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Abstract
Electric Vehicle (EV) sharing systems have re-
cently experienced unprecedented growth across
the world. One of the key challenges in their oper-
ation is vehicle rebalancing, i.e., repositioning the
EVs across stations to better satisfy future user de-
mand. This is particularly challenging in the shared
EV context, because i) the range of EVs is limited
while charging time is substantial, which constrains
the rebalancing options; and ii) as a new mobil-
ity trend, most of the current EV sharing systems
are still continuously expanding their station net-
works, i.e., the targets for rebalancing can change
over time. To tackle these challenges, in this pa-
per we model the rebalancing task as a Multi-Agent
Reinforcement Learning (MARL) problem, which
directly takes the range and charging properties of
the EVs into account. We propose a novel ap-
proach of policy optimization with action cascad-
ing, which isolates the non-stationarity locally, and
use two connected networks to solve the formulated
MARL. We evaluate the proposed approach using
a simulator calibrated with 1-year operation data
from a real EV sharing system. Results show that
our approach significantly outperforms the state-of-
the-art, offering up to 14% gain in order satisfied
rate and 12% increase in net revenue.

1 Introduction
Recently, shared E-mobility systems have been expanding
fast in major cities around the world [Shaheen et al., 2018].
They provide a convenient way for users to pick up shared
Electric Vehicles (EVs) from nearby stations and drive around
whenever needed, which is a more sustainable mobility
paradigm that can effectively reduce the numbers of vehicles
on the roads as well as cutting out unnecessary emissions.
They could also bring significant societal benefits as they of-
fer a much more affordable and efficient on-demand mobility
option to the public than traditional taxi or car renting.

Despite their rapid growth, a major problem of current EV
sharing systems is the imbalanced distribution of their EV
†Work done during an internship at the University of Warwick.
∗Corresponding author.

fleets as they operate over time. For instance, in morning rush
hours a large volume of EVs tend to flow to central areas and
stay there, making few or even no vehicles available in other
places. This certainly deteriorates the overall performance, as
potential customers may refrain from using the system if there
are no available EVs, or no parking spaces near their destina-
tions. It may also have long-term impact, leading to skewed
vehicle distributions, e.g. some “hot” areas may accumulate
substantially more EVs than others. Thus rebalancing the ve-
hicle distributions of the system is a vital task.

In fact this is very common in shared mobility systems,
e.g., shared bikes [Ghosh et al., 2017; Li et al., 2018;
Ghosh et al., 2016b], taxi [Lin et al., 2018; Li et al., 2019;
Wei et al., 2017], and ride-sharing services [Kooti et al.,
2017; Jiang et al., 2018]. However, unlike those systems,
the rebalancing problem in EV sharing has two unique chal-
lenges. First of all, EVs typically have limited range, and the
charging time is much longer than filling up traditional ve-
hicles. This adds many implicit constraints, e.g. EVs can’t
be repositioned to locations that are beyond their remain-
ing range, and they also need to be sufficiently charged to
serve future user orders. Secondly, as the concept of EV
sharing systems is relatively new, at this stage they tend to
continuously expand their infrastructure. For instance, the
EV sharing system studied in this paper has doubled its sta-
tions within just 12 months, where stations are being de-
ployed/closed every day. This makes the rebalancing task
even more challenging, as at each time the candidate stations
to which EVs may be repositioned are dynamically changing.

To address these challenges, in this paper we propose a
novel user-incentive rebalancing approach based on multi-
agent reinforcement learning (MARL), which offers mone-
tary rewards to the end users, incentivizing them to reposi-
tion EVs to the desired locations. To tackle the challenges of
limited EV range and the charging delays, we propose to in-
corporate the range and charging information directly in our
MARL algorithm, so that the agents are fully aware of those
constrains when making decisions. To cope with continuous
system expansion, we propose a new action cascading ap-
proach, which decomposes the action of repositioning an EV
into two subsequent and conditionally dependent sub-actions.
The intuition is that when an EV needs to be repositioned,
one could firstly decide which region it should be redirected
to, and then subsequently determine which station within that
region should be its new destination. Therefore, the expan-
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sion dynamics are localized within individual regions, while
the first sub-actions have static action spaces. In particular,
the proposed action cascading approach uses two connected
policy networks to generate the sub-actions in sequel.

