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Abstract
Positive and Unlabeled learning (PU learning) aim-
s to build a binary classifier where only positive and
unlabeled data are available for classifier training.
However, existing PU learning methods all work
on a batch learning mode, which cannot deal with
the online learning scenarios with sequential data.
Therefore, this paper proposes a novel positive and
unlabeled learning algorithm in an online training
mode, which trains a classifier solely on the posi-
tive and unlabeled data arriving in a sequential or-
der. Specifically, we adopt an unbiased estimate
for the loss induced by the arriving positive or un-
labeled examples at each time. Then we show that
for any coming new single datum, the model can be
updated independently and incrementally by gradi-
ent based online learning method. Furthermore, we
extend our method to tackle the cases when more
than one example is received at each time. The-
oretically, we show that the proposed online PU
learning method achieves low regret even though
it receives sequential positive and unlabeled data.
Empirically, we conduct intensive experiments on
both benchmark and real-world datasets, and the
results clearly demonstrate the effectiveness of the
proposed method.

1 Introduction
Traditional supervised learning usually employs labeled pos-
itive and negative examples for model training. However,
the labeled negative data are not always available in many
real-world applications. This has led to the development of
Positive and Unlabeled learning (PU learning) [Denis et al.,
2005], which aims to train a binary classifier from only posi-
tive and unlabeled data without the existence of negative data.
Here the unlabeled data could be either positive or negative,
but their ground-truth labels remain unknown to the learning
algorithm throughout the training stage. Due to its useful-
ness and effectiveness, PU learning has been widely used in
many real-world applications, such as software clone detec-
tion [Wei and Li, 2018], remote-sensed hyperspectral image
classification [Li et al., 2011], etc.

Given its broad applicability as mentioned above, PU
learning has attracted intensive research attention in recen-
t years. A variety of effective algorithms have been pro-
posed, such as [Liu et al., 2002; Kiryo et al., 2017; Gong
et al., 2019b], etc. Although these existing methods have re-
ceived encouraging performance on various datasets or tasks,
they all work on a batch learning or offline learning mod-
e, which cannot deal with the online learning scenarios with
sequential data. Unfortunately, it is quite often that the
data are presented in sequence for massive practical appli-
cations, so traditional batch learning algorithms which re-
quire all training data to be simultaneously observed will
not work. Therefore, online learning [Rosenblatt, 1958;
Crammer and Singer, 2003] is proposed to process the train-
ing examples that arrive in a sequential order, where a learner
aims to learn and update the optimal classifier for processing
the future data at each step. In other words, the classifier is
required to be updated incrementally for any new training ex-
amples, so that the online learning algorithms do not need to
observe all training examples for classifier training.

To make PU models applicable to sequential data, in this
paper, we propose a novel Online Positive and Unlabeled
(“OPU” for short) learning algorithm. The key challenge
for our online model designing is how to avoid the bias in-
curred by the absence of negative data, and to update the
model incrementally according to the sequential positive and
unlabeled examples. In this paper, we propose to overcome
this challenge by exploring the unbiased estimator for posi-
tive and unlabeled learning [Du Plessis et al., 2015] and uti-
lizing an Online Gradient Descent (OGD) [Zinkevich, 2003]
method to optimize our model. Specifically, we cast OPU
learning as a sequential Empirical Risk Minimization prob-
lem, in which different unbiased loss functions are elaborate-
ly designed for arriving positive and unlabeled data, respec-
tively. Then, we show that, for any coming new data point,
the model can be updated independently and incrementally
by OGD. Besides, we present theoretical proof of regret that
bounds the difference between the solution computed by our
OPU learning and the optimal solution learned at hindsight.
Moreover, experimental results on both benchmark and real-
world datasets are presented, confirming the effectiveness of
our OPU algorithms.
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2 Related Work
This section briefly reviews some typical works on PU learn-
ing and online learning, as they are related to this paper.

2.1 PU Learning
PU learning has been a popular research topic in machine
learning community. Up to now, a variety of PU learning
models have been proposed, and they can typically be cate-
gorized into three types according to how the unlabeled data
are handled.

