
Potential Driven Reinforcement Learning
for Hard Exploration Tasks

Enmin Zhao1,2 , Shihong Deng1, Yifan Zang1,2, Yongxin Kang2,1, Kai Li1 and Junliang Xing1,2∗

1Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

{zhaoenmin2018, shihong.deng, zangyifan2019, kangyongxin2018, kai.li, junliang.xing}@ia.ac.cn

Abstract
Experience replay plays a crucial role in Reinforce-
ment Learning (RL), enabling the agent to remem-
ber and reuse experience from the past. Most pre-
vious methods sample experience transitions us-
ing simple heuristics like uniformly sampling or
prioritizing those good ones. Since humans can
learn from both good and bad experiences, more
sophisticated experience replay algorithms need to
be developed. Inspired by the potential energy in
physics, this work introduces the artificial potential
field into experience replay and develops Potential-
ized Experience Replay (PotER) as a new and ef-
fective sampling algorithm for RL in hard explo-
ration tasks with sparse rewards. PotER defines a
potential energy function for each state in experi-
ence replay and helps the agent to learn from both
good and bad experiences using intrinsic state su-
pervision. PotER can be combined with different
RL algorithms as well as the self-imitation learning
algorithm. Experimental analyses and comparisons
on multiple challenging hard exploration environ-
ments have verified its effectiveness and efficiency.

1 Introduction
A fundamental challenge in Reinforcement Learning (RL) is
how to trade-off between exploration and exploitation. The
agent has to decide whether to greedily exploit what it al-
ready knows to maximize the expected cumulative reward or
explore the unknown environment to gather more informa-
tion and find a potentially better policy. Though simple ex-
ploration strategies such as ε-greedy action selection [Mnih et
al., 2015] or Gaussian control noise [Mnih et al., 2016] using
experience replay [Mnih et al., 2015] work well on a wide
range of tasks, they are inefficient in hard exploration tasks
with sparse rewards such as the Atari games Montezuma’s
Revenge and Freeway. On these hard exploration tasks, stan-
dard RL algorithms perform poorly without even finding a
single positive reward.

For the hard exploration tasks in RL, many previous meth-
ods try to leverage past good experiences to help the agent
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learn more effectively and efficiently. Prioritized Experience
Replay (PriER) [Schaul et al., 2016] introduces prioritizing
experiences to replay import transitions more frequently. Im-
itation learning methods [Aytar et al., 2018; Pohlen et al.,
2018] develop algorithms that utilize the good experiences
from the expert demonstrations. However, expert demon-
strations are often not available in practical applications. In
this case, curiosity-based methods [Bellemare et al., 2016;
Pathak et al., 2017] introduce some notions of curiosity or
uncertainty as an exploration bonus to guide the learning pro-
cess. However, such exploration methods still struggle with
hard exploration games such as Montezuma’s Revenge.

In another way, Hindsight Experience Re-
play (HER) [Andrychowicz et al., 2017] and
its extension methods [Zhao and Tresp, 2018;
Ren et al., 2019] encourage the agent to learn from the
states it has encountered. They set random, high trajectory
energy or valuable states as goals and perform well in robotic
manipulation tasks. However, unlike robotic manipulation
tasks, agents lose lives quickly in hard exploration tasks like
Montezuma’s Revenge, existing experience replay methods
do not consider the episodes or states that might cause
agents’ death. When the desired goal-states may lead to
agents’ death, learning such strategies will not help achieve
the task goal.

To deal with the above problems, we argue that not only
the past good experiences but also the bad ones are beneficial
for the learning of the agent’s policy. To realize the above
argument, one thing the agent must know is how to select ap-
propriate and safe goals. Inspired by the Artificial Potential
Field (APF) model used in the robot navigation task for ob-
stacle avoidance, we define a potential exploration function
for the hard exploration tasks. Then we introduce this poten-
tial exploration function into the experience replay methods
and propose Potentialized Experience Replay (PotER). It is a
new experience replay algorithm that automatically generates
safe learning goals based on existing models and random ex-
ploration regardless of the reward existence. When no reward
is obtained, the goals generated by our PotER can help the
current RL model find a reasonable policy. Meanwhile, when
new rewards are obtained, the goals generated by PotER can
effectively help the current Self-Imitation Learning (SIL) [Oh
et al., 2018] model imitate both some good and bad experi-
ences. To summarize, the main contributions of this work are
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in threefold:
• We introduce the ideas from the APF into the RL experi-

ence replay sampling procedure and potentialize all the
states in the experience replay, which provides a general
mechanism to enable the agent to learn effective policies
from both the good experiences and the bad ones.

