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Abstract

Practically, we often face the dilemma that some of
the examples for training a classifier are incorrectly
labeled due to various subjective and objective fac-
tors. Although intensive efforts have been put to
design classifiers that are robust to label noise, most
of the previous methods have not fully utilized
data distribution information. To address this issue,
this paper introduces a bi-level learning paradigm
termed “Spectral Cluster Discovery” (SCD) for
combating with noisy labels. Namely, we simul-
taneously learn a robust classifier (Learning stage)
by discovering the low-rank approximation to the
ground-truth label matrix and learn an ideal affinity
graph (Clustering stage). Specifically, we use the
learned classifier to assign the examples with sim-
ilar label to a mutual cluster. Based on the cluster
membership, we use the learned affinity graph to
explore the noisy examples based on the cluster
membership. Both stages will reinforce each other
iteratively. Experimental results on typical bench-
mark and real-world datasets verify the superiority
of SCD to other label noise learning methods.

1 Introduction

Traditional supervised learning models such as Support Vec-
tor Machines and Deep Neural Networks usually require
accurately labeled datasets for model training. However, la-
beling errors often occur in practice due to the human fatigue
[Magoulas and Prentza, 1999], knowledge limitation [Gong
et al., 2017], or measurement error of instruments [Grubbs,
1973]. Therefore, it is crucial for us to design effective
training algorithms which are robust to noisy labels.

Several methods for tackling label noise have been devel-
oped so far, which can be roughly divided into two types. The
methods of first type rely on data cleansing technique. The
early-staged methods basically consist of two steps, namely
picking up the clean data or filtering out the noisy data, and
then deploying the clean data to train the classifier. For in-
stance, neighborhood relationship [Muhlenbach et al., 2004]
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was utilized to filter out the noisy examples. In [Miranda
et al., 2009], different classifiers were employed to vote for
the clean data. Recent data cleansing methods have focused
on Deep Neural Networks. MentorNet [Jiang er al., 2017]
used a self-paced curriculum to select the clean set. Co-
teaching [Han er al., 2018b] adopted peer networks and used
the “small-loss” and disagreement behaviors of network to
choose the probably reliable examples for network updating.
However, all the above approaches deploy various heuristic
and ad-hoc criteria to decide the clean examples with correct
labels, which lack theoretical guarantees.

Therefore, the methods belonging to the second type aim
to train the classifiers that are robust to label noise directly,
without the need of selecting the clean examples. For exam-
ple, in [Natarajan er al., 2013], an unbiased risk estimator
was designed for establishing loss function, which made it
possible to resist the influence of label noise and learn a
robust classifier. In [Patrini et al., 2016], the loss function was
factorized into two parts, in which only one part was affected
by noisy labels. Consequently, they slightly modified the
vanilla Stochastic Gradient Descent (SGD) during parameter
optimization to reduce the impact of label noise on model
training. Besides, in [Gao et al., 2016; Shi et al., 2018;
Gong et al., 2019], a similar decomposition was proposed,
where the label-dependent part was tackled by unbiasely
estimating the labeled instance centroid. Nonetheless, these
techniques can only deal with canonical binary classifica-
tion problem and often require prior knowledge on noise
rate or label flipping probability, which may be infeasible
or inaccessible in real-world applications. In fact, several
methods [Patrini et al., 2017; Northcutt et al., 2017; Han et
al.,2018a] was developed for prior knowledge estimation, but
their performances are often not satisfactory in the presence
of high-dimensional datasets [Han er al., 2018b].

In addition, there are some other approaches for dealing
with noisy labels. For instance, [Xia er al., 2019] utilized
Transition-revision to designed a deep-learning-based risk-
consistent estimator to accurately tune the transition matrix;
[Tanaka et al., 2018] jointly trained the networks and es-
timated true labels, and [Wei et al., 2019] employed the
row-sparse residual matrix to capture the incorrectly labeled
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Figure 1: The explanation of our SCD model. Based on the dataset
in (a), the affinity graph used in LNSI, computed by Gaussian kernel,
is visualized in (b), where the data cluster distribution seems quite
unclear, and it may damage the learning performance. Instead, in
(c), our SCD establishes an ideal affinity graph with exactly two
connected components which is the same as the amount of classes.
In (d), the ground-truth labels of the six noisily labeled examples are
discovered thanks to the exploited spectral clusters, and the pseudo-
label prediction of each noisy data is presented. The point size in (d)
indicates the absolute value of pseudo-label for every example.

examples. However, all the above approaches share an im-
plicit deficiency that they have not fully utilized the data
distribution information for label noise learning.