The methods belonging to the first category deploy a two-
step strategy which firstly identifies some reliable negative
examples from the unlabeled set, and then employs the re-
liable negative examples as well as the original positive ex-
amples to train a traditional supervised classifier. In this s-
trategy, the first stage is critical and various methods have
been developed to find the potential negative examples, such
as “Spy Technique” [Liu et al., 2002], 1-DNF method [Yu et
al., 2002], and K-means based prototype method [Xiao et al.,
2011]. The methods belonging to the second category con-
vert PU learning problem to a one-sided label noise learning
problem, which directly treat the unlabeled examples as noisy
negative ones. Concretely, the original positive examples in
the unlabeled set are regarded as mislabeled, while no nega-
tive examples are mislabeled as positive ones, and then some
effective label noise learning algorithms can be deployed to
solve the PU learning problem. The representative works are
[Lee and Liu, 2003], [Shi et al., 2018], and [Gong et al.,
2019b]. The methods belonging to the last category impose
different weights on the loss values incurred by positive ex-
amples and also the pseudo-labeling on treating unlabeled
examples as positive examples and negative examples, and
thus transferring PU learning problem into a cost-sensitive
learning problem. The typical works include [Elkan and No-
to, 2008; Du Plessis et al., 2014; Du Plessis et al., 2015;
Kiryo et al., 2017].

Apart from above-mentioned methods, other representative
PU models usually rely on larger-margin theory [Gong et al.,
2019a], multi-manifold data structure [Gong et al., 2019c],
label disambiguation [Zhang et al., 2019], and sequential
minimal optimization [Sansone et al., 2018]. However, as
mentioned in the introduction, all above methods are only de-
signed for batch learning mode and cannot be applied to deal
with sequential data.

In fact, [Li et al., 2009] has studied PU learning for the da-
ta on the fly. However, both their setting and target are very
different from ours as they only treat current data as positive
while regarding all historical data as unlabeled, to model the
interest drift of online customers. Differently, we require that
the real labels of positive and unlabeled data should be spec-
ified in advance and will not change during the entire online
learning process, so that our model coincides with the stan-
dard PU learning requirements.

2.2 Online Learning
Online learning [Rosenblatt, 1958; Kivinen et al., 2004;
Finn et al., 2019] aims to learn from the data arriving in a se-
quential order. In general, existing online learning algorithms

mainly fall into two categories according to the model updat-
ing strategy, namely the first-order-based online learning and
the second-order-based online learning.

The first-order-based online learning algorithms only ex-
ploit the first order feature information. Representative works
include Perceptron [Rosenblatt, 1958; Freund and Schapire,
1999], Relaxed Online Maximum Margin Algorithm [Li and
Long, 2000], and Passive-Aggressive algorithm [Crammer
et al., 2006]. Apparently, the performances of these algo-
rithms are limited, for only the first-order information is de-
ployed. In recent years, some second-order-based online
learning algorithms have been elaborately designed to im-
prove the performance of first-order-based algorithms. Gen-
erally, the second-order-based algorithms can significantly
outperform the first-order-based algorithms by exploring the
second-order information, such as the covariance matrix of
the feature information. Representative works are the second-
order Perceptron [Cesa-Bianchi et al., 2005], Confidence-
Weighted learning [Dredze et al., 2008], and Adaptive Reg-
ularization of Weights Learning [Crammer et al., 2009].

However, the aforementioned algorithms are not applica-
ble to the PU learning problem studied in this paper, and this
motivates us to seek for a novel online training strategy for
tackling the OPU learning problem.

3 Preliminaries on Batch-mode PU Learning
In this section, we review the formal setting for traditional
batch-mode PU learning, which helps to explain our designed
online algorithm in Section 4.

