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Abstract

Causal discovery from observational data has been
intensely studied across fields of study. In this pa-
per, we consider data involving irregular occur-
rences of various types of events over the timeline.
We propose a suite of scores and related algorithms
for estimating the cause-effect association between
pairs of events from such large event datasets. In
particular, we introduce a general framework and
the use of conditional intensity rates to characterize
pairwise associations between events. Discovering
such potential causal relationships is critical in sev-
eral domains, including health, politics and finan-
cial analysis. We conduct an experimental investi-
gation with synthetic data and two real-world event
datasets, where we evaluate and compare our pro-
posed scores using assessments from human raters
as ground truth. For a political event dataset in-
volving interaction between actors, we show how
performance could be enhanced by enforcing addi-
tional knowledge pertaining to actor identities.

1 Introduction

Discovering causal relationships from observational data is
widely studied in Al and remains of fundamental inter-
est in scientific endeavors [Cox, 1992; Spirtes er al., 2001;
Pearl, 2009]. In this paper, we study causal association be-
tween pairs of events, where an event is defined abstractly
as “a particular thing that happens at a specific time and
place, along with all necessary preconditions and unavoid-
able consequences” [Allan, 2002]. We assume access to an
event dataset, i.e. data about occurrences of various types
of events over the timeline. Event datasets are different from
time series data in that they typically entail arrivals at irreg-
ular epochs (such as medical events), rather than continuous-
valued measurements at regular epochs (such as daily stock
prices). Large event datasets are increasingly common in do-
mains such as maintenance, health, politics and finance.

Our objective is to build a computational system that iden-
tifies potential causal associations from large event datasets.
Such a system could provide data-driven support to analysts,
assisting them with thoughtful and reasoned analysis about
potential future states of the world. Recent efforts to de-
sign systems that discover and use pairwise causal associa-
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tions for downstream reasoning and processing include work
by Radinsky et al. [2012], who identify cause-effect pairs
from news articles and make predictions about potential fu-
ture events by generalizing the causal relationships. Luo et
al. [2016] also learn cause-effect pairs from text, representing
these relationships in a graph. Sohrabi ef al. [2017] describe a
scenario generation system based on a planning formulation;
as input, they use expert-provided ‘mind maps’ that capture
causal connections among concepts. Pairwise causal knowl-
edge has also been assessed through crowd sourcing, such as
in the open mind common sense project [Singh er al., 2002].

Existing systems for identifying cause-effect relations rely
on unstructured text or human-assessed representations, joint
independent and identically distributed (i.i.d.) observations
of random variables without temporal information, or tradi-
tional time series data (over regular epochs) as in Granger
causality [Granger, 1969]; in contrast, we investigate learn-
ing causal associations using structured event datasets as in-
put. This complements existing related research as it provides
another route for causal discovery from real-world data, with
numerous downstream applications. Note that we restrict our
attention to association between pairs of events as opposed
to more complex structures, for the practical reason that it is
significantly easier for users/analysts to understand pairwise
associations rather than conditional causal relationships. Fur-
thermore, it is crucial for our methods to be scalable in both
the number of types of events as well as the size of the dataset.

Contributions. We propose a suite of algorithms that gen-
erate scores for causal relationships between pairs of events in
structured datasets. We introduce a novel framework that in-
corporates all the scores and propose a continuous-time point
process approach that uses the ratio of conditional intensity
rate parameters from a graphical representation. We analyze
the complexity and correctness of our scores theoretically
as well as compare them in experiments involving synthetic
and two real-world datasets: 1) a diabetes dataset [Frank and
Asuncion, 2010; Acharya, 2014], and 2) the ICEWS political
event dataset [O’Brien, 2010] — a relational (dyadic) event
dataset where events are interactions between two actors. Our
scores outperform baselines from the literature.

