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Abstract

Due to the difficulty of comprehensive data collec-
tion, created by factors such as privacy protection
and sensor device limitations, we often need to an-
alyze incomplete transition data where some infor-
mation is missing from the ideal (complete) transi-
tion data. In this paper, we propose a new method
that can estimate, in a unified manner, Markov
chain parameters from incomplete transition data
that consist of hidden transition data (data from
which visited state information is partially hidden)
and dropped transition data (data from which some
state visits are dropped). A key to developing the
method is regarding the hidden and dropped transi-
tion data as labeled and unlabeled multi-step tran-
sition data, where the labels represent the number
of steps required for each transition. This allows
us to describe the generative process of multi-step
transition data, and thus develop a new probabilis-
tic model. We confirm the effectiveness of the pro-
posal by experiments on synthetic and real data.

1 Introduction
The Markov chain (MC) has been applied to various dy-
namic systems such as queuing systems, marketing and
finance [Neuts, 1981; Pfeifer and Carraway, 2000; Fryd-
man and Schuermann, 2008]. Due to the development and
widespread use of sensor devices, MC variants are now used
for analyzing the dynamics of urban cities such as traffic,
and people flows [Crisostomi et al., 2011; Fan et al., 2015;
Iwata et al., 2017].

Since the transition probabilities of MC are unknown in
practice, we need to estimate them from observed transition
data. In the ideal case, for example, if the information of ev-
ery visit of each person to each state (location) is available for
analyzing people flow in a city 1, the transition probability can
be estimated directly from the number of transitions between
the states [Billingsley, 1961]. However, comprehensive data

1Hereinafter we consider that people’s movements are repre-
sented by the transition between discretized areas or meshed cells
similar to [Fan et al., 2015] for simplicity.

collection is rare because of, for example, constraints im-
posed by privacy protection, coverage area deficiencies, and
limited sensor device precision. Thus in practice the actual
data to be analyzed differs from the ideal complete transition
data; the transition data available is incomplete as some infor-
mation is missing.

We found that it is essential to be able to analyze two com-
mon types of incomplete transition data: hidden transition
data where visited state information is partially hidden and
dropped transition data where visits to states are partially
dropped. See Figure 1. The difference between the two is
whether we are aware of the existence of “missing states” or
not in the sequence of transitions.

An example of dropped transition data is the transition data
of subscribers provided by mobile phone companies. The
data contain the transition between states (locations) only
where the user stays for more than a certain time to ensure
privacy protection and to save memory cost. Therefore, as
shown in Fig. 1, although the (true) complete transition con-
sists of two steps, a → b → c, the visit of state b is dropped
and only the transition a→ c is recorded so the user appears
to have visited only state a and c. An example of hidden tran-
sition data is the data collected by ourselves using e.g., GPS
logger or mobile phone apps. Since the data often contains
missing values, the current state (location) information may
not be recorded in some logs although the log exists. For ex-
ample, if the visited state information of state b is missing
from a→ b→ c, only the transition a→ ? → c is recorded.

In this paper, we propose a new method that can, in a uni-
fied manner, estimate MC parameters from an incomplete
transition data set that includes dropped and/or hidden transi-
tion data. A key to developing the method is to regard hidden
and dropped transition data as labeled and unlabeled multi-
step transition data, where the label represents the number of
steps required for each transition. See the bottom of Fig. 1.
The example of the hidden transition data, a → ? → c, and
that of dropped transition data, a → c, can be seen as the la-
beled multi-step transition a → c where the number of steps
is 2 and the unlabeled multi-step transition a → c where the
number of steps is unknown, respectively. This yields the
following description of the generative process of multi-step
transition data: the labels indicating the number of steps, k,
is first determined and the next state is determined by multi-
step transition probability, which, according to MC theory, is
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Figure 1: Examples and relation between complete and incomplete
transition data and labeled and unlabeled multi-step transition data.

given by raising the transition probability to the power of k.
Figure 2 shows the input and output of the proposed method.
By estimating MC parameters, we can recover the (1-step)
transition probability that underlies multi-step transitions. It
is also shown that the proposed method can be seen as a semi-
supervised learning method of (possibly infinite) mixture of
exponentiated transition probabilities.