Consider a binary classification problem, where x ∈ Rd
denotes a d-dimensional pattern and y ∈ {1,−1} is the cor-
responding class label. Let p(x, y) be the underling joint den-
sity of (x, y), and the class-conditional densities regarding
positive class and negative class can be written as pp(x) =
p(x|y = 1) and pn(x) = p(x|y = −1), respectively, where
p(x) denotes the marginal density regarding unlabeled data.
Furthermore, given π = p(y = 1) as the positive class-prior
probability, we have that p(y = −1) = 1− π. Since an unla-
beled dataset consists of positive and negative examples, we
know that p(x) = πp(x|y = 1) + (1− π)p(x|y = −1).

Assume that we have a positive dataset P and an unla-
beled dataset U independent and identically drawn from an
unknown distribution D as

P := {xp
i }
np

i=1 ∼ p(x|y = 1), U :=
{
xu
j

}nu

j=1
∼ p(x),

where np and nu are the size of positive dataset and unlabeled
dataset, respectively. The goal of PU learning is to learn a
classifier g(x) that assigns a label ŷ to a new pattern x as
ŷ = sign(g(x)). It has been widely acknowledged that the
Bayes optimal classifier g?(x) can be obtained by minimizing
the following classification risk, namely

R(g)= E(X,Y )∼p(x,y) [`0−1(Y g(X))]

= πEp[`0−1(g(X))]+(1−π)En[`0−1(−g(X))] ,
(1)

where (X, Y ) are corresponding random variables of (x, y),
Ep[·] = EX∼pp(x)[·], En[·] = EX∼pn(x)[·], and `0−1(·) is the
zero-one loss formulated as `0−1(z) = 1

2 −
1
2 sign(z) with z

being the variable.
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Thanks to the availability of positive and negative exam-
ples in the traditional fully supervised learning, the expecta-
tions Ep [`0−1(g(X))] and En [`0−1(−g(X))] in Eq. (1) can
be estimated through the corresponding example averages.
However, there are no negative examples available for PU
learning, therefore En [`0−1(−g(X))] cannot be estimated di-
rectly. To solve this problem, [Du Plessis et al., 2015] pro-
posed to estimate En [`0−1(−g(X))] indirectly from weight-
ed Ep [`0−1(−g(X))] and Eu [`0−1(−g(X))]. Based on the
fact that p(x) = πp(x|y = 1) + (1−π)p(x|y = −1), we can
obtain

Eu [`0−1(−g(X))] =πEp [`0−1(−g(X))]

+ (1− π)En [`0−1(−g(X))] ,
(2)

where Eu[·] denotes the expectation over p(x). Therefore, the
risk R(g) in PU learning can be approximated by

R(g) = πEp [`0−1(g(X))]

+ Eu [`0−1(−g(X))]− πEp [`0−1(−g(X))]

= πEp [`0−1(g(X))− `0−1(−g(X))]

+ Eu [`0−1(−g(X))] .

(3)

From the equation above, we can see that the risk for PU
learning consists of a composite loss for positive examples
i.e., `0−1(g(X)) − `0−1(−g(X)), and an ordinary loss for
unlabeled examples, i.e., `0−1(−g(X)).

[Du Plessis et al., 2015] showed that a loss function `(z)
will lead to a convex PU learning model if it satisfies the
linear-odd property, namely `(z)− `(−z) = −z, and the fea-
sible `(z) can be double hinge loss, square loss, and logistic
loss. In our method, the performance of different loss func-
tions with linear-odd property will be discussed in Section 6.

4 The Proposed OPU Method
Let us consider the problem setting of online positive and un-
labeled classification task. Let {(xt, yt) |t = 1, . . . , T} be a
sequence of input examples under a potential distribution D,
where xt ∈ Rd is a pattern of d dimension received at the t-th
time, yt ∈ {1, 0} is the observed class label of correspond-
ing pattern, and T is the number of training rounds across the
whole training stage. Here, we take y = 1 for positive ex-
amples and y = 0 for unlabeled examples. The goal of OPU
classification is to learn a linear classifier g(xt) = w>t · xt,
where wt ∈ Rd is the weight vector at the t-th time during
the training stage.