In this paper, we propose an effective learning paradigm
called “Spectral Cluster Discovery” (SCD), which allows
us to train a robust classifier even when the noise rate is
relatively high (e.g., 60% noisy examples occur in the training
set). Our idea stems from LNSI approach [Wei et al., 2019]
and the observation that the examples distributed within a
connected cluster are likely to have same class label. Sim-
ilar to LNSI, our SCD also handle label noise in a matrix
recovery fashion (Learning stage). LNSI works on a fixed
pre-constructed affinity graph (Figure 1 (b)) for noise identi-
fication, which lacks adaptability during the learning process.
Thus, the distribution information given by the affinity graph
may be misleading. In contrast, the graph in our method
will be dynamically updated (Clustering stage) according to
the gradually discovered data clusters. Namely, we use the
learned classifier to assign the examples with similar labels
into the same connected component in the affinity graph,
where each connected component represents a class of exam-
ples. Naturally, we want the number of connected component
to be exactly the same as the total amount of classes. Based
on the well-learned graph (Figure 1 (c)), we can then train
a classifier by discovering the noisy examples whose labels
are different with those in the same cluster and re-annotate
them according to the cluster membership (Figures 1 (c)(d)).
Moreover, we alternate between the above two stages to make
sure that both the classifier and affinity graph are optimal.

Consequently, we formulate our model as a bi-level opti-
mization problem [Wang et al., 2015], where the upper-level
problem (Learning stage) is to optimize a classifier in the
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presence of label noise, and the lower-level problem (Cluster-
ing stage) is to exploit the spectral clusters for graph updating.
The two problems are iteratively solved and are also benefited
from each other, so that a robust classifier can be finally estab-
lished. Theoretically, we prove that the generalization error of
the induced classifier is upper bounded. Experimentally, we
compare our proposed SCD with other state-of-the-art label
noise learning algorithms on several popular datasets, and the
results verify the superiority of SCD to other typical methods.

2 Problem Setup

Let (X1, 1), (X2,¥2), - - - (Xn, ¥) be n training examples
identically and independently (i.i.d) drawn from an underly-
ing (noise-free) distribution D over X x ), where X C R4
denotes the feature space of dimension d, and Y C {0,1}¢
denotes the c-dimensional label space with ¢ being the num-
ber of classes. Conventionally, we represent the class label of
each data as a “1-of-c” indicator vector y = (y',42,---,y°) ",
where y* = 1 if the corresponding example x belongs to
the k-th class and y’f = 0 otherwise. Therefore, traditional
supervised learning algorithm aims to design a classifier f’:
X — Y which is able to classify any unseen test example
x € R? to one of the c classes.

However, in label noise learning, the examples from clean
distribution D are unavailable. Before being observed, ran-
dom classification noise are injected into training examples
and what we can obtain are the corrupted examples (x1,
¥1), (X2,¥2), -+, (Xn, ¥») drawn from the noisy distribution
D over X x ), where Y C {0,1}¢ denotes the noisy label
space while X C R? remains the same, then our goal is to
train a robust classifier f that can achieve accurate classifica-
tion in the presence of noisily labeled training examples. In
the rest of the paper, we denote a matrix M with bold capital
letter and denote IVI; as the i-th column of matrix M.

3 Model Establishment

As is mentioned in the introduction, SCD alternates between
learning a robust classifier in the presence of label noise (i.e.
Learning stage) and discovering data clusters in the training
set (i.e. Clustering stage) to aid noise correction, in which the
latter is the core of SCD to boost the learning performance.
Next we will detail our SCD algorithm.

