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Abstract

Most Visual Question Answering (VQA) models
suffer from the language prior problem, which is
caused by inherent data biases. Specifically, VQA
models tend to answer questions (e.g., what color is
the banana?) based on the high-frequency answers
(e.g., yellow) ignoring image contents. Existing ap-
proaches tackle this problem by creating delicate
models or introducing additional visual annotations
to reduce question dependency and strengthen im-
age dependency. However, they are still subject
to the language prior problem since the data bi-
ases have not been fundamentally addressed. In
this paper, we introduce a self-supervised learning
framework to solve this problem. Concretely, we
first automatically generate labeled data to balance
the biased data, and then propose a self-supervised
auxiliary task to utilize the balanced data to as-
sist the VQA model to overcome language priors.
Our method can compensate for the data biases by
generating balanced data without introducing ex-
ternal annotations. Experimental results show that
our method achieves state-of-the-art performance,
improving the overall accuracy from 49.50% to
57.59% on the most commonly used benchmark
VQA-CP v2. In other words, we can increase the
performance of annotation-based methods by 16%
without using external annotations. Our code is
available on GitHub1.

1 Introduction
Visual Question Answering (VQA) has attracted increasing
attention as an AI-complete task, whose goal is to automati-
cally answer natural language questions according to images.
The paradigm of VQA [Antol et al., 2015; Yang et al., 2016;
Anderson et al., 2018; Kim et al., 2018] is to first project the
image and the question into a common feature space, and then
fuse them as a joint vector to make prediction. Recently, some
researchers [Agrawal et al., 2018; Goyal et al., 2017] have
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1https://github.com/CrossmodalGroup/SSL-VQA
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Figure 1: A question can only be answered based on relevant images.

demonstrated that most existing VQA models suffer from the
language prior problem and tend to ignore the image contents.
For example, the question “what color is the grass?” can be
answered by “green” generally, no matter what images are
given, since most corresponding answers are “green” in the
dataset. As a result, the VQA model memorizing the lan-
guage priors will perform poorly on out-of-domain datasets.

To alleviate the influence of language priors, existing ap-
proaches focus on reducing question dependency and in-
creasing image dependency, and they can be roughly catego-
rized as non-annotation-based methods and annotation-based
methods. Non-annotation-based methods often involve deli-
cate models and complex learning strategies. Ramakrishnan
et al.[2018] proposed an adversarial learning method to over-
come the language priors by minimizing the performance of
the question-only branch. Cadene et al.[2019] reduced the
influence of the most-biased instances and increased the im-
pact of the less-biased instances by dynamically adjusting
their weights. Different from non-annotation-based meth-
ods, annotation-based methods try to increase image depen-
dency directly by introducing external visual supervision.
Selvaraju et al.[2019] used human-attention maps to ensure
the alignment between model-attention and human-attention.
Wu and Mooney[2019] maintained the consistency of correct
answers and influential objects annotated by human explana-
tions. Typically, annotation-based methods can achieve better
performance than non-annotation-based methods, since they
can better understand image contents with the guidance of
visual supervision. Nonetheless, these methods require large-
scale visual annotations, which are not easily accessible.

However, the inherent data bias problem has not been fun-
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damentally addressed, and the above methods just weaken the
adverse effect to some extent and hence yield unsatisfactory
performance. The inherent data biases will inevitably force
the VQA model to select the high-frequency answers and
eventually arouse the language prior problem. Therefore, it
is of crucial importance to alleviate the inherent data biases,
i.e., transforming biased data to balanced data without intro-
ducing external annotations.

To this end, we propose a self-supervised learning frame-
work for VQA to automatically balance the biased data to
overcome language prior problem. Our method is motivated
by an interesting and intuitive finding. As shown in Figure 1,
a question can only be answered when the given image con-
taining the key information for answering the question. Such
a question-image pair can be defined as a relevant pair. Based
on this observation, it is necessary to estimate whether the
given question and image are relevant or not before answer-
ing the question. For that purpose, we introduce an auxiliary
task named question-image correlation estimation to estimate
the relevance between questions and images. Specifically, we
first automatically generate a set of balanced question-image
pairs with binary labels (relevant and irrelevant), which are
then consumed by the self-supervised auxiliary task to assist
the VQA model to overcome language priors. We incorporate
the auxiliary task into the VQA model by feeding the relevant
and irrelevant pairs. When fed a relevant question-image pair,
the model is encouraged to predict the correct answer with a
high confidence score, where the confidence score is the prob-
ability of the question-image pair being relevant. On the con-
trary, the model is pushed to predict the correct answer with a
low confidence score when the input pair is irrelevant. By op-
timizing these two objectives simultaneously, we can achieve
a balance between answering questions and overcoming lan-
guage priors. Therefore, our method can also be interpreted
as an underlying multi-task learning framework.