4.1 Basic OPU with Single Coming Datum
We cast our OPU learning as sequential Empirical Risk Min-
imization problem, of which the main idea is to propose an
unbiased estimate for the loss induced by the received train-
ing examples at each time. Specifically, our goal is to develop
an OPU learning algorithm which approximates the risk pre-
sented in Eq. (3).

Given a surrogate loss function with linear-odd property
`(z), Eq. (3) turns to be a convex optimization problem as

R(g) = πEp [`(g(X))− `(−g(X))] + Eu [`(−g(X))]

= πEp[−g(X)] + Eu[` (−g (X))],
(4)

Algorithm 1 Basic OPU with single coming datum
Input: The penalty parameter λ;
1: Initialize w0 ← 0;
2: for t = 1, 2, . . . , T do
3: Receive a training example (xt, yt);
4: Set learning rate ηt = 1

λt
;

5: if yt = 1 then
6: Calculate the gradient∇t = −πg′(xt) + λwt;
7: else
8: Calculate the gradient∇t = `′(−g(xt)) + λwt;
9: end if

10: Update wt ← ΠW(wt−1 − ηt∇t);
11: end for
Output: The latest classifier parameter wT .

which can be rewritten as an average of a set of training ex-
amples, namely

R(g) = − π

np

∑np

i=1
g(xi) +

1

nu

∑nu

j=1
` (−g (xj)) . (5)

Now, we reformulate the risk estimation for each individual
training example received at the t-th time, i.e.,

Rt(g) = −π1yt=1g(xt) + 1yt=0` (−g (xt)) , (6)
where 1(·) is an indicator function which equals to one if its
argument is true, and zero otherwise. Using this representa-
tion, we can directly apply the gradient descent based online
learning method to solve OPU learning problem. Formally,
given a linear-in-parameter classifier g(xt) = w>t · xt, the
regularized objective function of Eq. (6) can be written as

f(wt) = Rt(g) +
λ

2
‖wt‖22

= −π1yt=1g(xt) + 1yt=0` (−g (xt)) +
λ

2
‖wt‖22,

(7)
where the first term and the second term are the losses in-
duced by the received positive and negative examples, and
the last term is an L2 regularizer to avoid overfitting with λ
being a nonnegative penalty parameter.

Then, we consider the unbiased gradient ∇t of the above
objective function in presence of the t-th coming data, which
is given by
∇t = −π1yt=1g

′(xt) + 1yt=0`
′ (−g (xt)) + λwt, (8)

where g′(·) and l′(·) are the corresponding derivatives. There-
fore, we can update wt ← ΠW(wt−1 − ηt∇t) using a step
size of ηt, where ΠW(w) is a projection step defined as
ΠW(w) = arg minw′∈W ‖w −w′‖, with W being a fea-
sible set of w. After a predetermined number T of iterations,
we output the wT in the last iteration. Algorithm 1 concludes
the overall OPU algorithm with single coming datum.

4.2 Extended OPU with Multiple Coming Data
Practically, we may also meet the cases that the data come
in groups, so we extend our basic OPU learning algorithm to
enable it to process a set of examples for one time.

To be exact, given a small training set It = {(xi, yi)}bi=1
with the size of b (b > 1) at time t (t = 1, 2, . . . , T ), the
regularized objective function can be formulated as

fIt(wt) = RIt(g) +
λ

2
‖wt‖22, (9)

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2250



where RIt(g) is the risk averages of corresponding positive
and unlabeled examples, defined as

RIt(g) =
1

b

∑b

i=1
(−π1yi=1g(xi) + 1yi=0`(−g(xi))),

Now, we rewrite the objective function fIt(wt) by adding
a conservative constraint γt2 ‖wt − wt−1‖22 [Li et al., 2014],
and obtain as

φIt(wt) =fIt(wt) +
γt
2
‖wt −wt−1‖22

=
1

b

∑b

i=1
(−π1yi=1g(xi) + 1yi=0`(−g(xi)))

+
λ

2
‖wt‖22 +

γt
2
‖wt −wt−1‖22, (10)

where λ is a nonnegative trade-off parameter and γt is a con-
servative coefficient related to λ. The first term is the un-
biased loss estimator for PU learning aiming to achieve full
utilization of this the currently coming set, the second term is
an L2 regularizer to avoid overfitting, and the last term is a
conservative constraint which limits dramatic changes of the
weight vector to avoid overutilization.

