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Abstract
Online semi-supervised multi-label classification
serves a practical yet challenging task since only
a small number of labeled instances are available
in real streaming environments. However, the
mainstream of existing online classification tech-
niques are focused on the single-label case, while
only a few multi-label stream classification algo-
rithms exist, and they are mainly trained on la-
beled instances. In this paper, we present a novel
Online Semi-supervised Multi-Label learning algo-
rithm (OnSeML) based on label compression and
local smooth regression, which allows real-time
multi-label prediction in a semi-supervised setting
and is robust to evolving label distributions. Specif-
ically, to capture the high-order label relationship
and to build a compact target space for regres-
sion, OnSeML compresses the label set into a low-
dimensional space by a fixed orthogonal label en-
coder. Then a locally defined regression func-
tion for each incoming instance is obtained with
a closed-form solution. Targeting the evolving la-
bel distribution problem, we propose an adaptive
decoding scheme to adequately integrate newly ar-
riving labeled data. Extensive experiments provide
empirical evidence for the effectiveness of our ap-
proach.

1 Introduction
In multi-label learning, each instance is associated with mul-
tiple labels simultaneously. This is a common learning
paradigm in real-world applications. For example, people in a
social network usually has multiple identities [Wang and Suk-
thankar, 2013], a water body is associated with many func-
tions [Yang et al., 2015], and a web query can be related to
several topics [Tang et al., 2009]. Similar applications can
also be found in many online systems. For example, a micro-
blogging system should suggest tags (labels) for new blogs,
and users can choose tags for their blogs, which serves as a
feedback to improve the performance of tag-suggestion. The
main challenges of such applications are two-fold. (a) The
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real-time demand for accurate predictions when labeled data
and unlabeled data are arriving randomly at a high-speed. (b)
The system should possess the ability to deal with evolving
label distributions. To be specific, the labels of arriving in-
stances in data streams often come randomly and usually as-
sociated with only a few labels compared to the whole label
set in a short time range (e.g., a small-size data chunk). Thus
the underlying label distributions in different time slices usu-
ally vary significantly.

To date, we have witnessed the success of multi-label
learning on static data (see two excellent surveys [Tsoumakas
et al., 2009; Zhang and Zhou, 2014]). One of its sub-fields,
semi-supervised multi-label learning, has gained increasing
attention due to the scarcity of labeled data in real-world ap-
plications. Following the classic taxonomy, semi-supervised
multi-label learning can be either transductive or inductive.
The former only focuses on making predictions on existing
unlabeled data while the latter can generalize to unseen in-
stances. For example, graph-based semi-supervised methods
generally work in a transductive setting by first constructing
a similarity graph among labeled and unlabeled data, and
then predicting the labels of unlabeled instances via label
propagation [Kong et al., 2013; Wang et al., 2013] or man-
ifold regularization [Chen et al., 2008; Jing et al., 2015].
Since requiring all unlabeled data to be available during the
training phase may not be realistic, inductive multi-label
learning is more applicable in a real scenario. Compared
to transductive multi-label learning techniques, methods in
this line should learn multi-label classifiers to predict labels
for unseen instances. For example, the co-training frame-
work for multi-label classification [Zhan and Zhang, 2017;
Xing et al., 2018] constructs two or multiple views of the
data, and then pairwise ranking predictions on unlabeled
data are communicated between view-specific classifiers for
model refinement. Despite their success, most of these al-
gorithms can not be easily transformed into the online semi-
supervised setting. Designing efficient and effective online
semi-supervised multi-label classification algorithm is thus of
significant importance. To the best of our knowledge, there is
only one proposed algorithm [Boulbazine et al., 2018] tar-
geting the online semi-supervised multi-label classification
problem, which constructs a dynamic graph with incoming
data based on the growing neural gas model [Zaki and Yin,
2008].
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In this paper, we propose a new online semi-supervised
multi-label classification algorithm, called OnSeML, based
on local smooth regression and label compression. OnSeML
allows making real-time multi-label predictions in a semi-
supervised setting and is robust to evolving label distribu-
tions. To this end, OnSeML first uses a fixed orthogonal-
initialized encoding matrix to encode the label set and then
learns the local smooth regression model for each incom-
ing instance based on the regularized moving least square
(RMLS) [Chang and Yeung, 2007]. Basically, RMLS is de-
signed for local metric learning, which learns local affine
transformations for each data. We adapt the core idea of
RMLS by approximating the regression function for each in-
coming instance with its neighbors in the already arrived data.
Since we cannot store all historical data, two budgets are set
to bound the model size. Considering the evolving label dis-
tributions, we update the decoding matrix periodically. Ac-
cordingly, two update strategies are proposed, including (a)
the adaptive update strategy; and (b) the adjustment strat-
egy. The first strategy enables real-time predictions for un-
labeled incoming instances, while the latter strategy refines
the label decoder when the prediction accuracy is low. Fi-
nally, extensive experiments demonstrate that OnSeML can
even achieve comparable results compared to offline semi-
supervised multi-label models and online supervised multi-
label models. In summary, the main contributions of this pa-
per are multi-fold:

• We propose OnSeML, a novel locally defined regression
model for semi-supervised multi-label learning on data
streams, and a closed-form solution is derived to guar-
antee its efficiency.

• We use a label encoding scheme to capture label rela-
tionships in a low-dimensional space, and an adaptive
decoding matrix is learned for handling the potential is-
sues of evolving label distributions.

• Our experiments demonstrate that OnSeML outperforms
many state-of-the-art semi-supervised or online multi-
label learning algorithms.

2 Proposed Approach
In this section, we introduce our online semi-supervised
multi-label classification algorithm, which mainly contains
two parts: label compression and local smooth regression. In
the following, we first give the problem statement.

2.1 Problem Statement
Formally, let X = {x1, · · · ,xN} ∈ Rd×N be a multi-label
data stream with labeled and unlabeled instances coming ran-
domly, where d denotes the feature dimension, and xN is the
last seen instance in the data stream. The online classifier
should predict the proper label vector y ∈ Bl (l is the number
of labels) for the unlabeled incoming data. Different from the
classic online semi-supervised learning paradigm [Jia et al.,
2009], which divides the data stream into consecutive batches
and assumes that the first part of data in each batch is labeled.
Here, we have no assumption on the arriving order of labeled
and unlabeled instances, which makes our problem setting
more general.

2.2 Label Compression with Least Square
To capture the high-order label relationship, and to obtain a
compact space for regression, we compress the label set into
a low-dimensional space. To be specific, a fixed orthogonal
encoding matrix P ∈ Rk×l, k < l is initialized by Gram-
Schmidt orthogonalization [Björck, 1967], and then we en-
code the binary label vector of the i-th instance yi via projec-
tion:

hi = Pyi (1)
It is worth noting that we build a regression model for each
instance (e.g., xi) whether it is labeled or not, i.e., fi : xi →
ĥi. After obtaining ĥi, we use the decoding matrix Qt ∈
Rl×k to project ĥi back to the original label space, i.e.,

ŷi = Qtĥi (2)

A similar label compression strategy can be found in [Ah-
madi and Kramer, 2018; Zhou et al., 2017]. However, we do
not use an additional binarization step like sign(hi), since
we employ regression to perform classification. Furthermore,
the binarization step in previous methods tends to yield a sig-
nificant reconstruction error due to the non-linearity.

For a given multi-label data stream, when receiving a set
of labeled instances, i.e., [Xt,Yt] with Xt ∈ Rd×Nt ,Yt ∈
Rl×Nt , the decoding matrix Qt ∈ Rl×k can be obtained by
minimizing the least square error as follows.

min ||Yt −QtPYt||2F , (3)

where || · ||F is the Frobenius norm. We can derive a closed-
form solution for the decoding matrix Qt as follows.