We also develop a Majorization Minimization (MM) algo-
rithm [Hunter and Lange, 2004; De Leeuw, 1994] that can
guarantee that the objective function improves with each iter-
ation. Note that our formulation also allows us to use com-
plete transition data since it can be represented by labeled
multi-step transition data whose labels are all 1. Moreover,
our formulation, model, and algorithms are not limited to the
case of analyzing people flow and indeed is valid in various
scenarios where the available data are represented by labeled
and unlabeled multi-step transition data.

The contributions of this paper are summarized below:
• We consider the problem of recovering MC parameters

from labeled and/or unlabeled multi-step transition data.
• We develop a new model that can handle labeled and/or

unlabeled multi-step transition data; it can be seen as a
semi-supervised learning method of (possibly infinite)
mixture of exponentiated transition probability.
• We develop an MM algorithm and give proof of its con-

vergence. A method of handling infinite mixtures with
theoretical support is also provided.
• We confirm the effectiveness of the proposal by experi-

ments on synthetic and real data sets.
The rest of this paper is organized as follows. §2 details

related works and §3 provides a definition and theory of the
Markov chain. The proposed method is presented in §4. §5
details the experiments conducted and §6 concludes the paper.

2 Related Works
Recently, new problem formulations for estimating MC pa-
rameters have been investigated. For example, [Morimura et
al., 2013; Kumar et al., 2015] tackle the problem of recover-
ing MC from a steady state distribution. [Iwata et al., 2017;
Akagi et al., 2018] tackle the estimation problem by using
snapshots of population data. However, the problem of MC

Figure 2: Problem formulation. Proposed method estimates
(a) probability of generated number steps and (b) 1-step transition
probability from labeled and/or unlabeled multi-step transition data.

recovery from multi-step transition data, especially unlabeled
multi-step transition data made from dropped transition data,
has yet to be studied. Moreover, although handling just hid-
den transition data is simple since the EM algorithm can be
adopted by treating missing state information as latent vari-
ables, no unified approach that can handle both dropped and
hidden transition data exists. Hidden Markov Model (HMM)
cannot be applied to our problem since the time-step of (true)
complete transition data and that of dropped transition data
do not have one to one correspondence and an infinitely large
number of steps may be dropped. This study provides a uni-
fied approach to handling the two types of data as well as
complete transition data.

Our problem formulation can be seen as semi-supervised
learning since the relation between the labeled and unlabeled
multi-step data are similar to the way labeled and unlabeled
data are treated in semi-supervised clustering [Ghahramani
and Jordan, 1994; Nigam et al., 2000; Basu et al., 2002].
However, we emphasize our motivation comes from recov-
ering MC from incomplete transition data.

Our model for MC recovery from multi-step transition
data can be seen as a mixture model. However, our model
differs from the “standard” mixture of Markov chains that
have different component distributions [Goodman, 1961;
Frydman, 1984; Gupta et al., 2016]; the k-th component dis-
tribution of our model is the transition probability raised to
the power of k. This property allows us to approximate the
component with large k by a steady state distribution under a
mild assumption; it enables us to construct a new type of in-
finite mixture model that differs from Dirichlet process mix-
ture models [Ferguson, 1973; Antoniak, 1974; Neal, 2000;
Blei and Jordan, 2006; Teh, 2010].

3 Preliminaries

Let X = {1, 2, · · · , |X |} be a state space. A discrete time
Markov chain (MC) on X is a stochastic process {Xt; t =
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support η h(k) T (k) A(η) µ

Categorical k = {0 or 1, · · · ,K} {log(λi/λK)}i 1 {I(k=i)}i log(
∑
k e

ηk) {eηi/
∑
k e

ηk}i
Geometric k = {1, 2, · · · } log(1− λ) 1 k η − log{1− eη} 1/{1− eη}

Poisson k = {0, 1, · · · } log(λ) 1/k! k exp(η) exp(η)
ZTP k = {1, 2, · · · } log(λ) 1/k! k log(ee

η − 1) ee
η+η/{eeη − 1}

Table 1: Examples of exponential family

0, 1, 2, · · · } that satisfies the following Markov property:

Pr(Xt+1 = xt+1|X` = x`; ` = 0, · · · , t)
= Pr(Xt+1 = xt+1|Xt = xt) (∀x` ∈ X , ∀t ∈ Z≥0).