For (xi, yi) ∈ It, i = 1, . . . , b, by computing the unbiased
gradient of the above approximate objective Eq. (10), we have

∇It =
1

b

∑b

i=1
(−π1yi=1g

′(xi) + 1yi=0`
′ (−g (xi)))

+ λwt + γt(wt −wt−1). (11)

By following the gradient descent based online learning
method, the learning parameter can be effectively updated as
wt ← ΠW(wt−1 − ηt∇It), with ηt being the learning rate.

Furthermore, compared with the basic OPU algorithm with
single coming datum, another benefit brought by the extended
OPU algorithm is that an O(1/b) variance reduction can be
achieved if b (b > 1) training examples are presented each
time [Dekel et al., 2012].

5 Theoretical Analysis
In this section, we are going to analyze the regret bound of the
proposed OPU learning method, which measures the differ-
ence between the cumulative loss of our predictions and the
cumulative loss of the optimal predictor w?. To be specific,
we first bound the regret of our basic OPU algorithm which
updates the model with one example per time, and then we
bound the regret of the extended OPU algorithm which up-
dates the model with b (b > 1) arrived examples.

5.1 Regret for Basic OPU Algorithm
When only one example is processed at each time, we have
the following theorem for the regret bound:
Theorem 1. Let f1, . . . , fT be a sequence of λ-strongly con-
vex functions. Let W be a closed convex set and define
ΠW(w) = arg minw′∈W ‖w −w′‖. Let w0, . . . ,wT be a
sequence of vectors such that w0 ∈ W and for t ≥ 0,
wt = ΠW (wt−1 − ηt∇t), with ∇t being the unbiased gra-
dient of ft at wt. Assume that for all t, ‖∇t‖ ≤ G, we have

RegretT (f(w)) ≤ G2

2λ
(1 + log T ). (12)

Proof. Let w? ∈ arg minw∈W
∑T
t=1 ft(w). By recalling

the definition of regret, we have

RegretT (f(w)) =
∑T

t=1
ft (wt)−

∑T

t=1
ft (w?) . (13)

Since ft is λ-strongly convex, we get the following inequality,

ft (w?) ≥ ft (wt)+∇>t (wt −w?)+
λ

2
‖wt −w?‖2 . (14)

Rearranging Eq. (14), we get

ft (w?)− ft (wt) ≥ ∇>t (wt −w?) +
λ

2
‖wt −w?‖2 .

Following Zinkevichs analysis [Zinkevich, 2003], we are go-
ing to upper-bound∇>t (wt −w?). According to the proper-
ties of projections [Hazan et al., 2007], we have,

‖wt −w?‖2 = ‖Π (wt−1 − ηt∇t)−w?‖2

≤ ‖wt−1 − ηt∇t −w?‖2 .
(15)

Hence,

‖wt −w?‖2 ≤‖wt−1 −w?‖2 + η2t ‖∇t‖
2

−2ηt∇>t (wt−1 −w?) .
(16)

After rearranging the above equation and using the assump-
tion ‖∇t‖ ≤ G, we obtain

2∇>t (wt−1−w?)≤
1

ηt
(‖wt−1−w?‖2−‖wt−w?‖2)+ηtG

2.

(17)
By comparing Eq. (14) and Eq. (17), and summing up E-
q. (17) from t = 1 to T with ηt = 1/(λt), we have∑T

t=1
ft (wt)− ft (w?)

≤1

2

∑T

t=1
‖wt −w?‖2

(
1

ηt
− 1

ηt−1
−λ
)

+
G2

2

∑T

t=1
ηt

≤0 +
G2

2

∑T

t=1

1

λt
≤ G2

2λ
(1 + log T ), (18)

which concludes the proof.