2 Related Work

Event Models. There has been substantial work around
studying event datasets, spanning several analytical domains.
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In statistics, there is a long history of modeling such datasets
as multivariate point processes [Cox and Lewis, 1972]. In
data mining, event datasets have been used for identifying
patterns and making predictions [Mannila et al., 1997]. The
literature has spilled over into Al and machine learning, yield-
ing sophisticated temporal processes including Poisson nets
[Rajaram ef al., 2005], Poisson cascades [Simma and Jor-
dan, 2010], piecewise-constant conditional intensity mod-
els [Gunawardana et al., 2011], forest-based point processes
[Weiss and Page, 20131, proximal graphical event models
[Bhattacharjya er al., 2018], and event-driven continuous time
Bayesian networks [Bhattacharjya et al., 2020].

Didelez [2008] and Gunawardana and Meek [2016] pro-
posed graphical event models (GEMs) as a framework to gen-
eralize many of the afore-mentioned multivariate temporal
processes. They can be viewed through a causal lens, much
like causal networks can be seen as directed graphical models
[Pearl, 2014] imbued with causal semantics. Although GEMs
are theoretically broad in scope, specific assumptions about
historical dependencies are required to learn models in prac-
tice. Furthermore, an edge in a GEM from event y to = does
not necessarily correspond to a causal association as defined
in this paper. Our work is the first to propose pairwise scores
using conditional intensity rates that are based on the multi-
variate point process framework behind GEMs.

Causal Association in NLP. Most of the work on pair-
wise causal associations appears in natural language pro-
cessing and computational linguistics, where events are of-
ten merely textual phrases. Much of this literature revolves
around the fundamental idea that ‘causes’ change the proba-
bilities of their ‘effects” [Suppes, 1970]. For a pair of events
(y,x), y could potentially be a cause of effect x if = hap-
pens more frequently when y happens relative to its base rate,
i.e. p(x|y) > p(x). Although this approach identifies depen-
dence between events, there are clearly caveats towards its us-
age for discovering causal relationships. For instance, (y, x)
could have a common cause z and still satisfy p(z|y) > p(x).

Despite its limitations, pairwise co-occurrence has been
popular in causal discovery from text since Church and
Hank [1990] proposed the use of mutual information for word
association, computed by identifying co-occurrence of words
in a corpus. Riaz and Girju [2010] and Luo et al. [2016]
deploy discourse cues (such as ‘if A then B’) together with
statistical co-occurrence based scores for discovering cause-
effect pairs in text. In the following section, we extend these
scores to account for temporal order event datasets.

Other Causal Association. We briefly mention a select
few other domains in which causal association has been ex-
plored. These include unsupervised data mining approaches
such as association rule mining [Cooper, 1997; Silverstein
et al., 2000; Ale and Rossi, 20001, clustering [Okada er al.,
2015] and temporal pattern mining [Li and Ma, 2004], as well
as using logical formulations [Kleinberg and Mishra, 2009]
and planning and situational calculus for causal event detec-
tion [Khan and Soutchanski, 2018], etc. Our work is closer in
spirit to event models and pairwise association in NLP.
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Figure 1: An example event dataset with 7 occurrences of 3 types
of events over a month. Duration partitions for various conditions of
labels y and z for a window of 7 days are also highlighted.

3 Cause-Effect Association Scores

An event dataset is a sequence of events, D = {D;}¥ ;. Each
event D; is a tuple (x;, t;) where x; is the event label/type and
t; is the time of occurrence, t; € RT. We assume a strictly
temporally ordered dataset, t; < t; for ¢ < j, initial time
to = 0 and end time ¢y 11 = T y, x refer to an arbitrary pair
of event types belonging to label set £ whose cardinality is
M, ie. |L| = M. Figure 1 depicts an example event dataset
with N = 7 events across M = 3 event labels over a horizon
of T' = 30 days (a month).

In this section, we begin by proposing a general frame-
work for computing causal association scores from an event
dataset. To illustrate the generality and practicability of this
framework, we first extend the scores from computational lin-
guistics; these are purely data-driven and based only on tem-
poral co-occurrence. We then propose scores based on gener-
ative models with conditional intensity rates of events.

