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Abstract

Recently, diverse primitive skills have been learned
by adopting the entropy as intrinsic reward, which
further shows that new practical skills can be pro-
duced by combining a variety of primitive skills.
This is essentially skill transfer, very useful for
learning high-level skills but quite challenging due
to the low efficiency of transferring primitive skills.
In this paper, we propose a novel efficient skill
transfer method, where we learn independent skills
and only independent components of skills are
transferred instead of the whole set of skills. More
concretely, independent components of skills are
obtained through independent component analy-
sis (ICA), which always have a smaller amount
(or lower dimension) compared with their mix-
tures. With a lower dimension, independent skill
transfer (IST) exhibits a higher efficiency on learn-
ing a given task. Extensive experiments including
three robotic tasks demonstrate the effectiveness
and high efficiency of our proposed IST method
in comparison to direct primitive-skill transfer and
conventional reinforcement learning.

1 Introduction

Deep reinforcement learning (DRL) has wide applications in
various challenging fields, such as real-world visual naviga-
tion [Zhu er al., 20171, playing games [Silver er al., 2016]
and robotic controls [Schulman et al., 2015]. However, con-
ventional algorithms are incapable to deal with complex en-
vironments with quite difficult tasks and extremely sparse re-
ward [Kulkarni er al., 2016]. Inspired by the human intel-
ligence that can explore the environment by themselves and
learn various skills to significantly improve their ability and
accomplish tasks, multi-skill DRL has been proposed as a po-
tential solution to handle tasks in complex environments [Ey-
senbach et al., 2018]. A significant breakthrough of muti-skill
learning is the development of autonomous skill discovery,
which can acquire multiple skills autonomously without ex-
trinsic reward by maximizing an information theoretic objec-
tive [Gregor et al., 2016] [Singh et al., 2019]. By transferring
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Figure 1: PCA of primitive skills: 6, 10,20 and 50 primitive skills
are generated by existing skill discovery algorithms. PCA on ac-
tions shows that there is strong correlation between these primitive
skills, where the normalized eigenvalue of cross-correlation denotes
the percentage of each independent component.

pre-trained skills, the learning process in a new environment
can be greatly shorten and the efficiency is thus enhanced.

In this paper, skill transfer is to learn primitive skills in
a source environment without extrinsic reward and reutilize
them in a target environment, which can acquire a higher
learning efficiency than learning from scratch. Skill transfer
can greatly accelerate the learning process in a target environ-
ment because the learned primitive skills provides reusable
abstraction of the source environment [Sahni et al., 2017].
However, with the existing direct skill transfer, there are two
problems resulting in the low learning efficiency:

e Strong correlation: We analyze the statistical char-
acteristics of primitive skills that are generated from
the existing skill discovery methods [Eysenbach ef al.,
2018] [Sharma et al., 2019]. By using principal compo-
nents analysis (PCA) [Bryant and Yarnold, 1995] on ac-
tions of primitive skills, Figure 1 shows the eigenvalue
and the corresponding percentage of principal compo-
nents in primitive skills. It is observed that the actions
generated by distinct primitive skills are strong corre-
lated with each other, which indicates that the amount
of skills can be reduced by eliminating this correlation
so that the skill dimension is thus decreased.

e Unbalance of skill discovery and transfer: In the skill
discovery, the agent learns each of primitive skills sep-
arately in a source environment. However, in the skill
transfer, all primitive skills are combined to instruct the
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Figure 2: Framework of Independent Skill Transfer (IST).

agent in a target environment [Peng ef al., 2019]. As
noticed, the primitive skill in skill discovery and skill
transfer play a distinct role. A more balanced scheme
might improve the performance of skill transfer.

To overcome these two problems above, we propose to
learn independent skills for efficient skill transfer, where the
learned primitive skills with strong correlation are decom-
posed into independent skills. More concretely, Figure 2
shows the process of independent skill transfer (IST). Di-
verse primitives skills are firstly cultivated in a source envi-
ronment. By taking actions to represent such primitive skills,
the agent then decomposes these primitive skills to acquire
independent skills, where independent component analysis
(ICA) [Hyvérinen and Oja, 2000] is employed on those prim-
itive skill’s actions. Finally, the agent transfers independent
skills into new practical skills in a target environment.

On the one hand, our proposed IST method is able to re-
duce the dimension of skills and enhance the efficiency of
skill transfer. On the other hand, each of primitive skills is
the combination of all independent skills, which is balanced
with the combined practical skill in Figure 2. Therefore, the
advantage of our proposed IST can be listed as follows:

o The correlation between skills can be largely deducted and
a lower dimension is thus obtained to enhance the effi-
ciency of skill transfer.

e Combination of independent skills take effects in both
skill discovery and transfer, where transferring indepen-
dent skills is more essential.

e Independent skills are task-independent, which can be
transferred to a variety of practical skills in a target en-
vironment.

The contribution of this work is summarized as follow.
First, we propose to learn low-dimension independent skills
from primitive skills. Secondly, we propose to transfer in-
dependent skills to practical skills in target environments,
which exhibits a higher efficiency and better generalization
than conventional methods. Finally, various experiments are
conducted to demonstrate the effectiveness of IST method.

2 Related Work

In recent years, skill discovery and transfer has gained more
and more attention from researchers who work in DRL.

Skill Discovery. Information theory has been widely ap-
plied in the development of multiple skills in DRL. In order
to enable the agent to own skills to explore the environment,
the VIM [Mohamed and Rezende, 2015] adds the relative en-
tropy between states and actions into the reward function to

broaden the observation of the agent. Soft actor-critic (SAC)
[Haarnoja er al., 2018a] discovers a policy function with max-
imum entropy to gather useful skills for the agent. More-
over, an important work, i.e. the DIAYN [Eysenbach er al.,
2018], also maximizes the mutual information between skills
and states to ensure that states are used to distinguish skills.