Learning Stage. The function of Learning stage is to learn
a classifier in the presence of label noise (Figures 1 (a)(d)),
by optimizing the low-rank approximation of the ground-
truth label martrix. Let X = (x1, X2, - -, X,) € R¥" and
Y = (¥1,¥2," -, ¥n) € RO denote the feature matrix and
the noisy label matrix, respectively, and we decompose Y
asY =Y + E = W'X + E, in which the ground-truth
label matrix Y € R*™ can be recovered by the projection
matrix W € R?*¢ of the classifier f, and the error matrix
E € R°*™ measures the difference between the observed
label matrix and the ground-truth label matrix. Moreover,
it is reasonable to assume that the ground-truth label matrix
can be well approximated by a low-dimensional subspace [Xu
et al., 2016], so we encourage the ground-truth label matrix
W X to be low-rank by employing matrix factorization,
ie. W = UV [Xu et al., 2016], where U € R%*" and
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V € R"*¢ (r controls the maximal rank of W T X). Besides,
we hope that the number of non-zero columns of error matrix
E is small since the label noise in training examples is usually
sparse [Wei et al., 2019], so we minimize the ¢, ; norm
|El21 = > iy [|Ei]|2. Moreover, to fulfill the assumption
that similar examples should have similar labels, we further
introduce the graph Laplacian regularizer. Define an affinity
matrix S € R™*", with the (7, j)-th entry (i.e. s;;) computed
by s;; = exp(—||x; — x;||*/(20?)) ( o is Gaussian kernel
width), and s;; measures the similarity between x; and x;.
The graph Laplacian matrix L. € R™*" can then be computed
basedupon Sas L =D — (ST +8S)/2 where D € R"*" isa
diagonal degree matrix with the ¢-th diagonal element defined
by d; =, j Sij- Therefore, the Learning stage is formulated
as ~

guin [ = (UV) "X ~ B[+ A |El2. M

r([U[IF + [IVIF) + A Tr((UV) " X)L((UV) 'X) 1),

where “Tr(-)” computes the trace of the corresponding ma-
trix, A1, A2 and A3 are nonnegative trade-off parameters.
However, this formulation depends on a fixed pre-constructed
affinity matrix S for noise identification, which can be inac-
curate and also lacks adaptability during the learning process.

Clustering Stage. The function of Clustering stage is to
aid the Learning stage. To this end, this stage builds an
ideal block diagonal affinity graph which is able to help
the Learning stage to discover and correct noisy examples.
Specifically, if the label of an example is different from its
companion in the same connected component, then its label
are probably wrong. Thus, we re-annotate this examples
based on its cluster membership, so that the robust classifier
can be trained (Figures 1 (c)(d)).

In order to learn such an affinity matrix, we strictly con-
strain the rank of the graph Laplacian matrix to be n — ¢
to make sure that the affinity graph will contain exactly ¢
connected components [Nie et al., 2016]. Meanwhile, we
assume that the examples with similar labels should have
larger s;; than those with dissimilar ones. To avoid trivial
solution, the sum of each column of S is constrained to be 1
(i.e. S/ 1 = 1, where 1 denotes the all-one column vector).
Further, the affinity matrix should be nonnegative, so the
Clustering stage is formulated as

min [|S|[ + pTr((UV) ' X)L(UV)'X)7), @)

st.8]1=1,s;; > 0,rank(Ly) =n —c,

where L, denotes the graph Laplacian matrix computed by a
learned affinity matrix S instead of a pre-constructed one, w is
a nonnegative trade-off parameter, and ||S||% is minimized to
avoid over-fitting. By solving problem (2), we will establish
an ideal affinity graph that can benefit the Learning stage,
so we apply the learned affinity matrix S to problem (1), by
substituting L by L. After that, we can obtain the cluster
membership for each example according to the ground-truth
label matrix.

Howeyver, if we do not have access to the true labels of
all training examples before we build such an affinity graph,
the result may not be satisfactory. That being said, we may
assign the examples with noisy label to the wrong connected
component because we are misguided by that inaccurate in-
formation. To address this issue, we utilize the Learning
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stage to help the Clustering stage. Namely, we integrate the
Clustering stage (i.e. problem (2)) to the Learning stage (i.e.
problem (1) by which we can dynamically build an adaptive
affinity matrix and learn a robust classifier according to the
gradually explored data clusters (Figures 1 (b)(c)).