To summarize, our contributions are as follows:

• We introduce a self-supervised framework by transform-
ing the inherently biased data into balanced data auto-
matically, and propose an auxiliary task to exploit such
balanced data to overcome language priors fundamen-
tally. To the best of our knowledge, this is the first work
to use self-supervised learning in this task.

• Extensive experiments are conducted on the popular
benchmark VQA-CP v2. Experimental results show that
our approach without using external annotations can sig-
nificantly outperform the state-of-the-art methods, in-
cluding the models using human supervision. We in-
crease the overall accuracy from 49.50% to 57.59%.

2 Related Works
2.1 Visual Question Answering
Visual Question Answering (VQA) aims to answer questions
according to images, which involves technologies from both
natural language processing and computer vision communi-
ties [Liu et al., 2016; Parkhi et al., 2015; Conneau et al.,
2016; Liu et al., 2018]. Existing VQA approaches can be
coarsely classified into four categories: 1) Joint Embedding

approaches [Antol et al., 2015] first project images and ques-
tions into a common feature space, and then combine them to
predict answers by a classifier. 2) Attention-based methods
[Anderson et al., 2018] mainly focus on learning the interac-
tions between the question words and image regions, making
the answering process to be more interpretable. 3) Compo-
sitional models [Andreas et al., 2016] leverage the composi-
tional structure of questions to assembling modules that oper-
ate in the space of attention. 4) Knowledge-based approaches
[Wu et al., 2016] are proposed to answer common sense ques-
tions by exploiting external knowledge.

However, existing models tend to memorize the language
priors during training without considering image information.
Such models may achieve impressive results on the test set
sharing the same distribution with the training set, but often
performs poorly on out-of-domain test sets.

2.2 Overcoming Language Priors in VQA
Existing approaches in overcoming language priors can be
roughly categorized as non-annotation-based methods and
annotation-based methods. Non-annotation-based methods
focus on creating delicate models to directly reduce the ques-
tion dependency, while the annotation-based methods con-
centrate on strengthening the visual grounding by introducing
additional human visual supervision.

For the non-annotation-based methods, Agrawal et al.
[2018] proposed a hand-designed VQA framework, which
explicitly disentangled the visual recognition from answer
space prediction for different question types. Similarly, Jing
et al.[2020] also decoupled the concept discovery and the
question answering. Apart from shrinking the answer space,
Ramakrishnan et al.[2018] proposed an adversarial learning
strategy by minimizing the performance of the question-only
branch. Guo et al.[2019] adopted a pair-wise ranking schema,
forcing the question-only branch to make worse predictions
than the base model did. Cadene et al.[2019] dynamically ad-
justed the weights of training instances via their prior masks
learned by a question-only branch, reducing the influence
of the most-biased instances and increasing the impact of
the less-biased instances. Yi et al.[2018] proposed a neural-
symbolic model incorporating the symbolic program execu-
tor into DNN for visual reasoning, which is distinct from the
above models and can also solve the bias problem. [Mao et
al., 2019] combined the neural-symbolic model with curricu-
lum concept learning, making it more generalizable.

Beyond that, annotation-based methods are shown to be ef-
fective by highlighting the important visual regions under the
guidance of external visual supervision. HINT [Selvaraju et
al., 2019] increased the image dependency by optimizing the
alignment between human-attention maps and gradient-based
visual importance. SCR [Wu and Mooney, 2019] also em-
phasized the correspondences between correct answers and
influential objects annotated by human textual explanations.
However, these models are heavily dependent on human su-
pervision, which is not always accessible.

Different from these methods, our self-supervised ap-
proach does not need to construct complex architectures or
introduce external supervision. We first balance the original
biased data automatically, and then overcome language priors
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Figure 2: The framework of our self-supervised approach. The base VQA model is depicted in part (a), which aims to answer a question
according to an image. Part (b) displays how we automatically generate balanced question-image pairs. To be more clear, part (c) shows how
the question-image correlation estimation works for relevant and irrelevant pairs separately. G-T denotes the ground-truth.

based on these balanced data in a self-supervised manner.