• We develop a new RL method by incorporating the
proposed Potentialized Experience Replay with differ-
ent RL algorithms, which naturally exhibits behavior in
a curriculum learning manner to accomplish sub-task
goals from easy to hard.

• We propose to further enhance the developed RL al-
gorithms equipped with Potentialized Experience Re-
play using Self-Imitation Learning, which further im-
proves the learning efficiency when doing hard explo-
ration tasks with sparse rewards.

We evaluate the proposed PotER method with different RL
algorithms on hard exploration tasks like Montezuma’s Re-
venge. Extensive experimental analyses and comparisons
demonstrate the effectiveness of the instantiated learning al-
gorithms. The source code of this work is available at https:
//github.com/ZhaoEnMin/PotER.

2 Related Work
This section introduces some related works on dealing with
the hard exploration tasks, including experience replay, ef-
fective exploration, and learning from demonstrations. The
APF that inspired this work is also introduced in the last.
Experience replay. The success of DQN [Mnih et al.,
2015] and its variants owe much to the usage of expe-
rience replay buffer. Actor-critic RL algorithms such as
A2C/A3C [Mnih et al., 2016] and PPO [Schulman et al.,
2017] are known for their sampling inefficiency. Prioritized
Experience Replay [Schaul et al., 2016] improves the sam-
ple efficiency by prioritizing experiences based on TD-errors.
It is a stochastic sampling method that interpolates between
the pure greedy prioritization and the uniform random sam-
pling, which gives different weights to transition tuples with
TD-errors. Many existing methods either require importance
sampling [Wang et al., 2017; Gruslys et al., 2018] or are lim-
ited to continuous control [Lillicrap et al., 2016]. In another
way, the Hindsight methods [Andrychowicz et al., 2017;
Zhao and Tresp, 2018; Ren et al., 2019] encourage the agent
to learn from the states it encountered. For hard exploration
Atari games, Hindsight methods often fail in achieving the fi-
nal goal, since many internal goals lead the agent to lose lives,
and it is not appropriate to learn strategies for such goals.
Effective exploration. Various approaches have been pro-
posed to improve the exploration effectiveness in RL
tasks with sparse rewards, including count-based explo-
ration [Bellemare et al., 2016; Tang et al., 2017] and
prediction-based exploration [Pathak et al., 2017; Savinov et
al., 2019; Burda et al., 2019]. State visitation counts have
been investigated to reduce the agent’s uncertainty by visiting
states or state-action pairs with low visit-counts. For RL tasks
with large state space, a pseudo count can be constructed us-
ing a density model over the state space [Bellemare et al.,