To achieve this effect, our SCD paradigm is finally formu-
lated as a bi-level optimization problem as

. < T 2
gain Y —(UV) X —Ellp + A [|Ell2,0 &)
+ 2 ([UJE + (V2
AsTr ((UV) X)Ly (V) X)),

Upper-level problem: Learning stage

st. Ly = argmin ||S|| 2T (((UV)TX)TLS((UV)TX)> .
rank(Lg)=n—c,
sl 1=1,s;;>0

Lower-level poblem: Clustering stage

The upper-level problem (which is directly related to label
noise learning) can guide the lower-level problem (which
boosts label noise learning) to gradually explore the true data
clusters, meanwhile the lower-level problem is helpful for
the upper-level problem to progressively discover the noisy
examples whose labels are different from those in the same
connected component, and train the robust classifier. Con-
sequently, these two procedures can be benefited from each
other and dynamically work together to acquire good learning
result. Besides, according to the Weierstrass Theorem in
[Patriksson, 2008], it can be easily verified that our bi-level
model (3) satisfies the conditions which are sufficient for a
bi-level problem to have an optimal solution.

4 Optimization

In this section, we present the detailed solution for optimizing
the SCD parameters in the bi-level formulation (3), which
alternatively optimizes between the upper-level problem and
the lower-level problem mentioned above.

4.1 Upper-level Problem Optimization

The upper-level problem (i.e. Learning stage) can be it-
eratively solved by sequentially updating U, V and E by
solving their respect subproblem. After taking the derivative

of subproblem regarding U w.r.t. U, and denoting ()T as the
pseudo-inverse of the corresponding matrix, we can update
U by solving the following Sylvestor equation [Bartels and
Stewart, 1972]
(XX T+ XXLX U 4+ U (VV T )
=X(Y -E)"VvT(vv
By denoting I as the identity matrix with proper size
throughout this paper, then we have

V = (UXX U4 XI+ MU XLX U U X(Y-E)", (5
According to [Gong et al., 20171, by defining Q =
(UV)TX — Y, the closed-form solution of E is given by

illa—A :
Ei: HQ“&#QM if HQI||2>A2
, otherwise

(6)
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4.2 Lower-level Problem Optimization

The lower-level problem (i.e. Clustering stage) defined in Eq.
(2) is difficult to solve due to the rank constraint, so necessary
ways should be found to relax it. According to [Nie er al.,
20161, given a large enough p, the lower-level problem is
equivalent to the following problem:

min [S||7+4Tr((UV) X)La(UV)' X)) +pTr(F'LF) (7)

st.8/1=1,5; >0,F e R"*“ F F=L
When S is fixed, the problem (7) becomes:
min Tr(F'L,F), st.FeR"™ F F=I )

The solution of the above optimization problem can be
easily obtained by setting the columns of F equal to the ¢
smallest eigenvectors of L [Nie et al., 2016]. When F is
fixed, with F, being the k-th column of F', the columns of S
can be separately updated in parallel by solving

mln1 Zs” +,uZ [(UV)'x; —

s;T1
>0 J=1

oY |IF —
j=1

=

By denoting w;; = [[(UV)Tx; — (UV)x;]|3 and b;; =
|F; — F;||3 as the j-th element of W, and B;, and also
denoting V; = —5W; — £B,, then based on [Huang et al.,
20151, s;; has a closed-form solution as

(UV)'x,ll3s:5 (9

8452

Fj[5s:;.

sy = (215 — 4 )+ (10)
where Z;, = V,; — %VZ- + %1 and ¢ can be obtained by
solving f(q;) = L > i-1(gf — wij)+ — ¢i = 0 with Newton

method.

After that, we update the graph Laplacian matrix via L, =
D — (ST + S)/2, for the next iteration. After the algorithm
converges, we can obtain the parameter of robust classifier
by W* = U*V* and label y of any given example x can
be computed by y = argmax;(W*'x);. The complete
algorithm is summarized in Algorithm 1, from which we see
that our SCD model (Eq. (3)) can be easily trained.

For time complexity, in line 8 of Algorithm 1, the Sylvester
equation for optimizing U is solved by Bartels-Stewart al-
gorithm that takes O((maz{d,c})?) complexity. Next,
we update V by computing the inverse of a ¢ X ¢ ma-
trix in line 9, and the time complexity is O(c®). The
computation of the /5 norm of every column of E in
line 10 requires O(nc) complexity. Moreover, in line 14,
we search for ¢ for every column S; of S by Newton
method, of which the time complexity is O(nlogn). Finally,
computing the eigenvectors of F takes O(n?) complexity.
Therefore, the total complexity of the proposed model is
O (T ([maz{d, c}]* + ¢* + nc) + To(nlogn + n?)), by as-
suming that the upper-level and lower-level optimizations
are iterated for 77 and 75 times, respectively. Since SCD
often converges in a few iterations, the time complexity is
acceptable.