Qt = YtH
T
t (HtHt

T )−1, (4)

where Ht = PYt is the encoded label set.
As aforementioned, since the arriving data at different time

slices usually have different label distributions, in section 2.4,
we will illustrate how to learn an adaptive decoding matrix to
handle this issue.

2.3 Local Smooth Regression
After projecting the label set to a low-dimensional space, the
next step is to build the regression model for each incoming
data to support classification. As a direct application of well-
known linear regression to the classification task, we formu-
late our local smooth regression model as follows.

fi(xi) = Wixi + bi, (5)

where Wi ∈ Rk×d and bi ∈ Rk are the two parameters to
be learned for the i-th instance, whether it is labeled or not.
In principle, to learn the local smooth regression model for
each instance, we need at least two labeled instances, which
is acceptable in the real scenario. Although this method has
to determine a large number of parameters, in the following,
we will illustrate its efficiency and introduce the strategy for
reducing the model size.

In this paper, we extend the regularized moving least
square model (RMLS) [Chang and Yeung, 2007] to the on-
line semi-supervised setting. Here, we first review the idea of
RMLS by its optimization function, which mainly contains
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two parts: approximation and regularization. Firstly, assum-
ing xi is similar to xj in the feature space, and the ground
truth (i.e., the regression target) of xj is given and denoted
as hj , then {xj ,hj} can be used to approximate the i-th in-
stance’s regression function as follows.

If xj ∈ kNN(xi), then fi(xj)→ hj

Next, assume that similar instances usually have similar tar-
gets, which further formulates the regularization as follows.

If xj ∈ kNN(xi), then fi(xi) ≈ fj(xj)

Based on the two parts, the optimization problem of RMLS
is given as:

J(Wi,bi) =
∑
j

θij ||fi(xj)− hj ||2+

λ
∑
j

ωij ||fi(xi)− fj(xj)||2,
(6)

where θij = 1/||xi − xj ||2 is the moving weight, indicat-
ing that to which degree xj can use fi(·) to approximate hj .
Moreover, ωij = exp(−||xi−xj ||2/σ2) with σ > 0 control-
ling the spread, is introduced as a regularization term. It pre-
serves local neighborhood relationships and is widely used in
graph-based semi-supervised learning approaches (e.g., [Zhu
and Goldberg, 2009]). Further, λ is a user-defined parameter
to balance the two terms.

Since an instance’s regression function can be approxi-
mated by its neighbors, we can naturally extend RMLS to
the online semi-supervised setting. For example, the first part
of Eq. (6) can be reformed to the empirical loss of all ar-
rived labeled instances, while the second part serves as the
regularization term by treating the learned regression fj(xj)
as pseudo target. Moreover, considering the intrinsic prop-
erty of online classification, two other objectives should be
achieved, including (1) bounding the model size; and (2) pre-
venting error-propagation.

Note that if we do not set a candidate set for xj , the model
size will grow linearly with the number of all arriving in-
stances, which is infeasible for streaming data. To bound the
model size, we set two budgets BL and BA for labeled in-
stances and arrived instances, respectively. Accordingly, we
set two pre-defined sizes for BL and BA as sL and sA, re-
spectively. If |BL| > sL or |BA| > sA, the budget mainte-
nance strategy should be triggered. Here, we remove the old-
est instance for both cases. To be specific, once the number
of instances in BA or BL overflows its pre-defined size, the
oldest instance in BA or BL will be removed. This strategy
focuses more on recently arrived instances, making it more
robust to concept drift. When the number of instances in
the two budgets reaches the pre-defined size, the computa-
tional complexity for calculating the newly arrived instance’s
regression function will remain the same. Also, we only need
to store the corresponding parameters of the instances in the
two budgets. Therefore, the model size is bounded. We sum-
marize the budget maintenance procedure for local smooth
regression in Algorithm 1.