5.2 Regret for Extended OPU Algorithm
When a set of examples are processed at each time, we have
the following theorem for the regret bound:
Theorem 2. Let {It}Tt=1 be the received training sets of the
learning algorithm, with each training set consisting of b (b >
1) training examples. Let fI1 , . . . , fIT be a sequence of λ-
strongly convex functions. LetW be a feasible set of w, and
w0, . . . ,wT be a sequence of vectors such that w0 ∈ W
and w? ∈ arg minw∈W

∑T
t=1 fIt(w). Assume that for all t,

supw∈W ‖∇fIt(wt)−∇f(w)‖22 ≤ A2, we have

RegretT (fI(w)) ≤
λ ‖w?−w0‖22

2
√
b

+
A2(1+log T )

λb
. (19)

Proof. By using the definition of regret, in this case we have

RegretT (fI(w)) =
∑T

t=1
fIt (wt)−

∑T

t=1
fIt (w?) .

(20)
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According to Theorem 1 in [Li et al., 2014], assumed that
fIt(wt) is λ-convex for all t and the updating parameter is
chosen as γt = γ + λt, we have that for all w? ∈ W ,∑T

t=1
(fIt(wt)−fI(w?)) ≤

γ

2
‖w?−w0‖22+

A2

b

∑T

t=1

1

γt
.

(21)
For strongly convex objective function, one may choose γ =
(λA)/(

√
b ‖w? −w0‖2) to minimize the upper bound in E-

q. (21). Since the variance decreases withO(1/b) for each set
of coming data, we see that the choice of γ in Eq. (21) with
γ = O(1/

√
b) is appropriate. We can easily get the following

aggregated regret bound with simple algebra,∑T

t=1
(fIt (wt)− fI (w?))

≤ γ

2
‖w? −w0‖22 +

A2

b

∑T

t=1

1

γt

=
γ

2
‖w? −w0‖22 +

A2

b

∑T

t=1

1

γ + λt

≤ γ

2
‖w? −w0‖22 +

A2

b

∑T

t=1

1

λt

≤
λ ‖w? −w0‖22

2
√
b

+
A2(1 + log T )

λb
,

(22)

which completes the proof.

From Theorems 1 and 2, we see that the regret bound for
our basic OPU algorithm is the order of O(log T ), and that
for our extended OPU is O((log T )/b), which improves the
regret bound of the basic OPU algorithm withO(1/b). There-
fore, the models finally obtained by our method are very close
to the ideal solution w?.

6 Experiments
In this section, we first study the performance of the proposed
method on benchmark and real-world datasets, and then in-
vestigate the parametric sensitivity of the pre-tuned parameter
in our model.

6.1 Compared Algorithms
In our experiments, two different loss functions with linear-
odd property are discussed, i.e., double hinge loss `DH(z) =
max

(
−z,max

(
0, 12 −

1
2z
))

and square loss `SL(z) =
1
4 (z − 1)2 − 1

4 . The following methods are compared:
• UPU: Unbiased PU learning, a batch-mode PU learning

algorithm [Du Plessis et al., 2015], which can be deemed
as the performance upper bound of our OPU algorithm.
• OPUDH : The proposed basic OPU algorithm with sin-

gle coming datum in Sec. 4.1 using double hinge loss.
• OPUSL: The proposed basic OPU algorithm with single

coming datum in Sec. 4.1 using square loss.

• OPUDH : The proposed extended OPU algorithm with
multiple coming data in Sec. 4.2 using double hinge loss.

• OPUSL: The proposed extended OPU algorithm with
multiple coming data in Sec. 4.2 using square loss.

6.2 Benchmark Datasets
We conduct experiments on a variety of benchmark datasets
from OpenML machine learning repositories1. To be specific,
four binary datasets are adopted for algorithm evaluation in-
cluding Vote, Australian, Mushroom, and Phishing, and their
brief information is presented in Table 1.