2016], or cluster occurrence counts with locality-sensitive
hashing to cluster states [Tang et al., 2017]. Also, deep suc-
cessor representation[Machado et al., 2018] explicitly tries to
lead the agent to states in the past, which are rare. Another
class of exploration methods is based on the prediction er-
ror for a problem related to the agent’s transitions. Directly
predicting the next observations or their embeddings [Pathak
et al., 2017; Stadie et al., 2015] suffers from the noisy TV
problem in stochastic or partially observable environments.
Recently, some works addressing this noisy TV problem in
prediction-based exploration have been proposed, and the no-
table ones are episodic curiosity through reachability [Savi-
nov et al., 2019] and random network distillation [Burda et
al., 2019].
Learning from demonstrations. DQfQ [Hester et al.,
2018] and Q-filter [Nair et al., 2018] attempt to learn from
expert demonstrations. SIL [Oh et al., 2018] uses a replay
buffer filled with past good experiences and learns to imi-
tate what the agent has experienced but has not yet learned
without using expert demonstrations. However, it is too hard
for the agent to find some good experiences to imitate when
the environment is complex, and the rewards are sparse. We
propose a potential function to evaluate the experience replay
buffer to help the agent set goals. When there is no reward,
the agent can achieve this goal better through RL and SIL.
When rewards are obtained, potential field function marks
the important states, which lead to rewards as goals. In this
way, agents can learn successful policy by imitating the ex-
periences reaching the important states even the environment
does not give a reward, which is commonly ignored by previ-
ous SIL methods.
Artificial potential field. APF [Khatib, 1986; Rimon and
Koditschek, 1992] is a classical obstacle avoidance approach
used for manipulators and mobile robots. The robot can form
a planned path according to the designed gravitational field
and repulsive force field, and avoid obstacles through the
designed gravity and repulsive force to achieve the ultimate
goal. APF has been mainly used in studies related to robots
and path planning. To the best of our knowledge, there is no
previous work that introduces the idea of APF into the hard
exploration RL tasks.

3 Preliminaries
3.1 Reinforcement Learning
For the standard RL formalism, an environment is described
by a set of states S = {st}, the initial state s0, a set of ac-
tions A = {at}, a reward function r : S×A → R, a tran-
sition probability model p(st+1|st, at), and a discount factor
λ ∈ [0, 1]. After executing an action ak = π(st) at each task
state st using a deterministic policy π, the agent will get a
reward r(st, ak) and a new state st+1. State st+1 is sampled
from the distribution p(·|st, at). The return is the sum of fu-
ture rewards Rt =

∑∞
t=1 λ

t−1r(st+1|st, ak). Agents need
to maximize its excepted return Esi [R0|si]. The Q-function
is Qπ = E [Rt|st, at]. Denote the optimal Q-function as Q∗,
which can be obtained by the Bellman equation:

Q∗(s, a) = Es′∼p(·|st,at)[r(s, a) + λmax
a′∈A

Q∗(s′, a′)]. (1)
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3.2 Deep Q Networks and Experience Replay
Deep Q-Networks (DQN) [Mnih et al., 2015] is an off-
policy RL algorithm for discrete action spaces by learning
to approximate the Q-function using a deep neural network.
The Q-function is defined as πQ(s) = argmaxa∈AQ(s, a).
Experience Replay is firstly proposed for DQN by buffer-
ing a certain size of the generated episodes into the com-
puter memory. During training the agent, the stored transi-
tion tuples (st, at, rt, st+1) are uniformly sampled to form a
mini-batch to update the network parameters, with the loss
function defined as L = E(Q(st, at) − yt)

2, where yt =
rt + λmaxa′∈AQ(st+1, a

′).

3.3 Artificial Potential Field
Artificial potential field (APF) [Rimon and Koditschek, 1992]
is a common approach in the robot path planning task, which
uses the potential energy function of the planned object
through the artificial construction of each state in the space.
Denoting the agent position as x, the artificial potential en-
ergy U(x) consists of two parts, the attractive potential en-
ergy Uatt(x) and the repulsive potential energy Urep(x):

U(x) = Uatt(x) + Urep(x), (2)

where Uatt(x) and Urep(x) are respectively denoted as:

Uatt(x) =
1
2kaρ

2
goal(x), (3)

Urep(x) =

{
1
2kr(

1
ρobst(x)

− 1
ρo
)2, ρ(x) ≤ ρo,
0, ρ(x) > ρo.

(4)

The parameters of APF include the attractive parameter ka >
0 and the repulsive parameter kr < 0. The terms ρgoal(x) and
ρobst(x) are usually modeled using the Euclidean distance
from the current position x to the goal position and the nearest
obstacle position, respectively. The scalar ρo is the influence
distance of the repulsive potential field.