On the other hand, with more incoming instances, an
emerging problem is how to prevent error-propagation. In

Algorithm 1 Budget Maintenance for BL and BA

1: Receive a new instance x
2: if x is labeled then
3: Add x to BL and BA

4: else
5: Add x to BA

6: end if
7: for B = {BL, BA} do
8: if B overflowed then
9: Remove the oldest instance in B

10: end if
11: end for

the second term of Eq. (6), if some of the past learned regres-
sion functions have a large bias, the regularizer would prop-
agate errors to fi(·). This error-propagation problem comes
naturally with semi-supervised data stream mining since it is
learning-order-sensitive. To ease this problem, we adopt the
active sampling strategy, by further restricting xj in the sec-
ond term to be selected in the nearest neighbors of xi in BA.
With more informative instances for xi to be selected, fewer
errors can be propagated. Finally, we have the following local
smooth regression function for multi-label data streams.

J(Wi,bi) =
∑
j∈BL

θij ||fi(xj)− hj ||2+

λ
∑

j∈BA∩nei(i)

ωij ||fi(xi)− fj(xj)||2
(7)

We remark that Eq. (7) has a closed-form solution. After
substituting Eq. (5) into Eq. (7) and setting B̂i = BA∩nei(i)
for short, we obtain the following objective function.

J(Wi,bi) =
∑
j∈BL

θij ||Wixj + bi − hj ||2+

λ
∑
j∈B̂i

ωij ||Wixi + bi − ĥj ||2,
(8)

where ĥj = Wjxj + bj . Eq. (8) has two parameters Wi

and bi. By setting the derivative of each parameter to 0, we
obtain the following results.

Wi = (Di − h̄ix̄
T
i )(Ci − x̄ix̄

T
i )+

bi = h̄i −Wix̄i

(9)

Here (·)+ means the pseudo-inverse function since the in-
verse of (Ci − x̄ix̄

T
i ) may not exist. x̄i, h̄i, Ci and Di

are denoted as follows.

x̄i =

∑
j∈BL

θijxj + λ
∑

j∈B̂i
ωijxi∑

j∈BL
θij + λ

∑
j∈B̂i

ωij

h̄i =

∑
j∈BL

θijhj + λ
∑

j∈B̂i
ωijĥj∑

j∈BL
θij + λ

∑
j∈B̂i

ωij

Ci =

∑
j∈BL

θijxjx
T
j + λ

∑
j∈B̂i

ωijxix
T
i∑

j∈BL
θij + λ

∑
j∈B̂i

ωij

Di =

∑
j∈BL

θijhjx
T
j + λ

∑
j∈B̂i

ωijĥjx
T
i∑

j∈BL
θij + λ

∑
j∈B̂i

ωij
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2.4 Adaptive Update
In this section, we introduce how to learn an adaptive model
to handle the problem of evolving label distributions. Basi-
cally, we achieve this goal by learning an adaptive decoding
matrix. Eq. (4) gives the solution of label decoder, when
receiving a set of labeled data, which contains an inverse op-
erator withO(k3) computational complexity in general. Thus
it will cause high computation cost if we update the decoding
matrix each time, when a labeled instance arrives. Thereby,
we update Q periodically. To be specific, we initialize the
decoding matrix Q by Q = PT since P is orthogonal. After
that, we update Q when the size of newly arrived labeled data
([Xt+1,Yt+1]) reaches a pre-defined number sQ from time t
to time t+ 1.