3.1 A General Framework

A popular approach to causal modeling is based on indepen-
dence tests [Pearl, 2009]. However, high-dimensional tests
can be intractable in general causal relationships. To discover
causal event pairs, we adopt the same paradigm and consider
the following framework of hypothesis testing:

Hy : P(z|y,z) = P(z|z); (1)
H, : P(z|y,z) > P(z|z).

where (y, ) is the pair to be tested such that y occurs before
x, and z is a joint random variable indicating whether event
labels in the set Z C L have occurred or not. The null hy-
pothesis tests if P(z|y,z) and P(x|z) are from the same dis-
tribution, which indicates y has no impact on z, conditioned
on some other variables Z, and hence cannot be a cause for x
[Pearl, 2014]. In this work, a cause-effect association entails
that y makes z more likely in the future. The probabilities
can be modeled with different methods and the independence
tests can use different metrics, but the general form to be eval-
vated is f(P(x|y,z), P(x|z)).

Note that as defined above, where y and z occur before
z, P(z|y,z) > P(z|z) implies that P(y|z,z) > P(y|z).
This ‘backwards’ view is promoted in NLP in particular. In
the remainder of this section, we propose specific scores and
briefly mention their connection to the general framework.

3.2 Temporal Co-occurrence Based Scores

We first investigate some baseline scores inspired by related
temporal co-occurrence association work [Church and Hank,
19901, with scores like p(y|z) and p(z|y) .



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

To make the computation of p(y|z) and p(x|y) in event
datasets tractable, where there could be multiple occurrences
of y and « that are staggered over 7', we take a window-based
view of co-occurrence, making the assumption that causal in-
fluence is prevalent only for a limited time after an event oc-
curs. For time window w, we compute these two conditional
probabilities as:

pY(y « ) pY(x — y)

p(z) p(y)

where p(y) and p(x) are the probabilities of observing events
y and z respectively, i.e. p(y) = N(y)/T and p(z) =
N(z)/T for event counts N (y) and N (z) over the horizon T'.
p¥(y < x) is computed from the event dataset by counting
occurrences of data where x occurs and at least one y event
occurs within the preceding time window (between times 0
and T), p*(y <« z) = N¥(y « 2)/T. p(y — x) is com-
puted by counting the number of occurrences where y oc-
curs and at least one = event occurs within a feasible forward
time window of length w, p*(y — =) = N¥(y - z)/T.
Every pair (y,z) is associated with support computed as
5" (y,) = min {N*(y « x), N"(y > )},

Using the two conditional probabilities, we propose novel
adaptations of cause-effect scores from causal discovery work
in text: necessity sufficiency trade-off (NSTg) score from
Luo et al. [2016] (the subscript signifies adaptation to an
event dataset) and event control dependency (EC Dg) score
from Riaz and Girju [2010]. N ST requires a base rate pe-
nalization parameter o > 0 and a parameter A € [0, 1] that
trades off necessity (first term) and sufficiency (second term)
scores as follows:

P (ylz) = s pV(xly) = )

Py < ﬂv)]A [p“’(y - x)} = e

p(y)“p(z) | Lp(y)px)®

Both necessity and sufficiency terms involve a penalization
in the denominator using the parameter o which prevents fre-
quent events from being considered as highly causally asso-
ciative merely on the basis of chance; higher values result in
more penalization for frequent events.

Remark 1. NSTy follows the General Framework (1) by
assuming Z. = () and using a test statistic that is a weighted

geometric mean of the ‘forward’ ratio 2 :((5)'3) (sufficiency)
and the ‘backward’ ratio 2 :((;)lf ) (necessity).