4 Potential Driven Reinforcement Learning
In many hard exploration tasks, the sparse task rewards are
not sufficient for the agent to learn effective strategies to ac-
complish the task objectives. The agent needs to explore dif-
ferent task states in the environment to see if they can lead to
the final objective. Inspired by the studies in robot navigation,
we introduce the ARF [Rimon and Koditschek, 1992] into RL
for hard exploration tasks and propose a potential exploration
function to model the feasibility of different task states in ac-
complishing the final task objective. We then potentialize the
experience replay using this potential exploration function to
make the sampling process in RL more efficient. The PotER
can be incorporated into different RL algorithms. We exem-
plify this using an on-policy RL algorithm with self-imitation
learning in the last part of this section.

4.1 Potential Exploration Function
In hard exploration tasks like the Atari 2600 games, we de-
note the task state as s, which can be the visual input of the
game. When the agent collects some episodes through the

interactions with the environment. We sample the states of a
trajectory in the experience replay buffer and denote a state
trajectory with m states as T=(s0, s1, . . . , sm). A trajectory
set with n trajectories is denoted as T = {T0,T1, . . . ,Tn}.
In the studies of the artificial potential field for robot naviga-
tion, the distance to the goal state is often used to model the
potential of one task state. For hard exploration tasks, how-
ever, the goal state is not knowable a priori, and the distance
between two states often cannot be computed directly. Thus,
we propose to use the initial task state and the obstacle (death)
states as some anchor points to measure the potential of one
state. A state with a longer distance to the initial state and
all the obstacle (death) states is likely to have good potential
towards the task goal.

To calculate the distance between two states, we record
the trajectories during exploration and update the distance be-
tween two states as the shortest distance along different tra-
jectories. Denoting dT(si, sj) as trajectory-level distance be-
tween si and sj , the task-level distance between these two
states is estimated as:

d(si, sj) = min
Tk∈T

dTk
(si, sj). (5)

With the above estimation of the distance function, we model
the potential exploration energy Upe(s) of each state. The
attractive potential exploration energy of one state s is mod-
eled using the distance to the initial state, i.e., Uatt(s) =
d(s, sinit). The repulsive potential exploration energy of one
state s is modeled using the distance to the nearest obstacle
(death) state, i.e., Urep(s) = d(s, sobst). The scalar do is the
influence distance of the repulsive potential field. Unlike the
APF in robot navigation, the states in hard exploration tasks
cannot be treated equally since the states do not appear with
the same probability in the experience replay buffer. Inspired
by Ant Colony Optimization [Dorigo and Birattari, 2010] that
ants go to places with more pheromones, we let the potential
energies be proportional to the state occurrence probability
p(s), which can be estimated using the frequency in the ex-
perience replay buffer. The potential exploration function of
one state is finally model as:

Upe(s) = Uatt(s) + Urep(s), (6)

where
Uatt(s) =

1
2p(s)kad

2(s, sinit), (7)

Urep(x)=

{
1
2p(s)kr(

1
d(s,sobst)

− 1
do
)2, d(s, sobst)≤do,
0, d(s, sobst)>do.

(8)

4.2 Potentialized Experience Replay
The potential exploration function can be naturally incorpo-
rated into the experience replay to give each state in the ex-
perience replay a measure of importance. The potentialized
experience replay (PotER) provides more flexibility for an
RL algorithm in sampling from the experience replay. Un-
like the prioritized experience replay [Schaul et al., 2016],
which gives higher TD error transitions higher importance,
PotER provides a mechanism for a RL algorithm to learn
from both the good experiences (i.e. the attractive potential
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Figure 1: PotER works in Montezuma’s Revenge. The agent uses
random explorations from the initial state (left). By setting the inter-
nal goals (middle) using PotER, the agent learns the optimal policy
more easily (right).

exploration energy Uatt(s)) and the bad ones (i.e. the repul-
sive potential exploration energy Urep(s)). PotER can also
help RL algorithms to set internal goals for exploration when
there is no external reward. Unlike the hindsight experience
replay [Andrychowicz et al., 2017], multiple internal goals
can be set by PotER in a more meaningful order. Next, we
will give it more explanations. It is well accepted that hu-
man learns much better when the training examples are not
randomly presented but organized in a meaningful order, e.g.,
gradually illustrating more concepts from easy to hard. When
incorporating this principle into machine learning, the cur-
riculum learning strategy [Bengio et al., 2009] demonstrates
promising results in supervised learning of deep neural net-
works. The PotER can be used to help the agent to form valu-
able internal goals by itself, which can be regarded as a form
of curriculum learning.

