarized networks only need
1 bit to save and compute the weight parameter or the acti-
vation parameter, while the full-precision networks need 32.
More details about the efficiency are discussed in section 3.4.
Compared with manually designed networks, e.g., WRN-
22(BONN) [Zhao ef al., 2019], our CP-NAS achieved com-
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Figure 5: The normal cell (a) and the reduction cell (b) searched for
CIFAR-10.

0 in CP-NAS, which means that we only use the performance measure for the operation

parable or smaller test errors (6.5% vs. 8.07%) and more
compressed models (2.9M vs. 4.33M). Compared with
full-precision networks obtained by other NAS methods, our
CP-NAS achieved comparable test errors and significantly
more compressed models, with similar or less search time.
Compared with BNAS, our CP-NAS binarized the activa-
tion parameters and achieved comparable test errors with only
slightly longer search time. We further implement BNAST for
1-bit CNNs by setting Sp = 0 in CP-NAS, which means that
we only use the performance measure for the operation se-
lection. The result shows that CP-NAS achieve better perfor-
mance than BNAST with lower test error (5.72% vs. 8.29%)
and similar model size. CP-NAS outperforms BNAS in both
network efficiency and 1-bit CNNs performance. More de-
tailed comparison with BNAS is presented in section 3.4.

In terms of search efficiency, compared with the previ-
ous work PC-DARTS [Xu et al., 2019], our CP-NAS is 30%
faster (tested on our platform - 6 NVIDIA TITAN V GPUs).
We attribute our superior results to the proposed scheme of
search space reduction. As shown in Fig. 5, the architectures
of CP-NAS prefer smaller receptive fields. Our CP-NAS also
results in more pooling operations, which can increase the
nonlinear representation ability of BNNs.

3.3 Results on ImageNet

To further evaluate the performance of our CP-NAS, we com-
pare our method with the state-of-the-art image classification
methods on the ImageNet. All the searched networks are ob-
tained directly by CP-NAS on ImageNet by stacking the cells.
Due to the first convolutional layer in a depth-wise separa-
ble convolution with fewer parameters, we do not binarize
the activations of the first layer for ImageNet. Tab. 2 shows
the test accuracy on ImageNet. We observe that CP-NAS
outperforms manually designed binarized networks (64.3%
vs. 59.5%) with a similar number of parameters (12.5M vs.
11.17M). Note that compared to the human-designed full-
precision networks, our CP-NAS achieved comparable per-
formance but with higher compression. Furthermore, to ob-
tain a better performance, we do not binarize the activations
of the preprocessing operations for the two input nodes, and
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Architecture Accuracy (%) Params W A Search Cost Search

Topl Top5 (M) (GPU days) Method
ResNet-18 [Gu er al., 2019] 69.3 89.2 11.17 32 32 - Manual
PNAS [Liu et al., 2018al 74.2 91.9 5.1 32 32 225 SMBO
DARTS [Liu et al., 2018b] 73.1 91.0 49 32 32 4 Gradient-based
PC-DARTS [Xu et al., 2019] 75.8 92.7 5.3 32 32 3.8 Gradient-based
ResNet-18 (PCNN) [Gu et al., 2019] 63.5 85.1 11.17 1 32 - Manual
BNAS (PCNN) [Chen et al., 2019al 71.3 90.3 6.2 1 32 2.6 Performance-based
ResNet-18 (Bi-real Net) [Liu er al., 2018c]  56.4 79.3 11.17 1 1 - Manual
ResNet-18 (PCNN) [Gu et al., 2019] 57.5 80.0 11.17 1 1 - Manual
ResNet-18 (BONN) [Zhao et al., 2019] 59.3 81.5 11.17 1 1 - Manual
CP-NAS* 64.3 85.6 12.5 1 1 2.8 Child-Parent model
CP-NAS** 66.5 86.8 12.5 1 1 2.8 Child-Parent model

Table 2: Test accuracy on ImageNet. * represents that we do not binarize the activations of the first convolutional layer in depth-wise separable
convolution. ** represents that we do not binarize the activations of preprocessing operations for 2 input nodes either.

achieve an accuracy of 66.5%, which is much closer to the
full-precision hand-crafted model, e.g., 69.3% for ResNet-18.

3.4 Ablation Study

We test different 5p for our method on the CIFAR-10 dataset,
as shown in Fig. 6. We can see that when [p increases,
the accuracy increases at the beginning, but decreases when
Bp > 2. It validates that the performance loss between the
Child and Parent models is a significant measure for 1-bit
CNNs search. When Sp becomes larger, CP-NAS tends to
select the architecture with fewer convolutional operations,
but a large imbalance between two elements in our CP model
will cause a performance drop.

We also compare the architectures obtained by CP-NAS,
Random (Random selection), PC (PC-DARTs) and BNAST as
shown in Fig. 6. Unlike the case of the full-precision model,
Random and PC-DARTS lack the necessary guidance, which
have a poor performance for binarized architecture search.
Both BNAST and CP-NAS have the evaluation indicator for
the operation selection. Differently, our CP-NAS also consid-
ers an additional performance loss, which can outperform the
other three strategies.

Efficiency. The 1-bit CNNs are extremely efficient for
resource-limited devices, showing up to 58x speedup and
32x memory saving than the full-precision models [Raste-
gari ef al., 2016]. As shown in Tab. 3, our CP-NASs (Small,
Medium, Large) for CIFAR-10 achieve comparable perfor-
mance as the full-precision hand-crafted WRN-22 model,

94 94 []
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Figure 6: The result (left) for different Sp on CIFAR-10. The 1-
bit CNNss result (right) for different search strategys on CIFAR-10,
including Random (Random selection), PC (PC-DARTYS), BNAST,
CP-NAS.

1038

Architecture Memory usage  Memory FLOPs  Speedupt
(Mbits) saving M)

WRN-22 138.27 1x 647.70 1x
BNAS (PCNN, larger) ~5.12 ~27 X >300 <2.16x
WRN-22 (BONN) 5.71 24.19x 17.03 28.03x
CP-NAS (Small) 3.32 41.56x 12.89 50.24 x
CP-NAS (Medium) 4.85 27.93x 18.30 35.39x
CP-NAS (large) 11.51 12.01x 38.67 16.75x

Table 3: Comparison of memory saving and speedup of BNAS
(PCNN, larger), WRN-22 (BONN) and CP-NASs (Small, Medium,
Large) on CIFAR-10 with respect to WRN-22. 1 represents that the
larger is better, vice versa for J.

with 41.56x, 27.93 %, 12.01x memory saving and 50.24 %,
35.39%, 16.75x speedup in terms of FLOPs. As a result,
our CP-NAS models bring significant benefits for resource-
contrained edge computing appliations.

4 Conclusion

In this paper, we calculate 1-bit CNNs based on the proposed
Child-Parent model under the full-precision network supervi-
sion. We build a bridge between 1-bit CNNs and NAS us-
ing our proposed CP model, leading to the CP-NAS method.
With our proposed CP-NAS, we are able to solve the neu-
ral architecture search and the binarized optimization in the
same framework. Experiments on CIFAR-10 and ImageNet
datasets demonstrate that our method achieves better perfor-
mance than other state-of-the-art methods with a more com-
pressed model and less search time. The future work will fo-
cus on more applications, such as object detection and track-
ing.
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