There is also a solid body of existing work that uses the
MARL formulation in rebalancing shared mobility systems.
For instance, the recent work in [Li et al., 2018] uses a spatial-
temporal DQN to rebalance the shared bikes, but it is funda-
mentally different from this paper since it doesn’t consider
the dynamic system expansion. On the other hand, the re-
cent fleet management work [Li et al., 2019; Lin et al., 2018;
Zhou et al., 2019] tackles the order dispatching problem
in ride sharing, which although different from our problem,
share similar challenges in the varying action spaces. How-
ever, their solution is to allow the agents to directly rank the
potential actions (selecting local orders) and choose the one
with the highest score, while we use two policy networks to
generate cascading actions which first localize and then han-
dle the non-stationarity. Concretely, the contributions of this
paper are as follows:

• To the best of our knowledge, we are the first to iden-
tify the problem of rebalancing expanding EV sharing sys-
tems. We formulate the incentive-based rebalancing prob-
lem with the MARL framework, and design the agents,
states and rewards for the EV context accordingly.

• We propose a novel approach of policy optimization with
action cascading, which uses two connected policy net-
works to handle dynamics introduced by rapid expansion
of the EV sharing systems. We also design a regularized
reward which can effectively stabilize training.

• We build a simulator which is calibrated with 12 months’
operation data collected from a real-world EV sharing sys-
tem∗. The proposed approach has been evaluated exten-
sively, and results show that it significantly outperforms
the state-of-the-art, offering up to 12% improvement in net
revenue and 14% in demand satisfied rate.

2 Problem Statement
In this section, we first introduce some key concepts and as-
sumptions of the EV sharing systems considered in this paper,
highlighting their unique properties. Then we describe the
problem of incentive-based EV rebalancing in the presence
of continuous system expansion.
Electric Vehicles (EVs). We assume that the EVs used in
our system are of limited range. During normal driving the
remaining range can be determined by a typical discharg-
ing model, while the charging time is estimated by a charg-
ing model given battery capacities and charger specifica-
tions [Tremblay and Dessaint, 2009]. In Sec. 4 we will show
how different EV ranges and charging duration may impact
the patterns of system operation in more detail.
EV Sharing Stations. The EV sharing systems considered in
this paper are station-based, i.e. users only rent or return EVs
from/to the online stations, where the EVs shall be charged.
We represent a station s as a tuple (loc,#c,#v), where loc
is the geographic coordinates (e.g. latitude and longitude), #c
is the total number of charging docks, and #v is the number
∗Code available at https://github.com/ev-sharing/simulator.

of EVs initially equipped in the station. We assume when a
station s was newly deployed for operation, it had #v EVs
available to rent and #c - #v free spaces for vehicle returns
(#v < #c).
System Expansion. Unlike most of the existing work, we as-
sume the EV sharing system is continuously evolving during
its operation. At any discrete timestamp t, new EV stations
could be deployed in new areas to extend coverage, or within
already covered areas to increase density. On the other hand,
stations can also be closed for various reasons, e.g. limited
profit. We assume that overall the system keeps expanding,
i.e., there are more stations being deployed than closed.
Incentive-based Rebalancing. Let ot = (so, sd) be an order
placed by a user at time t, requesting to rent an EV from sta-
tion so and return to sd. To alleviate the imbalanced EV dis-
tribution within the system, we may have to reposition the EV
serving this order ot to another station sd′ instead of the orig-
inal destination sd, if the remaining range is sufficient. We
motivate the user who is driving the EV to perform this for us
by offering a monetary reward of value d(sd, sd′), which de-
pends on the extra distance she has to drive from sd to sd′ . The
user may or may not accept this offer according to a prior user
model [Singla et al., 2015]. If she accepts, we pay the reward
directly e.g., discounting the order price, while otherwise we
allow the user to return the EV to her original destination sd