Qt+1 =

[
Yt

Yt+1

] [
Ht

Ht+1

]T ([
Ht

Ht+1

] [
Ht

Ht+1

]T)−1

= (YtH
T
t +Yt+1H

T
t+1)(HtH

T
t +Ht+1H

T
t+1)

−1

(10)

Similar to the adaptive update method introduced in
[Venkatesan et al., 2016; Ahmadi and Kramer, 2018], the
above function can be solved incrementally. For simplicity,
we substitute YtH

T
t = QtK

−1
t (the deformation of Eq.(4))

where Kt = (HtH
T
t )−1 into Eq. (10), then the above ex-

pression becomes:
Qt+1 = (QtK

−1
t +Yt+1H

T
t+1)(K

−1
t +Ht+1H

T
t+1)

−1

= Qt + (Yt+1 −QtHt+1)H
T
t+1Kt+1

(11)

where:
Kt+1 = (K−1t + Ht+1H

T
t+1)−1 (12)

We remark that the adaptive update procedure for Q can be
accelerated in the specific case when sQ < k, and k is the
dimension of encoded label space. By using the Sherman-
Morrison-Woodbury formula, we rewrite Eq. (12) as follows.

Kt+1 = Kt −KtHt+1(IsQ +HT
t+1KtHt+1)

−1HT
t+1Kt (13)

Therefore, when sQ < k, by keeping Kt for updating Qt+1,
the time complexity becomes O(s3Q), which is smaller than
directly calculating Qt+1 by Eq. (10). For a better illustra-
tion, we give the pseudo-code in Algorithm 2.

Now, we give the adapt update strategy for the decoding
matrix, which enables real-time prediction. Since we update
Qt to Qt+1 after receiving a pre-defined number of labeled
instances, the prediction is performed by the decoding ma-
trix Qt rather than Qt+1. Considering that the labeled data
are not fully utilized, the idea of error-sensitive adjustment is
proposed to refine the adapt update strategy. From time t to
time t + 1, we train a set of regression models for newly ar-
rived instances. Since some instances are labeled, an average
prediction error δ is computed. Defining an error threshold ε,
if δ ≤ ε, which indicates Qt can fit the data received from
time t to time t+ 1, otherwise, an adjustment strategy will be
triggered. To be specific, a number of recently arrived labeled
instances including Yt+1 will be selected to train a new la-
bel decoder Qt+1, and then it will be used to make the offline
predictions to get the final results. Note that if we directly up-
date Qt+1 by Yt+1, it will be lack of generality since Yt+1

may only contain a part of the label set. We summarize this
strategy in Algorithm 3.

Algorithm 2 Adaptive Update Strategy for Q

Input: Qt, Kt, P
newly arrived label set Yt+1

Output: Qt+1

1: Set Ht+1 = PYt+1

2: if sQ < k then
3: Get Kt+1 via Eq.(13)
4: else
5: Get Kt+1 via Eq.(12)
6: end if
7: Get Qt+1 via Eq.(11)
8: return Qt+1

Algorithm 3 Adjustment Strategy for Q

Input: Qt, Yt+1, error threshold ε
the label set received in the past Ŷt

Output: Qt+1

1: Record the prediction results for data at [t, t+ 1]
2: Compute the average prediction error δt
3: if δt ≤ ε then
4: Get Qt+1 via Algorithm 2
5: else
6: Select label subset Y∗t in Ŷt

7: Training Qt+1 via [Y∗t ;Yt+1] and Eq. (4)
8: end if
9: return Qt+1

Algorithm 4 OnSeML

Input: A multi-label data stream: X;
Regularization parameter λ;
Budget size sL and sA;
The dimension of the encoded label set: k;
The number of labeled instances to update Q: sQ;

Output: The predicted labels for unlabeled data Yp.
1: // Gram-Schmidt orthogonalization
2: Generate an orthogonal matrix P ∈ Rk×l;
3: Initialize Q = PT ;
4: Initialize BL = ∅, BA = ∅;
5: // Training a set of regression models
6: for i = 1→ N do
7: Receive an incoming instance xi