MC M is thus defined by M := {X ,P}, where P :
X × X → [0, 1] is the transition probability, P(xnext|x) =
Pr(Xt+1 = xnext|Xt = x). We also employ adjacency in-
formation of Γ = {Γi}i∈X , where Γi is the set of reachable
states from state i by one-step transitions.

Later we will use the following theoretical results.

Theorem 1. (e.g. Theorem (2.1) [Durrett, 1999]) k-step tran-
sition probability is given by P to the power of k, P k.

For example, 2-step and 3-step transition probabilities are
given by P 2 and P 3, respectively. Note that 0-step transition
probability is self-transition since a matrix to the power of 0
is an identity matrix. If MCM is irreducible and aperiodic,
the following theorem holds.

Theorem 2. (e.g. Theorem (4.5) [Durrett, 1999]) Let π =

{πi}|X |i=1 be the steady state probability of Markov chainM.
Then, (P k)ij −−−−→

k→∞
πj .

This states that each row of P k converges to the steady
state probability at the limit.

4 Proposed Method
This section describes the proposed method for estimating
Markov chain parameters from multi-step transition data.
Figure 2 shows our problem formulation.

4.1 Data
We assume that incomplete transition data are available in
the form of unlabeled and labeled multi-step transition data,
as shown in Fig 1. We denote the unlabeled multi-step transi-
tion data made from dropped transition data (where the num-
ber of steps is unknown) as Dum = {Nij}ij∈X where Nij
denotes the number of transitions from state i to state j. We
also denote the labeled multi-step transition data made from
hidden transition data as D`m = {Mijk}ij∈X ,k∈Z≥0

where
Mijk denotes the number of transitions from state i to state j
by k-step transitions. If complete transition data is available,
we consider that the data are represented by part of the labeled
multi-step transition data, {Mij1}ij . We denote the set of the
two data types asD = Dum∪D`m and refer to it as multi-step
transition data. We also use adjacency information Γ as an
optional input. In the case of, for example, analysis of people
flows in a city, Γ can be derived from maps or street network
information. If such adjacency information is not available,

we consider Γi to be a set of all states, X . Although Γ is op-
tional, its use is recommended if the labeled multi-step data
are unavailable or limited since Γ strongly helps in estimating
the number of steps present in the unlabeled multi-step data.

4.2 Model Component
Here we show the model components used by the proposed
method.

Label Probability. We decide to use the exponential fam-
ily for modeling generated labels that indicate the number of
steps of each transition since it can express various types of
distributions. The density of exponential family f is given by

f(k|η) := h(k) exp
{
η · T (k)−A(η)

}
, (1)

where η is the natural parameter, T (k) is sufficient statis-
tics and A(η) is the log-normalizer. Examples of distribu-
tions belonging to the exponential family are categorical dis-
tribution (Cat), geometric distribution (Geo), Poisson distri-
bution (Poi), and zero-truncated Poisson distribution (ZTP):

Cat(k|λ) =
∏

i
λ
I(k=i)
i , Geo(k|λ) = (1− λ)k−1λ,

Poi(k|λ) = λk exp(−λ)/k!, ZTP(k|λ) = λk/{(eλ − 1)k!}.

By assigning specific values to T (x) and A(η), the above
distributions are represented by Eq. (1) (See Table 1). We
denote the cumulative density function of f as F , where
F (C|η) :=

∫ C
−∞ f(k|η)dk. In a later section, we use mean-

value parameter µ, which is defined as µ := Ef(k|η)[T (k)] =

∂A(η)
/
∂η. Note that natural parameter η and mean-value

parameter µ have a one-to-one correspondence [Amari and
Nagaoka, 2007]. Converting µ into η may require numeri-
cal computation; we use Newton method for ZTP. We will
also use the property that the Hessian of the log-normalizer is
positive-definite, since it corresponds to the variance.