NSTg(y,z) = [

ECDg score, on the other hand, maximizes over two
terms that are essentially proxies for necessity and sufficiency
causality, ECDg(y,z) = max {Tn,Ts}, where:

p* (y=z) } . {

p(z)—p¥ (y<z)+v

P (y<z)
max, p¥ (y«v)—p¥ (y&m)+7i| ) (4)

Ty = |

and sufficiency term T is similar, with arrows in the other
direction and p(y) replacing p(x) in the first term. v > 0 is
a parameter to prevent a zero denominator and can be set to
a low number (such as 0.01). Ty is a product of an adjusted
odds term for y|x and a term that captures the importance of
the effect x as compared to all other potential effects v.

Remark 2. ECDg follows the General Framework (1) by
assuming Z = () and using a test statistic that maximizes

over ‘forward’ (sufficiency) and ‘backward’ (necessity) com-
ponents. The backward component multiplies the odds of y|x
with a factor that depends on other effects and is highest when
x is the effect with maximum p* (y < x). The forward com-
ponent is analogous.

The ECDg score is different from N STEg in that it also
considers all other potential effects of cause y. It also uses
normalization twice in computing ratios. The following the-
orem provides time complexity results for both these scores.
Recall that N and M refer to the number of events and event
labels respectively.

Theorem 1. The worst case time complexities for obtain-
ing pairwise causal association scores for all event label
pairs in L using NSTg and ECDg are O(MN + M?) and
O(MN + M3) respectively.

Limitation. The above adapted scores suffer from a few
shortcomings. p(x) and p(y) are interpretable as probabili-
ties only in the special case where we have a finite set of time
periods and where there is at most one event occurrence per
event label in each time period. When events may appear ir-
regularly on the timeline, these definitions are not probabili-
ties. One can see that p(x) and p(y) represent gross (average)
arrival rates that have dimensions of count per unit time, un-
like probability which is dimensionless, and they are there-
fore sensitive to the units in which time is measured. This
renders the above extension ad-hoc in general, even though
it could be useful in practice. This motivates us to investi-
gate scores that are applicable in a continuous-time setting,
devoid of arbitrary parameters like «, A or v and more math-
ematically principled, as described next.

3.3 Conditional Intensity Based Scores

Event datasets can be modeled as marked point processes us-
ing conditional intensity functions A, (¢|H) > 0 that repre-
sent the rate at which events of type = occur at time ¢ given
the history H [Didelez, 2008]. Since we are concerned with
association between a pair (y, ), we begin by making a sim-
plifying assumption: suppose the intensity of x at any time
only depends on whether at least one event of type y has
occurred in the preceding window w. Furthermore, for now,
suppose that the rate at which x occurs does not depend on
any other event label besides y. This entails that x has only
two intensity parameters: )\;Ul , and its complement )\;"l 7

Making no other assumptions about the history dependent
intensities of other event types (including y), it can be shown
that the maximum likelihood estimates for both parameters
for x can be computed using summary statistics:

NY(y«a) . _ N(@)— Ny«
Dvw(y) 7 T-Dv(y)

where count N*(y < ) is as defined in the previous section
and duration D (y) = SSN4 (% [w(7)dr is the duration

i=1 Jt; 1"y

over the entire time period from 0 to T" for which condition
Yy is true, given time window w. In the formal definition of
D*¥(y), Iy (t) is an indicator for whether y has occurred at
least once in the feasible window w preceding time ¢. Note
that the counts and durations for any number of event pairs
can be computed in a single pass through the event dataset.

wo
zly —

(&)
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We introduce causal association scores that reflect how the
conditional intensity of effect z is modified by the presence
or absence of potential cause y. Specifically, we propose the
following two conditional intensity ratios:

AW )\7;“1
CIRp(y,z) = AW CIRc(y, ) = AJJ, ©)

x|y

where the latter uses the complement (C) as a reference vs.
the former which considers the base rate (B) A, = N(x)/T.