For each dataset, we randomly choose r = 20%, 30%, and
40% positive examples as well as all negative examples as un-
labeled and leave the rest positive examples as labeled. Under
each r, we conduct five-fold cross validation on every com-
pared method and report the average accuracy and standard
deviation over the five independent implementations. As a
result, each model under a certain implementation is trained
with 80% examples and then tested on the rest 20% exam-
ples. Moreover, all data features are normalized to [−1, 1]
in advance, and the formation of training set is kept identi-
cal for all compared methods to ensure fair comparison. In
our experiments, the class prior of positive examples π is
assumed to be known during training for all the compared
methods, which is also assumed by the existing PU learning
works such as [Du Plessis et al., 2015; Kiryo et al., 2017;
Gong et al., 2019b]. In practice, π can be obtained by ex-
perience or some domain-specific prior knowledge. Besides,
the parameters of every algorithm have been carefully tuned
on the validation set to achieve the best performance. In
our OPU, we choose the regularization parameter λ from
{10−6, . . . , 102}. For UPU, the regularization parameter λ is
chosen from {10−3, . . . , 101}. For our extended OPU algo-
rithms including OPUDH and OPUSL, 5% training examples
of the whole examples are selected to form the set of input
data at each time.

The obtained test accuracies are reported in Table 1. We
can find that the extended OPU algorithms OPUDH and
OPUSL usually achieve higher accuracies than the basic OP-
U algorithms OPUDH and OPUSL, and the OPU algorithms
using double hinge loss often outperform the OPU algorithms
using square loss. Besides, the performances of our OPU al-
gorithms are very close to the performance of batch-mode PU
learning method (i.e., UPU), and in some cases our OPU al-
gorithm can perform even better than UPU, which suggests
the effectiveness of the proposed method.

6.3 Real-world Datasets
Here, we investigate the performance of the compared meth-
ods on image classification tasks. Concretely, CIFAR-
10 [Krizhevsky and Hinton, 2009] and SVHN [Netzer et al.,
2011] are chosen to evaluate their performance. CIFAR-10
consists of 60000 32×32 natural images in 10 classes with
each class containing 6000 images. We choose the images
of transportation tools (‘airplane’, ‘auto mobile’, ‘ship’, and
‘truck’) as negative, and regard the images of animals (‘bird’,
‘cat’, ‘deer’, ‘dog’, ‘frog’, and ‘horse’) as positive. There-
fore, there are 24000 positive examples and 36000 negative
examples in total. SVHN consists of 99289 32 ∗ 32 digit im-
ages in 10 classes i.e., the digits ‘0’-‘9’, where the negative set
is formed by the digit images ‘1’-‘5’, and the rest digit images
compose the positive set. As a result, we get 34699 positive

1https://www.openml.org/
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Dataset (n, d) r UPU OPUDH OPUSL OPUDH OPUSL

Vote (435, 16)
20% 0.920±0.087 0.902±0.029 0.887±0.024 0.908±0.008 0.911±0.022
30% 0.940±0.012 0.894±0.025 0.864±0.040 0.908±0.026 0.903±0.029
40% 0.959±0.006 0.889±0.026 0.877±0.041 0.901±0.024 0.898±0.038

Australian (690, 14)
20% 0.772±0.045 0.808±0.012 0.758±0.102 0.864±0.023 0.844±0.016
30% 0.827±0.025 0.832±0.047 0.720±0.104 0.864±0.037 0.850±0.027
40% 0.843±0.027 0.743±0.125 0.621±0.120 0.861±0.031 0.724±0.110

Mushroom (8124, 112)
20% 0.857±0.013 0.810±0.004 0.787±0.105 0.836±0.078 0.816±0.067
30% 0.800±0.006 0.766±0.056 0.768±0.028 0.825±0.036 0.789±0.046
40% 0.753±0.008 0.740±0.012 0.751±0.014 0.840±0.067 0.762±0.037

Phishing (11055, 68)
20% 0.867±0.010 0.827±0.007 0.842±0.012 0.856±0.005 0.856±0.017
30% 0.893±0.013 0.838±0.003 0.835±0.004 0.881±0.004 0.871±0.012
40% 0.910±0.009 0.826±0.004 0.812±0.007 0.890±0.004 0.867±0.007

Table 1: The accuracies of various methods on four OpenML benchmark datasets when r = 20%, 30%, and 40%. The best record among
the proposed OPU algorithms under each r is marked in bold. n and d are the amount of training data and feature dimension accordingly.