Transition Probability. We use parameter ν to model the
(1-step) transition probability of a MC. To emphasize pa-
rameter dependency, we denote the model of the transition
probability as Pν ; the (i, j)-th element of matrix Pν rep-
resents the (1-step) transition probability from state i to j,
i.e., Pr(Xt+1 = j|Xt = i, ν) = (Pν)ij . We denote a
Markov chain constructed using the model with parameter ν
as Mν = {X , Pν}. Examples of the model are the following
tabular model and log-linear model.

Model 1. (Tabular Model) Let us define ν as ν =
{{pij}j∈Γi}i∈X where

∑
j pij = 1 for all i. The tabu-

lar model can be defined as (Pν)ij = pij if j ∈ Γi, and
(Pν)ij = 0 otherwise.
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Model 2. (Log-Linear Model) Let us define ν as ν = {v,w}.
Then, (Pν)ij =

exp{vij+φ(i,j)Tw}∑
j′∈Γi

exp{vij′+φ(i,j′)Tw} if j ∈ Γi and

(Pν)ij = 0 otherwise, where φ(i, j) is a feature vector, such
as the (inverse) distance between states i and j 2.

4.3 Generative Process
The generative process of multi-step transition data can be
described using the model component explained in the pre-
vious section. We consider that parameters θ = {η,ν} are
determined following prior distribution P (θ) = P (η)P (ν).
P (η) is a conjugate prior of the exponential family,

P (η) =
∏|X |

i=1
Z(ξ0, µ0) exp

{
ηi · ξ0 − µ0A(ηi)

}
,

where the normalizer Z(ξ0, µ0) is determined by the chosen
distribution (See Table 1). As the prior of ν, we can use any
distribution. For the case of the log-linear model, a Gaussian
distribution is frequently used:

P (ν) = N (ν|0, α−1
0 I|ν|) ∝ exp(−α0‖ν‖2/2).

Note that ξ0, µ0 and α0 are hyperparameters3.
The stochastic process describing a multi-step transition is

determined in the following manner. We denote the process
as {X ′s; s = 0, 1, 2, · · · } where s are the time steps of data
generation 4. (i) The initial state, X ′0, is determined by some
initial state probability. At every data generation time step s,
(ii) the number of steps Ks when moving from current state
X ′s = i is determined following P (Ks = k|X ′s = i) defined
using exponential family f ,

P (Ks = k|X ′s = i) = f(k|ηi). (2)

Then, (iii) next state visited by k step transition is determined
following P (X ′s+1|X ′s = i,Ks = k) which is defined as,
from Theorem 1, Pν to the power of k,

P (X ′s+1 = j|X ′s = i,Ks = k) = (P k
ν )ij . (3)

Note that k is a latent variable for unlabeled data and an ob-
served variable for labeled data. The following equations are
derived from Eq. (2)(3):

P (X ′s+1 = j,Ks = k|X ′s = i) = f(k|ηi)(P k
ν )ij (4)

P (X ′s+1 = j|X ′s = i) =
∑

k
f(k|ηi)(P k

ν )ij . (5)

We can interpret this model as being a mixture model be-
cause the transition probability defined by Eq. (5) where k is
marginalized out is given by the weighted sum of exponen-
tiated transition probability. However, unlike the “standard”
mixture model of the Markov chain e.g. [Goodman, 1961;

2If no such information is available, the term related to the fea-
ture and parameters w can be dropped from the model. Note that
the tabular model is a special case of the log-linear model since the
model without feature vector and parameter w is equivalent to the
tabular model if we define pij = exp{vij}/

∑
j′∈Γi

exp{vij′}.
3We set ξ0 = µ0 = α0 = 1.0 in the experiments.
4Time step s does not correspond to t, the time step of the un-

derlying Markov chain, since the number of (1-step) transitions con-
ducted up to step s′ is given by

∑s′

s=0 Ks.

Frydman, 1984; Gupta et al., 2016], the mixing ratio of our
model is given by an exponential family and the k-th compo-
nent is the transition probability to the power of k. Moreover,
when we adopt an exponential family that has unbounded
support such as a Poisson distribution, the model becomes an
infinite mixture model; a way of handling infinite summation
is detailed later.