Remark 3. CIRp and CIR¢ follow the General Frame-
work (1) by assuming p(x|y,z) = p? (z|y) = A\ dr and

x|y
p(z|z) = p?™(z) = \.dr. The test statistic for CIRp is the
ratio of p(x|y, z) and p(x|z) whereas for CI R it is the ratio
of p(z|y, z) and p(x|y, z)
Define CIRp\ ¢ as either CIRp or CIRc. We highlight
a situation under which these scores are consistent.

Theorem 2. If at most only y’s occurrences in a historical
window w can impact the occurrence of x at any time s.t.
Azim(r) = Ay, Vt where H(t) is the event history at time t,
given suﬁﬁctent data, CIRp\c = 1 indicates independence
and CIRp\¢ # 1 indicates dependence for the pair (y, ).

Proof. If in the underlying true relationship P(z|y,z) =
P(z|z), then NG AT = Aedr = % —

CIRp\c = 1 indicates independence. Else if P(z|y,z) #
P(z|z), then ’—‘y # 1 hence CIRp\c # 1 indicates de-

1, hence

pendence. Conversely, if CIRp\¢ = 1, then T"’ =1=
AppdT = Xedr = P(zly,z) = P(z|z). Slmllarly, if
CIRp\c # 1, then (z|y,z) # P(x|z). 0

In practice, the assumption that an effect « only depends on
the history of potential cause y is likely unrealistic. A more
general formulation allows x to depend on historical occur-
rences of any other event label; in the literature on graphical
event models, this is captured by a (potentially cyclic) repre-
sentation where the rate at which an event label occurs at any
time depends only on the historical occurrences of its parents.

For a pair (y, =), suppose that « not only has y as a parent
but also the set of labels Z. If x’s rate depends on whether or
not any of its parents y U Z have occurred in the preceding
window w, then there are 2|21+ conditional intensity rates,
maximum likelihood estimates of which can be determined
through summary statistics, similar to equation (5):

w _N'yzew) ., N@zeo)
dve = T Dulya) e T T Du(a)

where the counts and durations are generalizations of the pre-
vious definitions and can be computed similarly. Figure 1 il-
lustrates how the timeline partitions various conditions for
labels y and z, assuming window w = 7 days. In this ex-
ample. D(y,z) = D(y,z) = D(g,z) = 8 days each and
D(y, z) = 6 days. The maximum likelihood estimate for rate
X = N"(y,z < 2)/D"(y,2) = 1.

Since we are interested in the pairwise association for
(y, x), we suggest using the aggregate impact of y on x over

)

all possible conditions of the other parental influences z. In
this way, the score for the pair (y, z) measures how much y
changes the rate at which = happens, averaged over all other
potential parent states. Formally,

)\w
CHRM@7)9(AW“>, )
x|y,
when y is a parent of = and otherwise the score is 0; the sub-
script M denotes that z could have multiple influences and
g(+) is an aggregation of ratios over all z. We consider min.
and max. aggregate functions as well as average (avg).

Note that the C'I R score can be viewed as a generaliza-

tion of CIR¢. Support for all CIR scores is assumed to be
s(y,z) = N"(y < z).
Remark 4. CIR,; follows the General Framework (1) by
assuming p(zly,z) = p™ (z[y,2) = Apjy 2d7 and p(z|z) =
p"(x]z) = Ay, dT. Moreover; the test statistic for CI1 Ry is
some aggregated ratio of p(x|y,z) and p(x|j, z).

In order to discover the parents of z, we follow structure
search like in other work on graphical event models [Meek,
2014; Bhattacharjya et al., 2018]. The log likelihood of the
dataset for event label x with parents U is:

LL@) =" [~D (WAL, + N*(u < ) log(\z},) |-

u

©))
where u is an instantiation of parents U. In our experiments,
we first learn the parent set of = that maximizes the BIC
score by searching for any additional parents Z (other than
y) through a forward-backward search — a standard approach
in structure learning in graphical models — and then compute
the CI Ry, score using the relevant summary statistics com-
puted on the (optimal) learned graph, see equation (7). The
BIC score is the sum of the log likelihood and a penalty term
that incorporates the complexity of the model, determined by
the total number of parents (Z + 1) and equals 2%+ log(T);
it is known to be asymptotically consistent for graphical event
models [Meek, 2014].