5 Theoretical Analysis
This section analyzes the generalizability of our proposed
SCD. SCD aims to learn an decision function fy : X — Y
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Algorithm 1 The algorithm for solving SCD

1: Input: Feature matrix X, corrupted label matrix Y,
trade-off parameters Ay, A2, A3, 1}

2: Randomly generate an affinity matrix S.
3: Initialize U =0,V = O, E = O; Set p = 1000;
4: Setiter =0
5: repeat
6: /I Learning stage
7: repeat
8: Update U via Eq. (4);
9: Update V via Eq. (5);
10: Update E via Eq. (6);
11: until Learning stage has converged;
12: /I Clustering stage
13: repeat
14: Update S via Eq. (10);
15: Update F via solving Eq. (8);
16: until Clustering stage has converged;
17: /I Update graph Laplacian matrix
188 Ly=D-(S"+8)/2;

19: iter := iter + 1;

20: until SCD has converged.

21: Output: Optimal parameter of robust classifier W* =
U*v*,

which is controlled by § = (W,E). Let © = {(W,E) :
rank(W) < k, |[Wllr < A, ||Elj2,1 < &2,1} and Fg be the
feasible solution set of 6 and the feasible solution set of fy,
respectively. In order to find the optimal f,;, SCD minimizes
the empirical ¢-risk as

fo =argmin R,(f)= argmin — Z LW

"xi+E;,¥:). (1D
fo€EFo (W,E)ce

Let Ry(f) = Exy) [R(f)] be the expected /-risk, then
our goal is to show that the empirical /-risk will converge
to the expected f-risk when n is sufficiently large. As is
shown in [Bartlett and Mendelson, 2002], the Rademacher
complexity is an useful tool for analyzing the bound of the

generalization error of SCD, therefore we present the defini-
tion of Rademacher complexity as follows. Denote

Rn(Fo) =E[R(Fo)] (12)

as the Rademacher complexity of the function class 7 on X
and

R(Fo) = Ex.o [Sup fzaz x,:| (13)

feFo I =1

as the empirical Rademacher complexity on the training
set, where 0; € {—1,1}(i = 1,2,---,n) are independent
uniform Rademacher random variables, then the Rademacher
complexity of our model can be written as [Xu et al., 2016]

n

Rn(Fo) = %Ew [ sup oi(W'x; + E;) (14)

(W.E)e© i=1

By defining

sup ZUiWTxi:| , (15)

1
‘2'7('1,1)(]:9) = —Ex,»
n o (wEee =
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and
1 n
RP (Fo) = —Ex.o | sup 0B |, (16)
(Fo) = — (w,me@;
we have
Rn(Fo) = R\ (Fo) + R (Fo), an

so we should analyze R (Fo) and R (Fo), respectively.

Given the optimal S*, and for any S which is not optimal
but meets the constraints in the lower-level problem, we can
prove that

S* |2+ pTx ((WTX)L;‘(WTX)T) <n+2uc(n —c), (18)
which leads to
Tr ((XW)TL:(XW)) < i (n+2u(n——c)).  (19)
According to [Wei et al., 2019], we know that
Tr(W T X)LI (W X)) > Aain(XLIX ) [WE,  (20)

where A\pin(-) denotes the minimal eigenvalue of the corre-
sponding matrix. Combining Eq. (19) and Eq. (20), and

denoting Wy = \/5(n +2u(n — )/ Amin(XL2X) T, we
have

[Wlr < Wg. @D

By defining X = ), 0;X;, and arranging ¢ copies of X

asad x ¢ matrix X = (X, X, - -, X), we have
1 _
RY(Fo) = —Exo { sup <W,X>} . (22)
n Weow

Then we have the following lemma:
Lemma 1. ([Xuetal, 2016]) Let Ow = {W : rank(W) <
k [Wllr < Wr}, IX||r < Xp and ||x;||2 < Xb, then the

Rademacher complexity Rg, f@ is upper bounded by:

R (Fo) < 4 / WFX2 (23)

Now we introduce another useful lemma.