Dataset r UPU OPUDH OPUSL OPUDH OPUSL

CIFAR-10
20% 0.848 0.810 0.840 0.824 0.844
30% 0.842 0.827 0.792 0.832 0.803
40% 0.836 0.827 0.799 0.827 0.815

SVHN
20% 0.838 0.833 0.783 0.835 0.812
30% 0.846 0.808 0.798 0.818 0.805
40% 0.847 0.820 0.813 0.828 0.819

Table 2: The test accuracies on the adopted real-world datasets. The
best record among the proposed OPU algorithms is marked in bold.

examples and 64590 negative examples. Note that the train-
ing set and the test set are split in advance with 50000 training
examples and 10000 test examples for CIFAR-10, and 73257
training examples and 20632 test examples for SVHN.

In our experiments, we extract 512-dimensional GIST fea-
tures for each image. Similar to the previous experiments,
for each dataset, the situations r = 20%, 30%, and 40% are
studied. The parameters of every method have been carefully
tuned to achieve the best performance. The test accuracies
achieved by the compared methods are presented in Table 2,
where we can see that although our OPU algorithms receive
the sequential data sequentially, their performances are very
similar to the compared UPU learning algorithm with all data
observed for model training. Therefore, the proposed OPU
algorithms are effective in handling real-world data.

6.4 Parametric Sensitivity
This section investigates the sensitivity of our OPU algo-
rithms to the tuning parameter λ and the positive class prior π
appearing in the objective function Eq. (7) and Eq. (10) of our
OPU learning model. Specifically, we examine the test accu-
racy of the extended OPU algorithm with double hinge loss
(i.e., OPUDH ) on the two real-world datasets when r = 30%.
The proposed OPUSL, OPUDH , and OPUSL all exhibit sim-
ilar results to OPUDH , so here we omit their parametric sen-
sitivity curves due to the lack of space.

Influence of λ: The experimental results with λ changing
from 10−6 to 100 are reported in Figure. 1 (a), we see that λ
is critical for our OPU algorithm to obtain satisfactory perfor-
mance. To be specific, the choice of λ = 10−2 usually leads
to high classification accuracy.

Influence of π: As mentioned previously, the positive class
prior π might be unknown in practice, so it should be esti-

10-6 10-4 10-2 100
0.5

0.6

0.7

0.8

0.9

Ac
cu
ra
cy

CIFAR-10
SVHN(a)

0.6 0.8 1.2 1.4
0.5

0.6

0.7

0.8

0.9

Ac
cu
ra
cy

CIFAR-10
SVHN(b)

Figure 1: The parametric sensitivity of λ (a), and π (b) for OPUDH
on CIFAR-10 and SVHN datasets.

mated from experience or some domain-specific prior knowl-
edge. However, such estimation can be inaccurate, therefore
we investigate how the classification accuracy is influenced
by the inaccurate π. More specifically, we tested our OPUDH
by replacing π with inaccurate π̂∈{0.6π, 0.8π,. . ., 1.4π} and
inserting π̂ to the learning method. The experimental results
are presented in Figure. 1 (b), which suggests that the per-
formance of the proposed method will not severely decrease
when the estimation is slightly deviated from the real π.

7 Conclusion
This paper proposed a novel OPU learning paradigm to deal
with the sequential positive and unlabeled data. We show that
with an unbiased estimate for the loss induced by the received
positive or unlabeled example at each time, our OPU mod-
el can be effectively solved by gradient based online learn-
ing methods. Furthermore, two OPU algorithms with differ-
ent formations of input data are developed, and their regret
bounds have also been theoretically proved. The experimen-
tal results on both benchmark and real-world datasets clearly
demonstrate the effectiveness of the proposed method. Since
our method relies on the class prior π, we may design an on-
line strategy to estimate π incrementally in the future.
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