Theorem 3. The worst case time complexity for obtain-
ing pairwise causal association scores for all event label
pairs in L using either CIRp or CIRc is O(MN + M?).
For CIR);, assuming that event labels occur in similar pro-
portions in the event dataset, it is O(M>N).

Proof. Using the same argument as in the proof of Theorem
1, we can track N*(y — z) and D" (y) with O(M N) work
in a linear data scan. With additional constant work for each
of the O(M 22) pairs, both CIRp and CIR¢ end up with

O(MN + M?) work. For CIR)y, this is similar to Theorem
10 for FBS — I W in Bhattacharjya et al. [2018], except that
we don’t need the O(N?) work for computing the optimal
windows. This leaves us with a complexity of O(M3N). [

We note that all methods are easily parallelizable and that
typically M << N, making all methods comparable in prac-
tice in terms of computational tractability; they are all poly-
nomial in the number of events and event labels.

Following Theorem 2, we highlight a more general condi-
tion under which the C'T Ry, score with min. and max. aggre-
gate functions is consistent.
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Theorem 4. If only occurrences of other labels (including
y) in a historical window w can impact the occurrence of x
at any time s.t. Apj3(t) = Ay), , Vi, where H(t) is the event
history at time t, given sufficient data, CIRy; = 1 indicates
conditional independence and CIR); # 1 indicates depen-

dence for the pair (y,x), using g € {min, maz}.
Proof. If P(xly,z) = P(z|z), then XY} dr = Ayj,d7 =
=1, then CIRy =
1 indicates independence. Else if ‘%(x\y, z) # P(z|z), then
/\/\L #*1=g (%) # 1,then CIR); # 1. Conversely,

z|g,z z|7,2

the argument also holds just like in Theorem 2. O

w w

A
)\m|g7zd7— = =y

Az|g,z

Azly.z
=1=y (—/\ﬁ,‘y’

For empirical reasons, we also consider the average mea-
sure, as it is more robust to noise and may perform better
in a limited data setting. It captures the average effect of
how much y amplifies (or dampens) the rate of x given the
other relevant conditions; this sort of approach has been used
in other settings for pairwise causal association [Eels, 1991;
Kleinberg and Mishra, 2009].

4 Experiments on Synthetic Datasets

To test our scores with known ground truth, we construct a
synthetic generator of a joint event trajectory over a label set,
based on a corresponding notion of causal relationship be-
tween pairs of event labels. We use a directed acyclic graph
(DAG) G(L, ) representation of causal relationships over
event label set £. We consider a generation approach that uses
the graph to increase the rate of an underlying homogeneous
Poisson process whenever a parent arrives. This has the effect
of elevating the rate of a child for a limited time after a parent
(cause) occurs. We omit details due to space restrictions.

We generate 100 synthetic event datasets using our gener-
ating process with the same randomly generated DAG with
14 true causal pairs between |£| = 20 event labels, a horizon
of 1000 days (= 3 years), with a baseline rate of once in 30
days, and an elevated rate of once a week under parental influ-
ence, with a window of 15 days for the duration of any such
influence. We ran experiments over a sweep of the hyperpa-
rameters: o € {0,0.5,1,2,5}, A € {0,0.25,0.5,0.75, 1} for
NSTg, v € {0.001,0.005,0.01,0.05,0.1} for ECDg, g =
{avg, maz, min} for CIR); and window w = {7,15,30}
days for all models, using support s = 10.