and charge the order normally.
Therefore, the rebalancing problem studied in this paper is

that given the total available budget B on user incentives, for
each order ot = (so, sd), we want to decide where to reposi-
tion the EV to minimize the future customer loss (i.e. satisfy-
ing as much user demand as possible) while maximizing the
net revenue of the EV sharing system, in the presence of lim-
ited EV range, typical EV charging time, and the dynamically
expanding station network.

3 Methodology
In this section, we first formulate the EV rebalancing problem
as a Multi-Agent Reinforcement Learning (MARL) task with
non-stationary action spaces (Sec. 3.1). Then we present the
proposed policy optimization approach with action cascading
in Sec. 3.2, which is able to handle such non-stationarity.

3.1 EV Rebalancing as a MARL Task
We model the rebalancing problem in EV sharing systems
as a Markov Game G = (N,X ,A, T ,R, γ), where at most
N agents interact with the environment, characterized by the
states X and transition function T . A is the joint actions of
the agents, R is the reward function, and γ is the discount
factor. Concretely, they are defined as follows:
Agents. We assume the space is partitioned into hexagonal
grids, each of which is managed by an agent, i.e., controls
the rebalancing operations among EV stations within a re-
gion. As the EV sharing system is continuously expanding,
the population of agents at a time t is a variable Nt, but we
assume the maximum number of agents are fixedN , which is
the maximum possible hexagonal grids in the space partition.
States. At time t, the global state xt is the combination of
states for each hexagonal grid xt = {xit}, i ∈ [1, N ]. For the
i-th grid, xit encodes information about the stations within
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this grid. In particular, for each station we consider its loca-
tion #loc, number of available charging docks #c, number of
EVs parked in the stations #v and their individual range, as
well as the potential future rent/return requests and the mean
value of future orders in the next timestamp.
Agent Observations. We assume an agent can make obser-
vations of state xt from grids within its two-hop neighbor-
hood, i.e. it can observe states of itself xit and the 19 grids
around it. This enables agents to interact with the local envi-
ronment and learn to cooperate with their neighboring agents.
Actions. For agent i, its action ait describes how each EV re-
turned to the grid i at time twill be repositioned (there should
be multiple EVs returned to i). We assume our agents only
reposition the EVs to stations within one-hop neighborhood
to avoid excessive user effort. In our system stations can be
deployed or closed dynamically, therefore the action space
Ait of agent i is non-stationary, i.e., the reposition candidates
may vary over time.
State Transitions. The state transition probabilities T are de-
fined as T (xt+1|xt,at,ut), where xt is the previous state,
at is the joint action, and ut is the system dynamics, cap-
turing the station network expansion, i.e., which new stations
are deployed with how many new EVs, and which existing
stations are made off-line from t.
Reward Function. In the rebalancing task we would like to
maximize the revenue of our EV sharing system with mini-
mum cost on user incentives. Intuitively, revenue can be in-
creased by sending more EVs to stations with higher order
values. However, in practice we found that this would lead
to greedy agents that only push EVs to certain “hot” stations
such as airports but ignore the others, causing further imbal-
ance. Therefore, to mitigate that we also reward the agents
that reposition EVs to stations in shortage of vehicles. Con-
cretely, to balance fairness and the potential revenue, we de-
sign reward function rit as:

rit = gd′
t + α1v

d′
t + α2b

d′
t − α3d(sd′ , sd) (1)

where gd′
t is the expected demand gap at the reposition can-

didate sd′ in the next timestamp, i.e., number of orders mi-
nus number of available EVs onsite, and vd′

t is the expected
order value at sd′ . bd′

t indicates if sd′ is empty, which ex-
plicitly encourages agents to reposition EVs to the currently
empty stations. The penalty term d(sd′ , sd) is the cost (mon-
etary reward) we pay, which is proportional to the squared
extra distance to sd′ [Pan et al., 2019]. The weights α1, α2

and α3 scale different reward/penalty terms to approximately
the same range, which are determined empirically via grid
search. Given the reward function, each agent i aims to max-
imize its discounted reward E[

∑∞
k=0 γ

krit+k].