8: Obtain Wi,bi via Eq. (9)
9: ĥi = Wixi + bi

10: ŷi = Qĥi
11: Update BL and BA with Algorithm 1
12: for each time receive sQ labeled data do
13: Update Q via Algorithm 2 or 3.
14: if using Algorithm 3 then
15: Update the classification results
16: end if
17: end for
18: end for
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2.5 Online Semi-supervised Multi-Label Learning
Building upon local smooth regression and the label
encoding-decoding scheme, we summarize the pseudo-code
of OnSeML in Algorithm 4. Firstly, the encoding matrix P
is initialized to be an orthogonal matrix with k independent
components. Then the decoding matrix Q is computed by
P. For each incoming data, we train a regression model on-
line, and then we project its regression result to the original
label space. Meantime, we update two budgetsBL andBA to
bound the model size. If we receive sufficient labeled data or
the prediction error is higher than a given threshold, an adap-
tive update strategy or adjustment strategy will be triggered to
update the label decoder Q, respectively. For label decision,
we get the predicted labels with top K values.

2.6 Time Complexity
The time complexity of OnSeML mainly has two parts. For
learning the regression function of each incoming instance,
the major computation workload is the pseudo-inverse of a d-
by-dmatrix in Eq. (9), with time complexity ofO(d3). As for
adaptive update of the decoding matrix, in the case of sQ < k,
the time complexity can be reduced from O(k3) to O(s3Q) by
using the Sherman-Morrison-Woodbury formula. Assuming
the multi-label data stream contains n data points, the adap-
tive decoder should be updated d n

sQ
e times, and the time com-

plexity of OnSeML is O(nd3 + d n
sQ
e ×min(k3, s3Q)).

3 Experiments
3.1 Experimental Setup
Datasets. We evaluate OnSeML on four real-world
datasets: Enron, Corel5k, Mirflickr and Mediamill. All data
sets employed in our experiments are publicly available on
Mulan1 [Tsoumakas et al., 2009] and Lambda2 [Zhang and
Zhou, 2010]. Table 1 lists the statistics of these data sets.
Comparison Methods. Since the area of online semi-
supervised multi-label learning has rarely been investigated,
for fair comparison, we use the same partition of labeled and
unlabeled instances in the compared approaches3. Here four
multi-label algorithms are used for comparison, including
two transductive multi-label learning algorithms (e.g., TRAM
[Kong et al., 2011] and BSSML [Gönen, 2014]) and two

1http://mulan.sourceforge.net/datasets-mlc.html
2http://lamda.nju.edu.cn/Data.ashx
3Only our approach allows labeled and unlabeled instances to

come randomly, and the label set in different time slices can be dif-
ferent.

Data Domain N d l C

Enron text 1702 1001 53 3.38
Corel5k image 5000 499 374 3.52
Mirflickr image 25000 150 24 4.72
Mediamill video 43097 120 101 4.38

Table 1: Statistic information of the data sets. Here N is the number
of instances, d indicates the feature dimension, l is the number of
labels, and C is the label cardinality.

online supervised classification algorithms. One is Online-
BR (OBR) implemented by incremental support vector ma-
chine [Laskov et al., 2006], and another one is OSML-ELM
(OELM) [Venkatesan et al., 2016], which is an online super-
vised neural network classifier for multi-label classification.

Parameter Setting. For OnSeML, the budget size sL and
sA are set to bound the model size. For larger data sets,
e.g. Mirflickr and Mediamill, we simply set sL = 0.05N
and sA = 0.1N ; while for small data sets like Enron
and Corel5k, we leave the model size unbounded. For the
second term in Eq. (7), the number of nearest neighbors
is set to 10. The regularization parameter λ is tuned in
{0.0001, 0.001, 0.1}. As for k and sQ, they are largely de-
cided by the size of the data set. Generally, we set k = d0.1de
and tuning sQ in the range of {5, 10, 20, 40}. For TRAM,
BSSML and OBR, we use their default parameter settings.
For OELM, we tune the number of hidden layer neurons be-
tween {100, 200, 300, 400, 500} and the batch size from 10
to 100 with the step size 10.