Figure 2 shows the distribution of performance over all 100
datasets for our methods at recovering the true causal pairs
from the 4°P, = 380 event pairs; this is Hits@K which is
a common metric in information retrieval [Baeza-Yates and
Ribeiro-Neto, 2011]. Since our methods provide a score for
each causal pair, we can use these to rank potentially causal
pairs. The graphs show the counts of the true causal pairs in
the top-25 scoring pairs for each of our scores over the 100
traces generated. We observe that across all window sizes, the
intensity-based scores strictly dominate FCDg and NSTg
scores. This provides evidence that our C'I R scores provide
a robust indication of the causal pairs on a timeline. More
encouragingly, for windows 15 and 30 we see that the CIR
models are able to surface all true causal pairs in the top-25.
We suspect C'I Rp performs better than C'I R here because
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Method | K=10 K=15 K=20
CIRg 4 6 6
CIRc 3 3 5
CIRm 6 7 7
ECDg 2 1 1
NSTe 5 4 7

Table 1: Hits@K across methods on the diabetes dataset (test set).

the synthetic dataset generation uses sparse graphs with only
excitatory effects; a simple comparison to base rate (without
accounting for other effects) therefore performs well.

S Experiments on a Diabetes Event Dataset

We compare the methods/scores on a dataset with informa-
tion pertaining to blood glucose levels, insulin dosage, eating
and exercise patterns of 70 diabetes patients [Frank and Asun-
cion, 2010]. We follow Acharya [2014] and convert the data
for each patient into an event dataset, treating expert assess-
ments in that work as ground truth. A complication is that the
assessments were conducted by assuming that the underlying
causal graph is acyclic, which is not necessarily true for event
pairs because both (x,y) and (y, z) could be causal; as a re-
sult, we are confident that the 11 pairs assessed to be causal
are truly causal but suspect there are other causal associations
that were missed.

We split the dataset into equal-sized training/test sets, de-
termine a method’s optimal hyper-parameter setting on the
training set, and then compute the Hits@K on the test set
using this hyper-parameter setting. The following hyper-
parameter settings were used during training: « € {0, 1,5},
A € {0,0.5,1} for NSTg, v € {0.001,0.01,0.1} for
ECDg, g = {avg,max,min} for CIRy; and window
w = {0.1,0.3,0.5, 1} days for all models.

Table 1 compares the Hits@K across the five methods
on the test set for K = 10, 15, 20, illustrating that CI R,
performs best on this dataset. Note that it is possible for a
method’s Hits @K to decrease with K here as different hyper-
parameter setting may be chosen while optimizing over the
training set. Since C'I R, first requires learning a graph be-
fore aggregation (unlike the other models), we recommend
learning a single graph using all independent event streams,
when available like in this case, rather than learning a sepa-
rate graph for each event stream and then aggregating pair-
wise scores. Here, both approaches yield identical results.

6 Experiments on a Political Event Dataset

Event datasets such as the Global Database of Events, Lan-
guage and Tone (GDELT) [Leetaru and Schrodt, 2013]
and the Integrated Crisis Early Warning System (ICEWS)
[O’Brien, 2010] are popular in political science. Events in
these datasets have a source actor performing an action on a
target actor. Actors and actions in both ICEWS and GDELT
are coded according to the Conflict and Mediation Event
Observations (CAMEO) ontology which includes a host of
domestic and international actor types. We use a subset of
ICEWS in our experiments, including events over 10 years
in 3 countries: Argentina, Mexico, and Venezuela, ending up
with ~25K event records spanning ~2K distinct event types.

Actor-Based Conditions. For these experiments, we investi-
gate the use of supporting knowledge in conjunction with sta-
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Figure 2: Performance of all scores on the synthetic dataset with |£| = 20. The box plots show the number of true causal pairs rated in the
top-25 by the respective score varying the window size. v = 0.01 for ECDg; a = 0and A = 0.5 for NSTE; g = avg for CIRy.

tistical co-occurrence of events for potential causal discovery.
We conjecture that imposing additional conditions based on
actor identities could enforce causal knowledge and thereby
potentially match human assessments of causality. We refer
to one such condition as the common actor condition: event
pairs with a common actor are more amenable to be assessed
by humans as causal. This notion has been explored in other
contexts [Chambers and Jurafsky, 2008]. Requiring a com-
mon actor between events could model retaliation, reciprocity
and reinforcement. We also consider a foreign actor condi-
tion: a foreign actor cannot influence an event between do-
mestic actors. This reinforces the locality of events.