At the beginning of the exploration, the agent uses ran-
dom explorations from the initial state to sample transitions
to construct the experience reply. Then PotER calculates the
potential exploration function value for each collected state.
The state with better potential and external rewards will get
more attention in the next exploration. During exploration,
for the explored trajectory set in current timestamp T (t), the
agent selects the state with the maximal potential as the inter-
nal goal for next exploration, i.e.,

s
(t)
goal = argmax

s∈T,T∈T (t)

(Upe(s)), (9)

When new sample transitions are collected into the experi-
ence replay buffer, if some old sample transitions need to be
removed from the experience replay buffer, the states with the
largest potential are guaranteed to be kept in the current re-
play buffer. With this kind of replay buffer management, the
internal goals set in different timestamps by PotER satisfy the
following relationships:

Upe(s
(0)
goal) ≤ Upe(s

(1)
goal) ≤ · · · ≤ Upe(s

(t)
goal) ≤ · · · . (10)

where the internal goal sequence Upe(s
(0)
goal), Upe(s

(1)
goal), · · ·

now forms a curriculum [Bengio et al., 2009].
Figure 1 shows an example that how PotER works in

Montezuma’s Revenge when the agent does not learn any pol-
icy. The goal-states PotER set are basically the same as the

Algorithm 1: PotER based RL with SIL.
Initialize RL parameter θ, number of iterations used to
set goal N , potentialized replay buffer ε, goals G,
timestamp tgoal = 0.

while not complete do
for iteration=1, 2, . . . N do

for each step do
Execute an action
(st, at, rt, st+1) ∼ πθ(at|st)

Store transition ε← ε ∪ (st, at, rt, st+1)

Set s(tgoal)
goal based on Eq. (9)

Update goals G ← G ∪ s
(tgoal)
goal

tgoal = tgoal + 1
Clear potentialized replay buffer ε← ∅
while πθ can not get sgoal in most cases do

Perform RL and SIL algorithms

goals set by humans players and hierarchical imitation learn-
ing method using expert demonstrations [Le et al., 2018]. If
the RL algorithms learn how to get all the previous goal-
states, PotER sets the last goal-state as the initial state and
find the state with the maximum potential relative to the ini-
tial state as the next goal-state.

4.3 PotER in RL with Self-imitation Learning
The PotER can be incorporated into different RL algorithms
to improve its sampling efficiency and effectiveness. In the
experiments, we will take the on-policy baseline algorithm
A2C [Mnih et al., 2016] as an example. To further speed
up learning efficiency, more sophisticated learning strategies
can also be incorporated. We adopt self-imitation learning
(SIL) [Oh et al., 2018] as another example combined with
PotER to further verify the generalization ability of PotER.
With self-imitation learning, the agent can quickly imitate
both the past good episodes and some internal goals, which
can gradually reach the final task goals. Figure 2 shows an
example of how agents imitate experiences when there is no
reward obtained. An overall description of PotER based RL
with SIL is shown in Algorithm 1.

Figure 2: An example shows how agents imitate experiences when
there is no reward obtained.
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Figure 3: A simple maze (left) and the policy which is obtained by
the tabular Q-learning with PotER (right). There are four actions in
this environment: up, down, left, and right. The red square refers
to the initial state, the black squares refer to the obstacles and the
yellow circle refers to the state which contains a reward (set to 1). If
the agent encounters the obstacles, it will lose its life and the envi-
ronment will be reset.

5 Experiments
To verify the efficiency of the PotER sampling algorithm, we
evaluate its performance on two separate domains: 1) a sim-
ple maze with discrete state space (Fig. 3 left) and 2) the hard
exploration Atari games with continuous state space.