From Eq. (4)(5), the log-likelihood of the labeled and un-
labeled multi-step transition data are given by

logP (D`m|θ) =
∑

i,j,k
Mijk log{f(k|ηi)(P k

ν )ij},

logP (Dum|θ) =
∑

i,j
Nij log

{∑
k
f(k|ηi)(P k

ν )ij
}
.

The logarithm of joint probability of data D and parameter θ
is then given by

logP (D, θ) = logP (D`m|θ) + logP (Dum|θ) + logP (θ).

Parameter θ is estimated by optimizing this objective.

θ̂ = arg minθ L(θ), L(θ) := − logP (D, θ). (6)

Note that we can interpret term − logP (θ) as the regular-
ization term; choosing the other prior distribution yields the
other type of regularization.

4.4 Majorization Minimization Algorithm
For minimizing objective function Eq. (6), we use a
majorization-minimization (MM) algorithm [Hunter and
Lange, 2004; De Leeuw, 1994] that can guarantee that the
objective function is improved in each iteration.

The MM scheme indirectly minimizes objectiveL by using
the majorizing function G which is defined as

G(θ,Z) =−
∑

i,j,k
(Mijk +Nijzijk) log{f(k|ηi)(P k

ν )ij}

+
∑

i,j,k
Nijzijk log zijk − logP (θ)

where Z = {zijk} is an auxiliary variable satisfying zijk ≥
0 (∀(i, j, k)),

∑
k zijk = 1 (∀(i, j)). Majorizing function G

has the following two properties:

1. L(θ) ≤ G(θ,Z), 2. L(θ) = min
Z
G(θ,Z). (7)

Note that the equality holds if and only if

zijk = f(k|ηi)(P k
ν )ij

/{∑
k′
f(k′|ηi)(P k′

ν )ij
}
. (8)

MM uses the following 2 step procedures to minimize ma-
jorizing function G:

1. Minimize G w.r.t. θ, 2. Minimize G w.r.t. Z.
Parameter θ is updated in the following manner.
Update of η. Let∇θ be the partial derivative operator w.r.t.
θ. Setting the partial derivative w.r.t. ηi equal to zero,
∇ηiG(θ,Z) = 0, yields

µi =
ξ0 +

∑
j,k(Mijk +Nijzijk)T (k)

µ0 +
∑
j,kMijk +

∑
j Nij

, (9)

where µi is the mean value parameter of f(k|ηi). Thus, pa-
rameter ηi is obtained by converting µi.
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Algorithm 1 Majorization Minimization Algorithm for
Markov Chain Recovery from Multi-step Transition Data

Input: D: multi-step transition data, Γ: adjacency informa-
tion (optional), α0, ξ0, µ0: hyperparameters

Output: θ̂ = {η̂, λ̂}: estimated parameters
1: Initialize θ.
2: repeat
3: Update Z following Eq. (8) or (12).
4: Update ν by numerical optimization.
5: Update η following Eq. (9) or (13).
6: until A stopping condition is met

Update of ν. To update ν we need some numerical opti-
mization techniques such as gradient descent. Gradient de-
scent based algorithms update the parameter at optimization
step ` as follows, ν`+1 ← ν` − γ`G

−1
` ∇νG(θ`,Z), where

γ` is the learning rate, G` is the identity matrix for gradient
descent, and Hessian is used as the Newton method. ∇ν is
the partial derivative operator w.r.t. ν. The partial derivative
can be computed as

∇νG(θ`,Z) = −
∑

i,j,k
(Mijk+Nijzijk)

∇ν(P k
ν )ij

(P k
ν )ij

+α0ν.

(10)

The experiments described later use the L-BFGS method [Liu
and Nocedal, 1989]. The optimization process is summarized
in Alg. 1.

We provide here the convergence property of the proposed
MM algorithm. To ensure the generality of the analysis to
cover the use of various numerical optimization techniques
for updating ν, we make the following assumption, similar to
the generalized EM algorithm [Dempster et al., 1977].

Assumption 1. Let νold and νnew be parameter ν before and
after the update by some (numerical) optimization, respec-
tively. Then, G((η, νnew),Z) ≤ G((η, νold),Z).