Lemma 2. ([Wei et al., 2019]) Let O = {E : |[E||21 <
&1}, R (Fo) is upper bounded by
R (Fo) < &21 LZEC). (24)

Based on Lemma 1 and Lemma 2, we can easily derive the
bound of the expected ¢-risk, namely
Theorem 1. Let ¢ be the loss function bounded by B with
Lipschitz constant Ly, and 6 be a constant where 0 < § < 1.
Then with probability at least 1—0, we have

max|Ri(f) = Ru(f)] (25)
<oty (w0000 ) 1.5y [0
(26)

This inequality can be easily derived based on Lemma 1
and Lemma 2. Theorem 1 indicates that the expected loss is
upper bounded. Specifically, Wr and &, ; are related to the
learned affinity matrix and the error matrix, respectively. If
the minimal eigenvalue of XL X is large or the noise rate
is small (i.e. &1 is small), the upper bound of the expected
£-risk in the righthand side of Eq. (26) will be reduced.
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Dataset #exapmles  #classes  #features
Zoo 101 7 16
Seed 210 3 7
Haberman 306 2 3
lonosphere 351 2 34
German 1000 2 24

Table 1: An overview of the adopted UCI benchmark datasets

6 Experiment

In this section, we compare SCD with several representative
methods on a number of real-world collections, and also
study the parametric sensitivity of SCD.

6.1 Experiments on UCI Benchmark Dataset

We compare SCD with four baseline algorithms on six UCI
benchmark datasets including Zoo, Seed, Haberman, Iono-
sphere, and German, whose attributes are summarized in
Table 1. Note that 80% of the examples in each dataset
are randomly chosen to establish the training set, and the
remaining 20% examples in each dataset are served as test
set. To incorporate different noise rate to the training sets, we
randomly pick up 0%, 20%, 40%, and 60% examples from
the training sets and inject symmetric noise [Patrini et al.,
2016] to these selected examples. Such contamination and
partition are conducted five times, so the accuracies are the
mean values of the outputs of five independent trials.

The baselines include: 1) Unbiased Logistic Estimator
(ULE) [Natarajan et al., 2013], 2) u Stochastic Gradient
Descent (uSGD) [Patrini et al., 2016], 3) Labeled Instance
Centroid Smoothing (LICS) [Gao et al., 2016], 4) Rank Prun-
ing (RP) [Northcutt et al., 20171, and 5) Label Noise handling
via Side Information (LNSI) [Wei et al., 2019]. Note that the
first three approaches are designed for binary classification
tasks, so we use the one-vs-rest strategy to apply them to
multi-class cases. For fair comparison, the prior knowledge
such as noise rate is provided for all methods, and LNSI is
implemented on a 10-NN graph with Gaussian kernel width
O = 0.5.

The classification accuracies of all compared methods on
the test set are presented in Figure 2. We observe that SCD
yields better performance than other baselines in most cases.
Especially, when the noise rate increases, the accuracies of
most baselines decrease, but SCD still performs robustly.

6.2 Experiment on Real-world Datasets

We use ISOLET dataset and CIFAR-10 dataset to demonstrate
the superiority of SCD in dealing with different kinds of prac-
tical problems. First, we address a speech recognition task
based on the ISOLET dataset which contains 150 subjects
that are required to pronounce each letter in the alphabet (i.e.
from“A” to “Z”) twice. The dataset consists of 7797 examples
with 617 dimensions. The way for partitioning the training
set and test set is the same as previous experiments, and we
also vary the noise rate from 0% to 60%. From Table 2, it
can be observed that SCD achieves better classification result
than other baselines, and is more robust than other methods
when the noise rate increases.

Second, we use CIFAR-10 to validate the ability of SCD on
processing image data, which contains 60000 natural images
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Figure 2: Experimental results on five UCI benchmark datasets. The subfigures (a) ~ (e) represent the results on Zoo, Seed, Haberman,

lonosphere, and German datasets, respectively.