3.2 Policy Optimization with Action Cascading
In our MARL formulation, the action spaces of the agents
are non-stationary, due to the fact that the EV station net-
work is dynamically evolving over time. We now present
the proposed policy optimization approach with action cas-
cading (ac-PPO), which extends the standard algorithms to
handle such non-stationarity. The key intuition is that the
action of repositioning an EV to an alternative station can
be viewed as a sequence of two sub-actions, where we first

State st
sample

Action at

Reward r'

Grid action gat

xj

Figure 1: Overview of the proposed action cascading.

decide which grid the EV should go to, and then figure out
which station within that selected grid should be the new des-
tination. In essence, we chain two sub-actions, one inter-grid
and the other intra-grid, where the former can have fixed ac-
tion spaces, and the non-stationarity of the station network
would only affect the latter. In the following, we first explain
the design of action cascading in more detail, and then we
show how we adapt the reward structure to stabilize training.
Action Cascading. Let ait be the action of agent i at time
t. For simplicity here we assume there is only one EV re-
turned to grid i at t. For the cases with multple EVs, we
could simply handle them in batches. We decomposite ait as
ait = (gait, sa

i
t), where gait is the inter-grid action that decides

which grid within the neighborhood the EV should be redi-
rected to, and sait is the intra-grid action which determines
the actual destination station within the selected grid. Here
gait has a fixed action space, which contains the six neighbors
around the grid i and itself. Therefore, gait can be sampled
from the output of a standard policy network πgθ . Assume
that we have a gait that would redirect the EV to a nearby grid
j. Now we need to find the intra-grid action sait that selects a
suitable station within grid j. Note that here the action space
of sait is not stationary, as there are always stations deployed
or closed in grid j. We address this by using an action-in pol-
icy network πsφ as shown in Fig. 1, which takes the current
state xjt of the grid j, and the output of the last layer of the
inter-grid policy network πgθ as input. The former contains
information of all current stations and vehicles within the tar-
get grid j, while the latter can be viewed as the context which
encodes the determined inter-grid action gait. The output of
the network πsφ are scores of each station within grid j, and
we select the one with highest value as the desired action sait.

Essentially, we use two policy networks that are connected,
to determine the inter-grid and intra-grid actions respectively.
We train the networks with the clipped objective function:

LCLIP(θ, φ) = Ê
[
min(Rθt Â

θ,φ
t ,Clip(Rθt , 1− ε, 1 + ε)Âθ,φt

]
(2)

where Rθt is the probability ratio between new and old inter-
grid policy: Rθt =

πgθ (gat|xt)
πgθold

(gat|xt)
. ε is a hyperparameter (usu-

ally set to 0.2∼0.3). On the other hand, the advantage func-
tion Âθ,φt considers both inter and intra-grid policies, since
the reward rt is given to the full actions at = (gat, sat).
Reward Regularization. Essentially, the proposed ac-PPO
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Figure 2: Simulator calibration. (a) Simulated vs. real station net-
work expansion for one year (averaged over 10 runs), and (b) Simu-
lated vs. real gross Merchandise Value (GMV).

addresses the non-stationarity in action spaces by decompos-
ing the action into the sequence of inter-grid and intra-grid
sub-actions, where we fit the problem into the policy opti-
mization framework by allowing non-stationary reward. In
fact, the reward distribution of the same action across differ-
ent timestamps may vary, since the set of candidate reposition
stations are changing, leading to large gradient variance when
training πgθ . To address that, we propose to regularize the re-
ward function rit in Eq. (1) with a baseline: ri

′

t = rit+βr̄t(j).
Here r̄t(j) = v̄t(j) · ḡt(j) is the product of the mean order
value v̄t(j) and the average future demand gap ḡt(j) (# of
user demand - # of available EVs ) per station in grid j, as-
suming that the action is to reposition the EV to a station in
the target grid j. Intuitively, r̄t(j) can be viewed as the “po-
tential” of the grid, indicating how much extra revenue one
would expect to get if more EVs are repositioned to this grid.
The weight β scales the regularization term to adjust its im-
pact during learning.