Under assumption 1, the following theorem holds.

Theorem 3. The proposed MM algorithm makes objective
L(θ) monotonically decreasing. The value is invariant if and
only if θ is at a stationary point.

Proof. (Theorem 3) Let us denote the parameters and
the auxiliary variables that satisfy L(θ) = G(θ,Z)
as θold = (ηold, νold) and Zold, respectively. We
also denote η after the first step of the optimization
given by Eq. (9) as ηnew and Z after the second step
given by Eq. (8) as Znew. Since A(η) is convex, G is
also convex w.r.t. η; G((ηnew, ν),Z) ≤ G((η, ν),Z)
holds (∀η). From the property of Z shown in Eq. (7),
G(θ,Znew) ≤ G(θ,Z) holds (∀Z). Using Assumption 1,
L(θold) = G(θold,Zold) ≥ G((ηnew, νold),Zold) ≥
G((ηnew, νnew),Zold)≥G((ηnew, νnew),Znew)=L(θnew).

4.5 Handling Infinite Mixtures
This section shows how to handle infinite mixtures. The key
is the use of approximation for computing the infinite sum-

mation in P (X ′s+1|X ′s) (Eq. (5)) by adopting the following
mild assumption.
Assumption 2. Markov chain Mν is irreducible and aperi-
odic for any parameter ν.

This assumption allows us to use Theorem 2. By using
(sufficiently large) truncation level Ktr, we can approximate
P (X ′s+1|X ′s) by P̃ (X ′s+1|X ′s) as follows:

P̃ (X ′s+1 = j|X ′s = i) (11)

=
∑Ktr

k=1
f(k|ηi)(P k

ν )ij + {1− F (Ktr|ηi)}(πν)j ,

where πν is the steady state probability of Markov chain
Mν . Thus infinite mixture models are handled by using
K = Ktr + 1 components, where the final component has
mixing ratio 1 − F (Ktr|ηi) and steady state probability πν .
Under Assumption 2, the following theorem holds.
Theorem 4. Given that Assumption 2 holds, there ex-
ist constants α ∈ (0, 1) and C > 0 such that
maxi∈X ‖P̃ (X ′s+1|X ′s = i) − P (X ′s+1|X ′s = i)‖TV ≤
CαKtr , where ‖ · ‖TV is the total variation distance 5 .

Then, the infinite mixture model of Eq. (5) is well approx-
imated by the approximated model of Eq. (11) with suffi-
ciently large Ktr. Proof is shown by using the following the-
orem.
Theorem 5. [Levin and Peres, 2017] If P is irreducible and
aperiodic, with stationary distribution π, there exist constants
β ∈ (0, 1) andD > 0 such that maxx∈X ‖P k(·|x)−π‖TV ≤
Dβk.

Proof. (Theorem 4) Since f is a discrete distribution, there
exists a finite value fmax := maxk,i f(k|ηi).

‖P̃ (xs+1|xs = i)− P (xs+1|xs = i)‖TV

=
1

2

∑
j

∑∞

k′=Ktr+1
f(k′|ηi)|(P k′

ν )ij − (πν)j |

≤ 1

2

∑
j

∑∞

k′=Ktr+1
fmax|(P k′

ν )ij − (πν)j |

≤
∑∞

k′=Ktr+1
fmaxDβ

k′ = (fmaxDβ
Ktr+1)/(1− β).

Setting C=fmaxDβ/(1 − β) and α=β completes the proof.

The algorithm for (approximate) infinite mixtures is de-
rived in an analogous manner to the finite model.

Update of Z. Similar to Eq. (8),

zijk = (12)
f(k|ηi)(P kν )ij∑Ktr

k′=1
f(k′|ηi)(P k′ν )ij+{1−F (Ktr|ηi)}(πν)j

(if k ≤ Ktr)

{1−F (Ktr|ηi)}(πν)j∑Ktr
k′=1

f(k′|ηi)(P k′ν )ij+{1−F (Ktr|ηi)}(πν)j
(otherwise)

.