2.3 Self-supervised Learning
Self-supervised learning constructs some supervisory signals
automatically computed from the input data, and efficiently
exploits the input itself to learn the high-level representa-
tion for some down-stream tasks. For example, Gidaris et
al.[2018] proposed to randomly rotate an image by one of
four possible angles and let the model predict that rotation.
Apart from trying to predict the rotation, one can also try to
recover part of the data, such as image completion [Pathak et
al., 2016]. In this paper, we utilize self-supervised learning
for question-image correlation estimation as an auxiliary task
to assist the VQA model to overcome language priors. We
randomly change the image in the original relevant question-
image pair, and then let the model predict its relevance.

3 Method
The framework of our approach is illustrated in Figure 2.
Next, we will make detailed description of how it works.

3.1 The Paradigm of VQA
The purpose of VQA is to automatically answer textual ques-
tions according to images. Concretely, given a VQA dataset
D = {Ii,Qi,Ai}Ni=1 with N instances, where Ii ∈ I ,
Qi ∈ Q are the image and question for the ith instance while
Ai ∈ A is the corresponding annotation, the VQA model
aims to learn a mapping function F : I × Q → RA to pro-
duce an accurate distribution over the answer space A. F
typically consists of three parts: extracting features for both
image and question, fusing them to obtain a joint multi-modal
representation, and predicting a distribution over the answer
space. We can write the answer prediction for the ith im-
age and question as F(A|Ii,Qi). Note that almost all the
existing VQA models [Yang et al., 2016; Kim et al., 2018;
Anderson et al., 2018] follow this paradigm and their pa-
rameters are optimized by minimizing the cross-entropy loss

Lvqa ce in Equation (2) or multi-label soft loss Lvqa ml in
Equation (3):

P(A|Ii,Qi) = softmax(F(Ii,Qi)) (1)

Lvqa ce = − 1

N

N∑
i

logP(A|Ii,Qi)[Ai ] (2)

Lvqa ml = − 1

N

N∑
i

[ti log(δ(F(A|Ii,Qi)))

+ (1 − ti)log(1− δ(F(A|Ii,Qi))]

(3)

where δ(·) denotes the sigmoid function, ti is the soft target
score of each answer for the ith instance, denoted as ti =
number of votes

n , where n is the number of valid answers for
the ith question, and number of votes is the number of each
answer that human annotated for this question.

3.2 Question-Image Correlation Estimation
A VQA model memorizing the language priors tends to make
predictions only based on the questions while ignoring the
images. Ideally, a question can only be answered when the
given image containing the information related to it. There-
fore, it is of crucial importance to require the VQA model
to judge whether the given image can be used as the refer-
ence or not before answering a specific question. Unfortu-
nately, this requirement has been neglected by all the previ-
ous works since the question-image pairs have been matched
correctly in existing benchmarks. We illustrate that such val-
idation is necessary to alleviate language priors in VQA, be-
cause it can force the model to refer image contents rather
than answer blindly. To this end, we propose an auxiliary task
called Question-Image Correlation Estimation (QICE), a bi-
nary classification task, to predict whether the question-image
pair is relevant before answering a question. In this paper, we
define the relevant question-image pair as the image can be
used to answer the question with a specific answer.
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Balanced question-image pairs generation. As shown in
Figure 2 (b), we first automatically generate a set of labeled
question-image pairs from the the original dataset without
introducing extra human annotations for the auxiliary task.
Specifically, each question-image pair (Q, I) in the training
set is treated as a relevant pair with label c = 1, because
there is an answer A for this pair in the dataset. And then
for each relevant pair (Q, I), we replace the original image
I by a randomly selected image from the image set I, which
is denoted as I ′ = Sample(I\I). In this way, we can get
another question-image pair (Q, I ′). Obviously, the proba-
bility of (Q, I ′) being a relevant pair is very low considering
the huge size of I, thus we assign an irrelevant label c = 0
to each generated pair. As a result, we can obtain a balanced
question-image pair matching dataset where the number of
relevant pairs is equal to that of the irrelevant pairs. Note that
the construction of the balanced question-image pairs does
not need any human annotation.