4 Evaluation
4.1 Simulator Design
To support training and evaluation of the proposed MARL al-
gorithm, we design a simulator which is calibrated with real-
world data from an EV sharing system.
Simulator Settings. In our simulator, we consider 10 mins
as one timestamp, i.e., one day contains 144 intervals. The
space is partitioned into hexagonal grids, where in total we
have 598 grids covering the entire city. We use a random pro-
cess to simulate the dynamic system expansion, i.e., where
to deploy new stations, and which existing stations should be
closed. To simulate the user demand, we train a neural net-
work which takes the current station network as input, and
generates demand for all online stations. The simulator as-
sumes all the EVs in the system are fully charged at initializa-
tion, and operate with a known charging/discharging model.

When there is a need to reposition an EV, the simulator
computes a monetary reward depending on the square of the
extra distance that the user has to travel [Singla et al., 2015].
We assume the user would accept with a probability p, which
depends on the distance already traveled and the extra dis-
tance to cover. If it is accepted, the simulator updates the
status of order, the EV and the new destination accordingly.
Simulator Calibration. We calibrate our simulator with real
EV sharing data, collected in Shanghai for 12 months. The

data includes both order records and the expansion process of
the station network, i.e., when and where a station was de-
ployed or closed. We also collected key meta-data, including
station locations, numbers of charging docks in each station,
the charging/discharging models of the EVs, etc. As shown in
Fig. 2(a), the patterns of simulated system expansion are very
close to the actual expansion during the year, with Pearson
correlation 0.9957 and p < 1e-10. For demand generation,
we use the calibrated system expansion, and tune the simu-
lator with respect to the Gross Merchandise Value (GMV).
Fig. 2(b) shows that the simulated order data has very similar
properties in GMV with the real data, with Pearson correla-
tion 0.9599 and p < 1e-10.

4.2 Experimental Settings
We compare the proposed approach with the following base-
lines:
- No Rebalancing (NR), which simulates the operation of
EV sharing system without any rebalancing actions.
- Random Rebalancing (RND), where EVs are repositioned
randomly to nearby stations.
- Revenue Greedy (REV), which is similar with RND but
selects the stations with the highest average order values.
- Demand Gap Greedy (DMD), which prefers the stations
with the highest demand gap in the vicinity.
- STRL, which is our implementation of the the state-of-the-
art approach [Li et al., 2018]. It uses multi-agent spatial-
temporal reinforcement learning to reposition shared bikes.

We also consider different variants the inter-grid policy
network πgθ as follows:
- Policy Gradient (ac-PG), which uses the standard policy
gradient technique to determine the inter-grid actions.
- Deep Q Networks (ac-DQN), which uses a deepQ-network
to approximate the action-state values.
- Advantage Actor Critic (ac-A2C), which uses actor and
critic networks to determine actions and estimate the advan-
tage values respectively.
- Proximal Policy Optimization (ac-PPO), which is the pro-
posed policy optimization approach as discussed in Sec. 3.2.

For all the above variants, we use our intra-grid policy net-
work πsφ as described in Sec.3.2 and the same reward func-
tion. In addition, we consider different approaches to deter-
mine the intra-grid actions, while fixing πgθ as PPO:
- PPO + Random (PPO+RND), which randomly selects a
destination station within the grid determined by PPO.
- PPO + Revenue Greedy (PPO+REV), which finds the sta-
tion with the highest average order value as destination.
- PPO + Demand Gap Greedy (PPO+DMD), which selects
destination station as the one with the largest demand gap.