Evaluation Metrics. To evaluate the performance of On-
SeML and the comparison methods, we use three widely-
adopted metrics, including Precision at top-K (P@K, e.g.,
P@1, P@3, and P@5), Average Precision (AvgPre) and
Micro-F1 (MicF1). The first two metrics are ranking based
performance measure. P@K calculates the precision for top-
K predicted labels, while AvgPre evaluates the average frac-
tion of labels ranked higher than a particular true label. The
two metrics are proper measures for multi-label algorithms
when they make label decision based on a ranking list, e.g.,
BSSML, OBR, and OnSeML. To further evaluate the perfor-
mance of classification, we report MicF1, which calculates
an overall F-1 score among labels. We set 10% or 20% of
the instances to be labeled, and the rest to be unlabeled. We
run each experiment 10 times by randomly split the data as
their original settings. The standard deviation is omitted due
to space limitation, and the mean value of each evaluation
metric is reported.

3.2 Performance Evaluation
In Table 2, we summarize the multi-label classification results
on different data sets in terms of P@K, AvePre, and MicF1.
Compared to others, OnSeML with the adaptive-update strat-
egy and the adjustment strategy generally ranks the first or the
second in prediction performance. Interestingly, by using the
adjustment strategy, OnSeML gains better prediction perfor-
mance on Enron and Corel5k. While on Mirflickr and Medi-
amill, the adaptive update strategy yields better performance.
Considering that the label set of Mirflickr and Mediamill is
small and instances coming in different time slices could have
similar label distributions, the adjustment strategy may over-
fit the recently arrived data. Furthermore, we observe that
TRAM and OELM achieve the worst results in most cases,
while BSSML and OBR are sometimes inferior. To sum up,
OnSeML generally achieves the best or the second-best re-
sults on the four benchmark datasets. We attribute this supe-
riority to the well-approximated local smooth regression and
the dynamic encoding-decoding scheme.

Next, to experimentally justify the effectiveness of the
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Data Metric
10% 20%

TRAM BSSML OBR OELM OnSeML TRAM BSSML OBR OELM OnSeML
Adapt Adjust Adapt Adjust

Enron

P@1 0.455 0.544 0.536 0.518 0.555 0.640 0.539 0.540 0.545 0.549 0.587 0.697
P@3 0.401 0.469 0.480 0.378 0.449 0.505 0.433 0.474 0.494 0.390 0.484 0.522
P@5 0.244 0.396 0.441 0.249 0.369 0.401 0.264 0.391 0.447 0.269 0.386 0.410

AvePre 0.362 0.368 0.439 0.372 0.344 0.417 0.395 0.369 0.445 0.384 0.367 0.426
MicF1 0.387 0.460 0.526 0.430 0.441 0.494 0.428 0.462 0.534 0.443 0.461 0.502

Corel5k

P@1 0.147 0.221 0.223 0.182 0.225 0.217 0.219 0.228 0.235 0.200 0.242 0.264
P@3 0.094 0.205 0.188 0.138 0.173 0.198 0.167 0.206 0.198 0.110 0.189 0.216
P@5 0.064 0.171 0.155 0.101 0.144 0.176 0.111 0.173 0.163 0.069 0.157 0.185

AvePre 0.059 0.121 0.116 0.088 0.102 0.143 0.093 0.122 0.121 0.092 0.116 0.146
MicF1 0.090 0.201 0.182 0.142 0.169 0.209 0.155 0.202 0.191 0.144 0.185 0.218

Mirflickr

P@1 0.326 0.417 0.407 0.331 0.442 0.422 0.327 0.441 0.396 0.344 0.445 0.431
P@3 0.386 0.395 0.358 0.166 0.406 0.396 0.388 0.396 0.367 0.178 0.406 0.402
P@5 0.304 0.369 0.315 0.100 0.362 0.367 0.304 0.370 0.336 0.108 0.365 0.368