[ Method [ 0% [ 20% [ 40% [ 60% ] Method [ 0% [ 20% [ 40% [ 60% ]
ULE 0.82310.104v 0.74740.060v" 0.6184+0.079v" 0.41740.078v ULE 0.82310.104v 0.74740.060 v* 0.6184+0.079v 0.41740.078 v/
nSGD 0.79640.020v 0.74440.021v 0.47040.047v 0.47540.037v nSGD 0.74340.005 v 0.74140.009 v/ 0.72440.010 v/ 0.71640.001v
LICS 0.88340.022v 0.75840.048v 0.61540.060v 0.44240.052v RP 0.87040.007 0.76940.005 v/ 0.64440.004v 0.47540.007 v
RP 0.9654-0.005 0.83840.007v 0.71610.011v 0.55740.001v LNSI 0.85340.003 0.8494-0.004 0.8374:0.004 0.77640.003
LNSI 0.8914-0.006 0.82340.006v 0.82140.012v 0.80540.019v SCD 0.8744-0.003 0.8664-0.004 0.8424-0.006 0.77340.010
SCD 0.9144-0.003 0.91740.006 0.9114+0.016 0.8844-0.015

Table 2: The results of all the compared methods on ISOLET dataset.
The classification accuracies (mean=+tstd) under different levels of
label noise are presented. The best record under each label noise
level is marked in bold and v'indicates that SCD is significantly
better than the corresponding method (paired ¢-test with 95% confi-
dence level).

across 10 classes. In our experiment, we randomly pick
up 30000 image examples form CIFAR-10 across different
classes. The resolution of each image is 32 x 32 x 3. Other ex-
perimental settings are the same as before. The classification
accuracies of all the compared approaches under different
noise rates are shown in Table 3. It can be observed that SCD
outperforms other methods and is robust with the increase of
the noise rate. Note that LICS is not involved as it is not
scalable to CIFAR-10 dataset.

6.3 Parametric Sensitivity

Note that the objective function Eq. (3) in our method con-
tains four trade-off parameters A1, A2, A3 and p that should
be manually tuned. Therefore, it is necessary to discuss
whether the choices of them will significantly influence the
performance of SCD. To this end, we examine the classi-
fication accuracy of SCD on test set at two different noise
rates (20% and 60%) via changing one of A\, Ag, A3 and
1, and meanwhile fixing the others to the optimal constant
values under different datasets and different noise rates (i.e.
A =1073, A5 = 10, \; = 10" and p* = 1072 for both
noise rate 20% and 60%).

The ISOLET dataset is used for the parametric sensitivity
analysis. Table 4 shows the variation of accuracies w.r.z. the
four trade-off parameters on ISOLET dataset.

As is shown in Table 4, SCD is robust to the variations of
all the trade-off parameters in a wide range, so they can be
easily tuned for practical use. Besides, we learn that \; and
w are preferred to be small; while A2 and A3 are suggested to
choose a relatively large number.

7 Conclusion

In this paper, we propose a novel bi-level paradigm to solve
the label inaccuracy problem. Specifically, we utilize the
distribution information of the dataset by learning an adaptive

Table 3: The results of all the compared methods on CIFAR-10
dataset. The classification accuracies (meanz+std) under different
levels of label noise are presented. The best record under each
label noise level is marked in bold and v‘indicates that SCD is
significantly better than the corresponding method (paired ¢-test
with 95% confidence level). LICS is not involved as it is not scalable
to CIFAR-10 dataset.

A1 1073 ] 1072 ] 1071 [ 10°
20% | 0912 | 0914 | 0926 | 0919
60% | 0.863 | 0911 | 0875 | 0879
Ao 1073 ] 1072 [ 1071 [ 10°
20% | 0804 | 0917 | 0917 | 0011
60% | 0.601 | 0911 | 0881 | 0876
A3 1073 ] 1072 [ 101 [ 10°

20% 0.915 0.917 0.912 0.914
60% 0.869 0911 0.870 0.845

u 10=° T 1072 10T ] 100
20% | 0916 | 0917 | 0919 | 0911
60% | 0875 | 0911 | 0883 | 0.885

Table 4: Analysis of the parametric sensitivity of SCD.

affinity graph which is ideally block diagonal, and integrate
it to the learning of the robust classifier. Moreover, the
learned classifier can help the learning of the affinity graph,
in which way this two stages mutually complement to each
other. We devise the optimization algorithm for the proposed
SCD. Experimental results on several typical datasets reveal
that SCD generally obtains higher classification accuracies
than existing state-of-the-art label noise learning methods.
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