All the competing approaches are implemented with Ten-
sorFlow 1.14.0, and trained with a single NVIDIA 2080Ti
GPU. We evaluate them against two main metrics: i) De-
mand Satisfied Rate (DS), which is the percentage of the
demand satisfied by an algorithm w.r.t total user demand; and
ii) Net Revenue Value (NV), which is calculated as the GMV
subtracts the cost on user incentives.

4.3 Results
Overall Rebalancing Performance. The first set of exper-
iments evaluates the overall rebalancing performance of dif-
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NR RND REV DMD STRL ac-DQN ac-PG ac-A2C ac-PPO PPO+RNDPPO+REVPPO+DMD
DS 74.69% 49.79% 82.15% 81.09% 82.47% 83.50% 83.64% 85.23% 88.79% 53.94% 83.19% 82.88%

∆DS — -24.90% 7.46% 6.41% 7.78% 8.81% 8.95% 10.55% 14.10% -20.75% 8.51% 8.20%
∆GMV — -36.30% 8.25% 3.22% 9.27% 10.76% 11.26% 13.13% 18.13% -29.82% 10.41% 6.22%
∆NV — -47.71%-7.64% -0.48% 1.12% 6.95% 7.37% 8.53% 12.23% -48.40% -3.27% 1.72%

∆|o|/|a| – — 9.28 4.98 2.08 1.14 1.09 1.11 1.12 — 7.82 3.53

Table 1: Performance of the competing approaches in 1) demand satisfied rate (DS), 2) increased demand satisfied rate (∆DS) w.r.t. baseline
NR, 3) increased % of GMV (∆GMV) w.r.t. baseline NR, 4) increased % of net revenue value (∆NV) w.r.t. baseline NR, and 5) # of
increased order per reposition operation (∆|o|/|a|, only showing positive values).

ferent approaches, as shown in Table. 1. We allow the sta-
tion network to expand at the normal speed. We see that
RND won’t help at all while if we are greedy on order val-
ues (REV) we do satisfy more demand by 7%, but the net
revenue drops by 8%. This is because with this algorithm,
the agents tend to excessively reposition EVs to stations with
high order values, while ignoring the cost on user incentives.
We find that on average, REV would satisfy one extra order
at the cost of repositioning 9.3 EVs. On the other hand, DMD
achieves more balanced performance, improving the demand
satisfied rate (DS) by 3%, while maintaining similar net rev-
enue with the baseline NR. The state-of-the-art STRL outper-
forms the baselines, with 8% improvement in DS and 1% im-
provement in NV: on average it repositions 2.1 EVs to satisfy
an extra order. It confirms that by using spatial-temporal RL,
the STRL can better learn the demand pattern across space
and time. However, we see that our approaches significantly
outperforms STRL. For instance, ac-PPO can achieve almost
15% improvement in DS, while obtaining 12% more NV. In
addition we find that ac-PPO only needs to reposition 1.1 EVs
to satisfy an extra order, which is very efficient.
Performance of Inter-grid Policy. This experiment com-
pares the performance of different algorithms in learning the
inter-grid policy πgθ in our action cascading framework. We
only vary πgθ while using the same intra-grid policy network
πsφ later and feed the algorithms with the same reward. We
see that even the weakest performed algorithm ac-DQN can
achieve better performance than STRL by 5% improvement
in DS and 1% in NV, since STRL doesn’t have the mech-
anism of handling station network expansion. On the other
hand, policy gradient (ac-PG) only performs slightly better
than ac-DQN, but is inferior to ac-A2C. The best ac-PPO
(see Sec. 3.2) provides a further improvement of 4% in both
DS and NV, achieving 14.10% better DS and 12.23% NV
than no rebalancing (NR). This projects to approximately
200,000 USD extra revenue per month according to the real
data where the mean order value is 3.8 USD and average num-
ber of orders per month is about 500k.
Performance of Intra-grid Policy. The third set of experi-
ments studies the performance of different ways to determine
the intra-grid actions. We compare ac-PPO with three vari-
ants, where we replace the intra-grid policy network πsφ with
different rule-based strategies. We see that random approach
(PPO-RND) produces worse results than baseline NR. The
PPO-REV is more sensible but as discussed above, it tends to
perform lots of unnecessary repositions, causing undesirable
performance in NV. We observe similar trend in PPO-DMD,
which offers similar DS (8% improvement) and slightly better