AvePre 0.451 0.449 0.401 0.366 0.447 0.451 0.450 0.449 0.413 0.372 0.455 0.451
MicF1 0.397 0.420 0.349 0.211 0.416 0.417 0.400 0.421 0.363 0.225 0.419 0.418

Mediamill

P@1 † 0.803 0.783 0.514 0.823 0.804 † 0.804 0.794 0.533 0.811 0.804
P@3 † 0.612 0.632 0.469 0.659 0.640 † 0.613 0.641 0.487 0.664 0.652
P@5 † 0.481 0.540 0.388 0.507 0.497 † 0.481 0.542 0.382 0.509 0.498

AvePre † 0.499 0.526 0.482 0.532 0.521 † 0.499 0.528 0.503 0.532 0.525
MicF1 † 0.513 0.534 0.511 0.538 0.530 † 0.512 0.539 0.534 0.540 0.536

Table 2: The performance of different algorithms on 10% and 20% labeled data. “Adapt” and “Adjust” refers to the adaptive update strategy
and the adjustment strategy, respectively. Best results are marked in bold, and the second-bests are underlined. Results marked with † indicate
the failure due to runtime demands (> 24hours).
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Figure 1: Prediction performance tested on arriving unlabeled in-
stances. The x-axis corresponds to the time that the label decoder
should be updated. The colored lines present the performance of
different strategies used by OnSeML, including adapt, adjust, fixed
label decoder, which is learned by 10/20% labeled instances, and
fixed label encoder initialized by P.

adapt update strategy and the adjustment strategy, we add two
strategies by fixing the labeled decoder. Explicitly, in one
strategy, the labeled decoder is initialized by a part of the la-
beled instances, while in another strategy, the labeled decoder
is only decided by P. We record the prediction performance
(indicated by MicF1) for each time the labeled decoder is up-
dated. As shown in Figure 1, OnSeML with the two pro-
posed strategies achieves better results compared to the case
when OnSeML uses a fixed label encoder. Moreover, after
receiving enough labeled instances, the performance of On-
SeML begins to stabilize, which demonstrates its robustness
towards the online semi-supervised multi-label classification
problem.

4 Related Work
In this section, we briefly review some related work on
semi-supervised multi-label learning. Currently, most of the
semi-supervised multi-label learning algorithms are under the

transductive setting. For example, TRAM [Kong et al., 2011]
is a classical semi-supervised multi-label learning algorithm
based on label propagation, while BSSML [Gönen, 2014] is
a Bayesian algorithm which couples linear dimensionality re-
duction and linear binary classification in a semi-supervised
fashion. As to inductive multi-label learning, iMLCU [Wu
and Zhang, 2013] is a representative method by adapting
S3VM [Zhu and Goldberg, 2009], and COINS [Zhan and
Zhang, 2017] is proposed based on co-training. To model la-
bel on-the-fly, inductive methods usually assume that unseen
labels are negative, then pairwise ranking is incorporated to
learn the base classifiers. Thus inductive methods generally
have a high time complexity and limited scalability.

5 Conclusion
In this paper, we propose OnSeML, a novel online semi-
supervised multi-label classification method based on lo-
cal smooth regression and label encoding-decoding. This
method enables real-time prediction and possesses the abil-
ity to deal with evolving label distributions. Specifically, On-
SeML learns a locally defined regression function for each
incoming instance, and a closed-form solution is derived to
ensure its efficiency. To bound the model size, two budgets
are set. Furthermore, to deal with the evolving label distribu-
tion problem, we propose an adaptive label decoder and two
update strategies are introduced. Finally, experiments demon-
strate the effectiveness and robustness of the proposed algo-
rithm.
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[Björck, 1967] Åke Björck. Solving linear least squares
problems by gram-schmidt orthogonalization. BIT Numer-
ical Mathematics, 7(1):1–21, 1967.

[Boulbazine et al., 2018] Samira Boulbazine, Guénaël Ca-
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