Correlation estimation. With the generated balanced data,
we can train a QICE model to predict the label of each
question-image pair by optimizing the cross-entropy loss:

Lself = − 1

2N

2N∑
i

cilogQICE (Qi, Ii)

+ (1− ci)log(1−QICE (Qi, Ii)]

(4)

where Lself can be interpreted as a self-supervised training
loss since it only leverages the label supervision c from our
generated data. The objective function guarantees the QICE
model to understand the question as well as image contents
because each Q corresponds to balanced relevant and irrel-
evant instances and no language priors can be depended on.
In the next subsection, we will discuss how to leverage our
auxiliary task QICE with the balanced data to assist the VQA
model to eliminate language biases in a unified framework.

3.3 Unified Self-supervised Framework
In this section, we present our unified VQA framework that
can simultaneously answer questions and estimate question-
image relevance. Obviously, the QICE task defined above
can share the same network structure with VQA because they
have the completely same inputs and similar outputs: they all
take question-image pair (I,Q) as input, and VQA predicts
a distribution over answer space A while QICE produces a
binary label on a specific answer A. Such property motivates
us to settle these two tasks concurrently in a unified VQA
framework as shown in Figure 2.

For the VQA model depicted in Figure 2 (a), it takes a rel-
evant question-image pair (Q, I) as input, and predict a dis-
tribution F(A|Q, I) over answer space A, which can be op-
timized by minimizing VQA loss Lvqa ce or Lvqa ml. This
objective function teaches the model to learn the capability of
answering questions. For the QICE task displayed in Figure
2 (c), given a question-image pair (I,Q) corresponding to a
specific answer A, the prediction probability P (A|Q, I) of
the VQA model can be regarded as the confidence of (I,Q)
being a relevant pair. The larger the probability, the higher

the matching degree. Therefore, Lself can be rewritten as:

Lself = − 1

2N

2N∑
i

[cilogP(Ai|Qi, Ii)

+ (1− ci)log(1− P(Ai|Qi, Ii))]

(5)

The model is required to make the right binary predictions
for the QICE task, which can enforce the model to better
understand images since each question is paired with equal
amounts of relevant and irrelevant images. More specifically,
the first term of Lself aims to maximize the confidence of a
question-image pair to be relevant, which is consistent with
the objective of the VQA task that makes a prediction on
the ground-truth A with high confidence. What’s more im-
portant, the second term of Lself is designed to minimize
the confidence of a pair to be relevant, which can exactly
meet with the requirement of language prior reduction. In-
tuitively, the question dependency of a VQA model can be
measured by the confidence of a question being answered cor-
rectly even with irrelevant images. The larger the confidence,
the stronger the dependency. Minimizing the confidence of
irrelevant pairs being relevant can explicitly prevent the VQA
model from being overly driven by the language priors, and
here we name it as question dependency loss Lqd:

Lqd = − 1

N

N∑
i

log(1− P(Ai|Qi, I
′
i)) (6)

We omit ci in Equation (6) since Lqd is only valid for irrele-
vant question-image pairs (Q, I ′). Mathematically, minimiz-
ing−log(1−P(A|Q, I ′)) in Lqd is equivalent to minimizing
P(A|Q, I ′). Experimentally, minimizing P(A|Q, I ′) is more
stable than minimizing−log(1−P(A|Q, I ′)) during training,
which is because the gradient of P (A|Q, I ′) is more stable
than that of−log(1−P(A|Q, I ′)). Therefore, we propose to
minimize P(A|Q, I ′) directly, and the updated question de-
pendency loss Lqd can be defined as:

Lqd =
1

N

N∑
i

P(Ai|Qi, I
′
i) (7)

Consequently, QICE can be naturally regarded as an under-
lying multi-task learning task, containing two parts: visual
question answering and language priors reduction. We can
reformulate Lself as:

Lself = Lvqa + αLqd (8)
where Lvqa can be any VQA loss (Lvqa ce or Lvqa ml), and
α is a hyper-parameter. Obviously, Lself can be seen as a
generalized VQA loss, as it degenerates to Lvqa when α = 0.
That means the question dependency loss Lqd actually acts
as a regularizer, preventing the VQA model from memorizing
the language priors and forcing it to better understand images.
As a result, Lself offers flexibility in controlling the balance
between answering questions and reducing language priors.
Moreover, we do not need to explicitly optimize the model
to be expert in estimating the correlations of question-image
pairs, and we just use its balanced supervision to compen-
sate for the data biases with our self-supervised loss. Follow-
ing this, our method can alleviate language priors in a self-
supervised manner without using external supervision.
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4 Experiments
4.1 Datasets and Baselines
Datasets. Our approach is evaluated on the most commonly
used benchmark VQA-CP v2 [Agrawal et al., 2018] with the
standard evaluation metric [Antol et al., 2015]. The VQA-CP
v2 dataset is derived from VQA v2 [Goyal et al., 2017] by re-
organizing the train and validation splits, and the Q-A pairs in
the training set and test set have different distributions. There-
fore, it is suitable for evaluating the model’s generalizability.
We also evaluate our model on the VQA v2 dataset containing
strong biases and report the results on its validation split.
Baselines. We compare our approach against the following
baseline methods: (1) non-annotation-based methods: UpDn
[Anderson et al., 2018], AdvReg [Ramakrishnan et al., 2018],
Rubi [Anderson et al., 2018] and DLR [Jing et al., 2020]; (2)
annotation-based methods: HINT [Selvaraju et al., 2019] and
SCR (best-performing method) [Wu and Mooney, 2019].