NV (2% improvement). As expected, the proposed ac-PPO
performs the best overall, and the gap between ac-PPO and
PPO-DMD is about 10% in NV and 6% in DS. This confirms
that the two sub-actions should be optimized jointly, and the
proposed πsφ outperforms the rule-based baselines.
Impact of System Expansion Dynamics. This set of exper-
iments investigates the impact of system expansion dynamics
to rebalancing algorithms. Here we only consider the state-
of-the-art STRL and the proposed ac-PPO. We adjust the sim-
ulator to allow different speeds of expansion, i.e., on average
how many new stations should be deployed and existing sta-
tions closed per day. We vary the speed from 0 to 3, where 0
means the station network is static, and 3 means station net-
work expands at 3x speed comparing to that in the real world.
As shown in Fig. 3, we see that when there is no dynam-
ics at all, the gap between STRL and ac-PPO is only about
4% in DS, and 6% in NV. However, as the system begins to
expand, the performance of STRL drops immediately. At the
normal speed the gap between STRL and our ac-PPO is 6% in
DS and 11% in NV. In the extreme case where the expansion
speed is 3x, the gap in DS becomes almost 10%, while STRL
can’t increase the NV when the expansion speed is above 1.5.
This is expected as STRL relies heavily on station clustering
which would fail when the system expands, leading to infe-
rior decisions in rebalancing. On the other hand, we see that
the ac-PPO approach is very robust as the expansion speed
increases, confirming that the proposed action cascading can
work well under different levels of expansion dynamics.
Performance vs. Charging Time. In this experiment,
we study a practical problem in the EV sharing industry:
how charging time would affect the rebalancing performance.
Here we fix the EV range at 150km, and vary the charg-
ing time from 5min to 600min. The 5min lower bound
corresponds to battery swapping used in some EVs (e.g.
bit.ly/NIOPower). Fig. 4(a) shows the DS and NV increased
by ac-PPO w.r.t baseline NR at different charging speeds.
Clearly as the charging time increases, the performance gain
drops. This is expected because we can’t perform any reposi-
tion action when an EV is being charged. However, if the EVs
are battery replaceable, the increase in NV is about 3% com-
paring to the standard case with 300min charging time. This
indicates the approach of battery swapping does have its mer-
its and should be considered in practice. On the other hand,
the gap between the fastest and slowest charging is negligible
in DS, and about 3% in NV. This means our ac-PPO is very
robust to different charging speeds: even systems with slow
chargers could enjoy considerable performance boost.
Performance vs. Battery Capacity. The last set of exper-
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Figure 3: Performance of the proposed ac-PPO with STRL under
different speeds of station network expansion.

iments studies the impact of battery capacity to rebalancing
performance. This indicates how EV sharing systems using
different EV models (short range vs. long range) would be-
have under rebalancing strategies. Here we fix the charging
time at 300min and vary the EV range from 75km to 225km.
Fig. 4(b) shows the increased DS and NV of ac-PPO com-
pared to the baseline NV. We see that as the range increases,
the performance gain becomes more significant. This makes
sense because EVs with longer range require less frequent
charging, and often allow more flexible rebalancing: they
could be repositioned to further stations if needed. We also
observe that the performance is more sensitive for EVs with
shorter range, e.g. the performance gain in NV is halved with
75km range. However, even in that case our ac-PPO offers
10% improvement in DS and 5% more NV, which is still bet-
ter than state-of-the-art. On the other hand, we see after the
range increases over 175km, the benefit becomes negligible.