5The total variation (TV) distance between probability distri-
bution µ and ν on X is formally defined as ‖µ − ν‖TV =
maxA⊂X |µ(A)−ν(A)|. From Proposition 4.2 in [Levin and Peres,
2017], TV is also computed as ‖µ − ν‖TV = 1/2

∑
x∈X |µ(x) −

ν(x)|.
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Update of η. Similar to Eq. (9),

µi =
[
ξ0 +

∑
j

{∑Ktr

k=1
(Mijk +Nijzijk)T (k)

+ (MijK +NijzijK)Eftr(x|ηi,Ktr,∞)[T (x)]
}]

/[
µ0 +

∑
j,k
Mijk +

∑
j
Nij

]
. (13)

where ftr(x|η, a, b) is the truncated distribution whose sup-
port lies in the range (a, b] 6and Eftr is the expectation of the
distribution

Update of ν. Similar to Eq. (10),

∇νG(θ`,Z)

= −
∑

i,j

{∑Ktr

k=1
(Mijk +Nijzijk)

∇ν(P k
ν )ij

(P k
ν )ij

+ (MijK +NijzijK)
∇ν(πν)j

(πν)j

}
+ α0ν.

The partial derivative of steady state πν can be computed as
7 ∇νπν = πν∇νPν(I − Pν + 1T1)−1, where 1 is a row
vector whose elements are all ones.

5 Experiment
This section confirms that the proposed method well handles
both unlabeled and labeled multi-step transition data. To eval-
uate how well the proposed method can recover 1-step tran-
sition probability, we use test data given in the form of com-
plete transition data (1-step transition data), see Fig. 1.

5.1 Setting

Synthetic data. In the synthetic data experiment, we set the
number of states to 15 and randomly generated chain edges
following [Morimura et al., 2009]. The true transition proba-
bility was set using the log-linear model where parameters ν∗
and feature φ were generated using a standard normal distri-
bution. We also added symmetric Dirichlet noise with param-
eter of 0.3 to the transition probability by taking the weight
sum with β = 0.1 for the noise term and 1− β = 0.9 for the
transition probability. The true label probability was set us-
ing a Poisson distribution whose parameters {λ∗i } were gen-
erated by a gamma distribution with shape = 2.0, scale = 1.0
8. We generated training and test data sets by generating
episodes (sequences of states from initial state) with 20 steps
in common. The number of episodes used in generating the
test data were 1000. We prepared 5 sets of training and test
data.

6The truncated distribution is often used in survival analysis and
is formally defined as ftr(x|η, a, b)={F (b|η)−F (a|η)}−1f(x|η)
if x in (a, b] and ftr(x|η, a, b)=0 otherwise.

7From πν = 1(I − Pν + 1T1)−1 as shown in Proposi-
tion (2.14.1) [Resnick, 2002].

8λi has mean and variance of 2.0. The 95th percentile of Poisson
distribution with λi = 4.0 lies between 7 and 8.

Real data. In the real data experiment, we used car probe
data provided by NAVITIME JAPAN Co, Ltd. The dataset
is a collection of GPS trajectories of individuals who used a
car navigation application in the greater Tokyo area, Japan.
We divided the region using an approximately 5km × 5km
grid mesh; the total number of mesh cells was approximately
150. We used the data recorded during the period between
2015.4.13 to 2015.4.17 (5 working days in total) in the morn-
ing (6:00 am to 10:59 am). The number of unique users per
day was, on average, approximately 8000. The data were
made by converting the GPS trajectories into sequences of
visited mesh cells (states). We excluded the states that ap-
peared fewer than 20 times per day on average and used only
episodes containing more than 2 steps. Here we did not use
feature φ. Since the data are complete transition data, training
data were made by randomly extracting the visited state fol-
lowing the generative process using ZTP, whose parameters
are set via a gamma distribution analogous to the synthetic
data. Training and test data were made from the logs of one
day and that of the next day, respectively. We ran 4 trials
using 4 sets of training and test data.

Evaluation Measure. As the evaluation metric, we
used the negative test log likelihood computed using
the test data given in the form of complete transition
data. The negative test log likelihood is defined as
(1/Ttest)

∑
i,j∈X −ñij log p̂ij , where Ttest is the number of

total transitions and ñij is the number of transitions from state
i to state j in the test. p̂ij is the estimated 1-step transition
probability. The results of proposed method using log-linear
model for transition probability and Poisson and ZTP for la-
bel probability with K=10 are reported 9. A lower value in-
dicates 1-step transition probability is precisely recovered.