Surveys. To obtain benchmark causal relationships from our
dataset, we designed surveys with 100 questions each for the
3 Latin American countries. To construct the surveys, we
drew 25 pairs, uniformly at random, from each quartile of
the ranked NSTfE scores for each country. We did this to
ensure the presence of some pairs that are suspected to be
causal and some that are not. The surveys were provided in-
dependently to six project members with two countries each,
resulting in three raters for each question. Participants were
asked whether the question involved a plausible causal pair
of events (yes/no) and to also specify how confident they
were about their answer (0 — 100%). All three raters were
unanimous in their decision for a majority of the questions
(225/400 questions). We observe good pairwise agreement
between the raters (> 0.68) for all countries.

Confidence Strength Task. We aggregate the human assess-
ments about confidence into a numeric confidence strength
which we predict using a linear regression model on the
cause-effect scores (after z-scoring). This strength is mea-
sured on a scale of —1 (strong no) to 1 (strong yes)
and obtained by applying a +ve (-ve) sign for the bi-
nary response yes (no) and averaging over raters’ confi-
dences, e.g., three raters’ responses with confidences are
{(no, 70%), (no, 40%), (yes, 50%)}, the confidence strength
is (—0.7 — 0.4 + 0.5)/3 = —0.2. We use negative root mean
squared error as the evaluation metric (higher is better). As
there are 20 questions that are tested in every fold, the poten-
tial range for this metric is 0 (best) to —2+4/20 ~ —9 (worst),
which occurs if for all questions in all folds, a strength of —1
(strong no) is predicted to be 1 (strong yes) or vice-versa.
Table 2 compares this metric across the folds for the 3
countries, as a function of the imposed actor conditions.The
conditional intensity based scores (particularly CIR,; but

Condition | Argentina Mexico Venezuela
Neither -0.37 (BCDg) -0.19 (CIRy) -0.32 (CIRy)
Common Actor | -0.37 (ECDg) -0.17 (CIRy) -0.33 (CIRy)
Foreign Actor -0.32 (CIRg) -0.19 (CIRy) -0.28 (ECDg)
Both -0.35 (CIRg)  -0.17 (CIRy)  -0.3 (CIRg)

Table 2: Best negative root mean square error (over folds) for the
confidence strength task along with the corresponding model, as a
function of the actor-based conditions, for 3 of the 4 countries.

also CIRp) generally perform the best on this task. We ob-
serve that imposing the actor based conditions improves per-
formance in many cases. Overall, the small mean errors ob-
served in this task (relative to the scale) indicate that the
scores are good at predicting the numeric confidence strength.

7 Conclusions

We proposed several scores for discovering causal association
between pairs of events from event datasets, including a gen-
eral framework that subsumes the proposed scores and that
could be useful for future advances. The conditional inten-
sity based scores are a major contribution in this work. They
are mathematically principled for continuous-time data and
perform well on synthetic datasets as well as two real-world
datasets. We demonstrated, through an evaluation benchmark
constructed with political events, that incorporating actor-
based information in addition to statistical associations could
help with matching human causal assessment for relational
events. Investigating more complex causal scoring functions
and studying their efficacy and interpretability across a vari-
ety of event datasets is a potential direction for future work,
as is a principled approach to learn the window parameter w.

Data-driven Al systems that assist analysts with long-term
and wide ranging future possibilities need sufficiently rich
knowledge about causal relationships between events. Dis-
covering such relationships using statistical associations re-
mains a challenging but worthy endeavor, in our opinion. Our
work complements the current literature towards endowing
these systems with such knowledge.
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