5 Related Work
Shared Mobility System. Recently, shared mobility systems
have attracted extensive interests from various communi-
ties [Jiang et al., 2018; Xu et al., 2018; Furuhata et al., 2013;
Dillahunt et al., 2017]. Comparing to traditional systems [Li
et al., 2018; Singla et al., 2015], systems with EVs are more
complex due to their unique properties, such as range lim-
itations and long charging time. A solid body of work has
looked into various new problems and challenges in this con-
text, such as route planning and optimization [Sarker et al.,
2018; Yuen et al., 2019], charging scheduling [Yan et al.,
2018; Yuan et al., 2019; Wang et al., 2019a], and infrastruc-
ture planning [Sarker et al., 2018; Du et al., 2018]. Our work
complements the existing studies which primarily consider
electric taxis or buses, in that we focus on the EV sharing
systems which operate in a very different way. In addition,
unlike existing work which often assumes the system is static,
we investigate the rebalancing problem in the context of con-
tinuous system expansion.
Rebalancing Shared Mobility Services. Existing work to
address the problem of rebalancing shared mobility services
can be broadly categorized into three types, static reposi-
tion [Liu et al., 2016; Raviv et al., 2013], dynamic reposi-
tion [Ghosh et al., 2016a; Singla et al., 2015; Ghosh et al.,
2017; Li et al., 2018; Wang et al., 2019b; Etienne and Latifa,
2014] and user-based reposition. The first two are conducted
by the system operators while the last is performed by users.
This paper falls into the last category, which solves the re-
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Figure 4: Performance of the proposed ac-PPO algorithm vs. (a)
charging time, and (b) EV fully charged range.

balancing problem by incentivizing the users with rewards to
rent or return vehicles at designated stations [Singla et al.,
2015; Pan et al., 2019]. However, unlike existing solutions
which assume the system is static, we aim to tackle the re-
balancing problem in the presence of dynamically changing
station networks. This is fundamentally different from the
static cases as at different time the candidates for reposition
operations may be different, which can’t be addressed by the
existing rebalancing approaches.
Deep Reinforcement Learning in Mobility. Due to their
distributed nature, many mobility applications such as traffic
control, fleet management and rebalancing [Li et al., 2019;
Lin et al., 2018; Li et al., 2018; Pan et al., 2019] can be
modeled as multi-agent games, which can be well solved by
deep reinforcement learning. For instance, the work in [Li
et al., 2019] addresses the order dispatching problem for ride
sharing systems using mean field MARL, while [Lin et al.,
2018] proposes a contextual MARL framework to tackle the
fleet management problem. Another work in [Li et al., 2018]
considers a spatio-temporal reinforcement learning approach,
to dynamically reposition shared bikes across different areas.
In this paper, we also model the rebalancing problem in EV
sharing system with MARL framework. However, our work
differs from the existing work in that a) we extend the existing
framework to directly model unique properties of EV sharing
such as range limitations and charging time, and more impor-
tantly b) we develop the new action cascading technique to
support continuous system expansion.

6 Conclusion
In this paper, we study the incentive-based rebalancing for
continuous expanding EV sharing systems. We formulate
the rebalancing task as a MARL problem, and solve it us-
ing the proposed policy optimization with action cascading.
We design a simulator to simulate the operation of EV shar-
ing systems, which is calibrated with real data from an actual
EV sharing system for a year. Extensive experiments have
shown that the proposed approach significantly outperforms
the baselines and state-of-the-art in both satisfied demand rate
and net revenue, and is robust to different levels of system ex-
pansion dynamics. We also show that the proposed approach
performs consistently with different charging time and EV
range. For future work, we would like to explore the more
realistic case where the system can be rebalanced by both in-
centivized users and the dedicated staff, while there are het-
erogeneous EV models in operation.
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