4.2 Implementation Details
Our approach is model agnostic and can be applied to dif-
ferent VQA models. In this paper, we mainly evaluate our
method based on UpDn [Anderson et al., 2018], and we add
one Batch Normalization layer before the classifier. Follow-
ing previous work, we use the pre-trained Faster R-CNN to
extract image features. For each image, it is encoded as a set
of 36 objects with corresponding 2048-dimensional feature
vectors. All the questions are trimmed to the same length
14. For each question, the words are initialized by the 300-
dimensional Glove embeddings and then feed into GRU to get
a sentence-level representation with the dimension of 1280.

We pre-train the model with the VQA loss for 12 epochs
and fine-tune it with the self-supervised loss for 20 epochs.
The batch size is 256, and the irrelevant images are randomly
selected from mini-batches. The Adam optimizer is adopted
with the initial learning rate of 0.001 which is halved every
5 epochs after 10 epochs. We evaluate our approach with
different VQA losses in our main experiment, setting α = 3
for multi-label VQA loss and α = 1.2 for cross-entropy VQA
loss. All the other experiments in this paper are based on
multi-label VQA loss with α = 3. The hyper-parameter α
setting is also investigated in the next subsection.

4.3 Experimental Results and Analysis
Comparison with state-of-the-art. Our approach is tested
based on two VQA losses (cross-entropy loss and multi-label
loss) separately. To eliminate the stochasticity from the ran-
dom sampling strategy, we report an average score of 10 ex-
periments on the test set. From the results shown in Table 1,
we can observe that: (1) Our approach can not only improve
the overall performance of the baseline UpDn (+14.35% for
cross-entropy loss and +16.06% for multi-label loss), but also
significantly outperform the best-performing method SCR
(+3.13% for cross-entropy loss and +8.09% for multi-label
loss). (2) The improvements based on both VQA losses are all
remarkable. Typically, using multi-label loss can achieve bet-
ter performance since it is consistent with the evaluation met-
ric and considers multiple feasible answers, which is shown
to be more generalizable. (3) No matter which VQA loss

Method Yes/No Num Other Overall

UpDn [2018] 42.27 11.93 46.05 39.74
AdvReg [2018] 65.49 15.48 35.48 41.17
Rubi [2019] 68.65 20.28 43.18 47.11
DLR [2020] 70.99 18.72 45.57 48.87

HINT [2019] 70.04 10.68 46.31 47.70
SCR [2019] 71.60 11.30 48.40 49.50

UpDn†-Lce 47.27 13.67 40.32 38.28
UpDn†-Lml 43.45 13.64 48.18 41.53
UpDn+Ours-Lce 87.75 26.40 41.42 52.63
UpDn+Ours-Lml 86.53 29.87 50.03 57.59

Table 1: Performance on VQA-CP v2 test split. The first row shows
the performance of non-annotation-based models, while the second
row displays that of annotation-based methods. Our method signifi-
cantly outperforms all these methods (including the best-performing
method) no matter which VQA loss is used. † denotes the reimple-
mentation of our baseline. Lce is cross-entropy VQA loss and Lml

is multi-label VQA loss. Accuracies in percentage (%) are reported.

Model Proportion of Training Set
20% 40% 60% 80% 100%

UpDn†[2018] 36.22 38.90 39.40 40.61 41.53
SCR [2019] - - - - 49.50

UpDn+Ours 52.71 54.42 56.83 57.31 57.59

Table 2: Performance on the VQA-CP v2 test set with different
amounts of training data. Our approach outperforms UpDn with an
average improvement of +16.44%. † is the reimplementation of the
baseline. Overall accuracies in percentage (%) are reported.

is used, our approach can achieve extremely high accuracy
(87.75% and 86.53%) on the “Yes/No” question type, which
indicates that our strategy is indeed to be effective in over-
coming the language priors since biases are more likely to
exist in these simple questions. (4) For the hardest “Num”
questions, we can also get surprising improvements, which
strongly illustrates that our approach can jointly understand
images and questions, and reason them efficiently.