Baseline Methods. Since our method is the first method
that can estimate MC parameters from multi-step transition
data, we decided to compare the proposed method with the
simple baseline methods that use only labeled multi-step tran-
sition data. Note that existing methods including HMM
and Bayesian nets are not designed to recover 1-step tran-
sition probability. Using the log-linear model similar to the
proposed method, the parameter of the baseline, ν̂base =
arg minν

{
−
∑
i,j,kMijk log{(P k

ν )ij}− logP (ν)
}

, was ob-
tained by numerical optimization. A comparison with this
baseline also confirms the usefulness of the proposed method
that can handle unlabeled data.

5.2 Results
Quantitative Result. Figure 3 shows the results of the syn-
thetic data experiment. We can confirm that the performance
of the proposed method improves as the amount of unlabeled
multi-step transition data increases for both cases wherein the
labeled multi-step transition data is and is not used; this ver-
ifies that the proposed method well handles unlabeled multi-
step transition data. From Fig. 3b, it is also confirmed that the
proposed method outperforms the baseline when challenged

9In this experiment, “sensitivity of the truncated level K” de-
scribed later, shows that stable performance is demonstrated when
K is set to 10 or more.
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(a) w/o Labeled Data (b) w/ Labeled Data

Figure 3: Results of synthetic data experiment in which
the number of episodes used for unlabeled multi-step
transition data was varied. The performances (a) with-
out and (b) with labeled multi-step transition data made
from 3 episodes are shown. Lower values are better.

(a) w/o Labeled Data (b) w/ Labeled Data (5%) (c) w/ Labeled Data (10%)

Figure 4: Results of real data experiment in which the ratio of episodes used for
unlabeled multi-step transition data was varied. The performances (a) without and
(b)(c) with labeled multi-step transition data are shown. The labeled multi-step
transition data were made from (b) 5% and (c) 10% of the episodes. Lower values
are better.

Figure 5: Result of varying truncation level K in the
proposed method. NoE is the number of episodes used
for unlabeled data.
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(b) Proposed

Figure 6: (a) True and estimated transition probability yielded by (b) Proposed
method in synthetic data experiment where the number of episodes used for unla-
beled multi-step transition data is 40.

with labeled multi-step transition data. This verifies the use-
fulness of our method in its ability to handle both labeled and
unlabeled data.

Figure 4 shows that similar results were obtained in the
real data experiment. Moreover, by comparing the perfor-
mance of the proposed method with that of the baseline in
Fig. 4bc, the degree of improvement is large when the amount
of labeled multi-step data is small (5%); this implies that the
proposed method is more effective when the amount of la-
beled data is limited. We can also confirm that the perfor-
mance of the proposed method improves as the amount of
labeled data increases. These results confirm the effective-
ness of our method for recovering 1 step transition probability
from multi-step transition data.

Sensitivity of the truncation level K. Figure 5 shows the
results of the synthetic data experiment when the truncation
level (or the number of components) of the proposed method,
K, was varied. It shows that the performance improves as
the value of K increases, and converges when K is approx-
imately 10. This demonstrate that the proposed method pro-
vides stable performance when K is set to 10 or more.

Qualitative Result. Figure 6 illustrates the true and es-
timated 1-step transition probability from the synthetic data
experiment. It confirms that the estimated probability by the

proposed method is closer to the true probability. This also
implies that the proposed method can accurately estimate MC
parameters.

6 Conclusion
This paper proposed a new model and algorithm for esti-
mating MC parameters from labeled and unlabeled multi-
step transition data for recovering 1-step transition proba-
bility from incomplete transition data. We proved the con-
vergence of the algorithm and introduced an approximation
scheme for handling infinite mixture models that has strong
theoretical support. We also evaluated the effectiveness of
the proposed method using synthetic and real data. Remain-
ing future work is to theoretically analyze the performance
of the proposed method. Developing Bayesian algorithms is
also a promising direction.
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