5.1 Ablation Studies
We take the maze and the first room in Montezuma’s Revenge
as the experimental environments for our ablation studies.
The main hyper-parameters of our algorithm are the num-
ber of iterations used to set goals N , the influence distance
of the repulsive potential field do, the attractive parameter ka
and the repulsive parameter kr. Because in different games,
agents have different average steps to lose health, we setN as
50 to ensure there are not too many interactive samples and
make our method suitable for most situations. Because our
algorithm’s core idea is to avoid death, we set kr to −∞ and
ka to any positive value. Such parameters can help agents try
their best to avoid setting goal-states around the obstacles.

We conduct the following experiments on do. The agent
loses its life in at least 4 and 32 time steps in the maze and
the first room of Montezuma’s Revenge, respectively. Table 1
shows the mean time steps to obtain 0.95 success rate in maze
environment when do ∈ {0, 1, 2, 3, 4} and Table 2 shows the
mean time steps to get the first reward in the first room of
Montezuma’s Revenge when do ∈ {0, 10, 20, 30}. We use the
best-performing do for the following experiments. In specific,
for the maze games, we set do to 1. For the Atari games, we
set do to 10.

5.2 Maze
The maze is a commonly used environment in the RL re-
search community. The maze environment on the left of

do 0 1 2 3 4

Performance 2.81× 104 2.42× 104 2.74× 104 3.86× 104 7.42× 104

Table 1: Mean time steps to obtain 0.95 success rate in the maze
environment. The results are reported by using 3 random seeds.
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Q+Count
Q+PotER

Figure 4: The success rate of the Q, Q+Count and Q+PotER al-
gorithms in the maze environment. The learning curve shows the
success rate (y-axis) of 3 different seeds at each time step (x-axis).

Fig. 3 is designed to verify that PotER can be well com-
bined with tabular RL algorithms. We compare the tabular Q-
learning with our PotER (Q+PotER) with the vanilla tabular
Q-leaning (Q) and the tabular Q-learning with Count based
exploration (Q+Count) [Strehl and Littman, 2008]. In spe-
cific, Q+Count gives an exploration bonus reward rexp =

β/
√
N(s) for each state, where N(s) is the visit count of

state s and β is a hyper-parameter. In our experiment, we set
β to 0.01. Fig. 4 shows the success rate of the Q, Q+Count,
and Q+PotER algorithms in the maze environment.

It is clear that the baseline Q takes a long time to learn a
good policy. Q+Count learns faster than Q because the explo-
ration bonus reward rexp helps the agent explore more effec-
tively. Compared with Q and Q+Count, the Q+PotER algo-
rithm learns fastest. The reason for this is Q+PotER helps the
agent set valuable and safe goals like the blue one in Fig. 3
if the agent does not get any reward. Meanwhile, once the
agent gets a reward by chance, Q+PotER helps exploit such
good experiences by setting goals like the green one in Fig. 3
and quickly learns to get to the final goal. These experimental
results demonstrate that PotER helps agents form a curricu-
lum automatically and make good use of experiences.

5.3 Hard Exploration Atari Games
In the Atari experiments, we convert the 84 × 84 input RGB
frames to gray-scale images. The input of the convolutional
neural networks in DQN [Mnih et al., 2015] and A2C [Mnih
et al., 2016] are the last 4 stacked gray-scale frames. For the
SIL and SIL+PotER algorithms, we perform four SIL updates

do 0 10 20 30

Performance 2.9× 106 2.38× 106 2.59× 106 2.73× 106

Table 2: Mean time steps to get the first reward in the first room of
Montezuma’s Revenge. The results are reported by using 3 random
seeds.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2100



0 100 200 300 400 500 600

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

SIL+PotER
SIL
A2C+PotER
A2C
DQN+PotER
DQN+PriER
DQN

Figure 5: The learning curves in Montezuma’s Revenge to get two
rewards. The comparison algorithms include DQN, DQN+PriER,
DQN+PotER, A2C, A2C+PotER, SIL and SIL+PotER. The learning
curve shows the average score (y-axis) of 3 different seeds at each
iteration (x-axis). Each iteration represents 4K time steps.