Performance on smaller training sets. To further demon-
strate the advantage of our approach, we randomly sample
different amounts of training data from the original training
set and conduct a series of experiments. All the experiments
are tested on the standard test set and results are shown in
Table 2. We find that our method gets an average accuracy
improvement of +16.44% over baseline UpDn. What’s more
important, even with 20% of the training data, our approach
can also significantly surpass the best-performing method
SCR trained with external supervision on the full training set.
We believe this is because our approach can effectively lever-
age the balanced data with the assistance of our regularizer,
which is more likely to exhibit great generalizability.

Performance based on different baselines. We also con-
duct experiments based on two additional VQA models: SAN
[Yang et al., 2016] and BAN [Kim et al., 2018]. From the
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Figure 3: Comparison of overall accuracies with different α settings.
Our method achieves better performance when α = 3.

Method Overall Gap∆ ↑
SAN [Yang et al., 2016] 24.96 +12.68SAN+Ours 37.64
BAN [Selvaraju et al., 2019] 41.48 +13.48BAN+Ours 54.96

Table 3: Performance on the VQA-CP v2 test set based on different
baselines. Overall accuracies in percentage (%) are reported.

results depicted in Table 3, we can observe that the improve-
ments for different baselines are all remarkable and consis-
tent, which demonstrates that our method is model agnostic.
Performance on biased VQA dataset. We also evaluate
our approach on the VQA v2 dataset containing strong lan-
guage biases. We pre-train the model with VQA loss for 6
epochs and then fine-tune it for 10 epochs. As shown in Table
4. Our approach gets an improvement on VQA v2 val, while
other baseline methods result in performance drops. The rea-
son is that our self-supervised loss can achieve a balance be-
tween answering questions and eliminating language priors.
Impact of different α. To investigate the impact of the
hyper-parameter α, which makes a trade-off between answer-
ing questions and overcoming language priors, we conduct
extensive experiments with different α settings. Due to space
limitations, in this paper, we only analyze the case when us-
ing multi-label VQA loss, see Figure 3. The model yields
the highest performance when α = 3. What’s more, a large
α might cause model collapse after several epochs, while a
small α will result in unsatisfactory performance.
Qualitative analysis. We quantitatively evaluate the effec-
tiveness of our approach. As shown in Figure 4, our method
can answer the questions correctly and focus on the right re-
gions. For example, when answering the question “Is this a
professional game?”, our method can pay more attention to
the characters on the man’s clothes, which might be an im-
portant visual clue to judge whether the game is professional.

5 Conclusion
In this paper, we propose a novel self-supervised learning
framework to overcome language priors in VQA. Based on
a model-agnostic auxiliary task, our framework is able to ef-
fectively exploit the automatically generated balanced data to

Ours UpDn

Answer: red Answer: green
G-T: redWhat color is the stoplight? 

Answer: yes Answer: no
G-T: yesIs this a professional game?

Figure 4: Qualitative comparison between our self-supervised ap-
proach and the baseline UpDn. The bounding boxes indicate the
most important regions with attention values. G-T is ground-truth.

Method Overall

UpDn [Anderson et al., 2018] 63.48
AdvReg [Ramakrishnan et al., 2018] 62.75
DLR [Jing et al., 2020] 57.96
HINT [Selvaraju et al., 2019] 62.35
SCR [Wu and Mooney, 2019] 62.20

UpDn+Ours 63.73

Table 4: Overall accuracy(%) on the VQA v2 val split. Our approach
does not hurt the performance of the model on the biased dataset,
while other bias-reducing methods all get performance drops.

alleviate the influence of dataset biases. Experimental results
show that our approach achieves a balance between answer-
ing questions and overcoming language priors, and leads to
a better overall learning outcome, achieving a new state-of-
the-art on the most commonly used benchmark VQA-CP v2.
Theoretically, we believe that our work can be a meaningful
step in realistic VQA and solving the language bias issue, and
this self-supervision can be generalized to other tasks (e.g.
image caption) that are subject to the inherent data biases.
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