in training each model.
We use the first room of Montezuma’s Revenge as the ex-

perimental environment to verify our PotER can be well com-
bined with the Deep RL and the SIL algorithms. In particular,
for the off-policy algorithms, we test DQN, DQN with Priori-
tized Experience Replay (DQN+PriER) [Schaul et al., 2016],
and DQN with our PotER (DQN+PotER). For the on-policy
algorithms, we test A2C [Mnih et al., 2016], A2C with PotER
(A2C+PotER) , A2C with SIL (SIL) [Oh et al., 2018] and
A2C with both SIL and our PotER (SIL+PotER). The learn-
ing curves in the first room of Montezuma’s Revenge to get
two rewards are shown in Fig. 5. Each reward is adjusted to
1 to observe the learning speed of different methods easily.

As shown in Fig. 5, DQN, DQN +PriER, and A2C fail to
learn a better-than-random policy. In contrast, DQN+PotER
learns a policy better than the random policy, A2C+PotER
learns a policy which obtains the first reward, SIL learns
a policy which obtains both two rewards and SIL+PotER
learns faster by incorporating PotER. The experimental re-
sults validate that PotER is very beneficial for RL algorithms
in exploration tasks. Finally, the results of A2C+PotER and
SIL+PotER show that PotER and SIL are complementary and
can cooperate to enhance the performance further.

We use visualization to further verify that PotER gives a
way to set up goals in both cases when there is a new reward,
and when there is no reward at all. Fig. 6 shows the initial
state and the 9 goal-states, which are automatically discov-
ered by PotER in Montezuma’s Revenge. In particular, if the
agent learns how to obtain all the previous goal-states, then
we set the last goal-state as the initial state and find the state
with the maximum potential energy as the next goal-state.
These discovered goal-states are similar to the goals set by
human players, and the policy the agent learned is shown us-
ing the red arrow. These intuitive visualizations demonstrate
the effectiveness of PotER in hard exploration tasks.

We investigate how useful our PotER is for several other

Figure 6: The initial state and the 9 goal-states which are automat-
ically discovered by PotER in Montezuma’s Revenge, the learned
policy is shown as red arrows.

hard exploration Atari games. In specific, we apply the
SIL+PotER algorithm to some hard exploration games like
Freeway, Montezuma’s Revenge, Gravitar and Private Eye.
These four environments have common characteristics, i.e.,
sparse rewards, and moving distractor objects.

We compare SIL+PotER against TRPO-AE-SimHash
(SimHash) [Tang et al., 2017], Curiosity-Driven Explo-
ration (ICM) [Pathak et al., 2017], Self-Imitation Learn-
ing (SIL) [Oh et al., 2018], Random Network Distillation
(RND) [Burda et al., 2019] and Exploration with Mutual In-
formation (EMI) [Kim et al., 2019]. Table 3 shows that our
SIL+PotER achieves better results on the four hard explo-
ration games. These results confirm that PotER is an effective
method to set goals for RL agents using experiences. The
results of SIL+PotER and SIL demonstrate that PotER can
help SIL learn more quickly and explore more effectively. In
SIL+PotER, not only the past good experiences but also some
bad experiences can be effectively exploited to help the agent
imitate and explore.

6 Conclusion
In this paper, we propose PotER, a new sampling method for
effective exploration in reinforcement learning, which aims
to drive the agent to the goal-states to achieve the final goal.
PotER helps the agent to set up goal-states automatically
through experience replays. The detailed experimental results
on the maze and some hard exploration games demonstrate
that PotER is beneficial for a wide range of RL algorithms.
PotER provides a simple yet competing baseline for solving
hard exploration tasks.

Montezuma Gravitar Private Eye Freeway

SimHash 75 482 N/A 33.5

ICM 1011 424 15277 33.6

SIL 2497 2312 8325 33.8

RND 4017 552 4782 33.7

EMI 387 558 N/A 33.8

SIL+PotER 6439 2908 9203 33.8

Table 3: Comparisons on four hard exploration Atari games. The
results are reported by using 5 random seeds in 50M time steps.
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