Skill transfer. A popular method of skill transfer is to learn
a hierarchical policy for skill reutilization. In the pre-train
stage, a collection of primitive skills are learned based on
skill discovery methods, where each skill is encouraged to
specialize distinct observations [Coros et al., 2009] [Frans et
al., 2017]. While in transferring the primitive skills, a meta
controller is trained to select primitive skills depending on the
specific high-level task [Hausknecht and Stone, 2015]. Even
though existing methods on skill transfer are elaborative and
remarkable, several drawbacks remain to be solved. One of
significant problems is the low transfer efficiency since the
integration of primitive skills fails to consider their depen-
dencies on each other [Peters er al., 2017].

Independent component analysis (ICA). ICA attempts
to decompose a multivariate signal into independent non-
Gaussian signals. Preprocessing steps for ICA involves cen-
tering and dimensionality reduction, which can be achieved
by PCA. Existing works on ICA include kernel-independent
component analysis [Bach and Jordan, 2002], infomax [Bell
and Sejnowski, 1995] and FastICA [Oja and Yuan, 2006].
In this work, we consider to employ FastICA to decompose
primitive skills into independent skills, which allows much
easier generalization and transfer [Bengio, 2017], and can
greatly enhance the transfer efficiency.

3 Preliminary

3.1 Soft Actor-critic

A standard reinforcement learning framework is character-
ized by observation space S, action space A, reward function
r, transition function T and discount factor ~, which formu-
lates a five-tuple < S, A, r, T,y >. At each step ¢, an agent
observes the current state s; € S, and executes an action
a € A according to the policy function wy(als) : S — A.
In this paper, we use the SAC [Haarnoja et al., 2018b] al-
gorithm to update the value function (s, a) and the policy
function. wy(als) is updated to maximize the following cu-
mulative reward J(¢) (i.e. ¢* = argmax J(¢))

J(¢) :Eses,ewN[Q(sv f(@ St))_ﬁ IOg w¢(f(€7 St)‘s)} 9 (1)

where NV denotes the spherical Gaussian distribution; f (e, s¢)
can be obtained via reparameterization trick; the entropy term
—Ea,~w, log wy(als) multiplied by temperature parameter
B is introduced to control the encouragement of exploration.

3.2 Skill Discovery

The skill space Z is introduced to the framework of standard
reinforcement learning to diversify the learning process of
agents. Different skills 7(als,z) : S x Z — A can alter
the current observation by the agent in a consistent manner.
In the recent work DIAYN [Eysenbach et al., 2018], the
authors propose to use intrinsic reward for skill discovery. In
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Figure 3: Framework of Learning Independent Skills (LIS).

eachstept, Q(s¢, z,a:) : SXZx A — R and w(a¢|s;, z) are
updated based on SAC, and a discriminator network ¢(z|s;)
is employed to learn the posterior distribution of each skill
given s;, where its parameters are updated via stochastic gra-
dient descent (SGD). To generate a variety of different skills,
DIAYN employs the reward function given by

= log q(2|s:41) — logp(2), 2)

where the prior p(z) is often selected as uniform distribution.

r(st,at)

4 Learn Independent Skills (LIS)

In this paper, we use policy networks 7(als, 2),%2 € Z to
denote independent skills. For the convenience of specifica-
tion, we define the actions generated by independent skill as
independent action, and those produced by primitive skill as
primitive action. Furthermore, our proposed LIS is based on
the following three assumptions:

e Primitive actions are the linear combination of independent
actions.

e On the same observation, the actions generated by distinct
independent skill are independent with each other, which
reflects the independence between independent skills.

e Without loss of generality, the number of independent skill
| Z| is no more than the number of primitive skills |Z|.

In brief, the aim of LIS is to learn finite 7g(als, 2), 2 € Z,
such that Vs € S, a ~ 7(als, z) is the linear combination of
a ~ 7y(als, 2). As shown in Figure 3, we first sample subset

S from the observation space S. Secondly, we sample action
A, based on primitive skill 7(als, z) for z € Z. We then
convert the primitive actions A, to independent actions A,
through ICA. Finally, we utilize S and A, to learn indepen-
dent skills 7g(als, 2) for 2 € Z via supervised learning.

4.1 Collection of Observation and Action

It is inappropriate to sample observations from the whole
observation space S that is extremely large and continuous.
Hence, a strategy for collecting observation and action is pro-
posed in this paper, where we sample a key subset S C S
from the observation space.

Different skills enable an agent to have multiple, sta-
ble and finite state transitions, which are considered as
key subset of observation space S in this paper. Specifi-
cally, for each primitive skill 7(als, z), we sample L tra-
jectories 7 1,7, 2, ..., .1, independently, where each 7, ; =
{824,1,0241,8212,0z02, .., 8251, } for 1 <4 < L denotes

Algorithm 1 Learn independent skills (LIS)
Input:w(als, z),z € Z
Output:7g(als, 2),2 € Z

1: Sample 81,8, ..., S‘Z‘ VlaEq 3).
2: Sample Ay, Aj, ..., Az via Eq. (4), and transform to

Ay, Az, -, Az)
/1 ICA //

3: Calculate Wp via PCA, and whiten A =
[A17A27"' 7A|Z|]

4: while not converged do

5:  Calculate W according to Eq. (6) and (7).

6: end while .

7: Calculate Al, Ag, - A‘é‘ via Eq. (5), and reconstruct to
Al, AQ, e A‘Z‘.
[—————— — End of ICA //

§: fors €S, 2€ Zdo
9:  Calculate pt, ; and o5 5.

10: mgin{DKL[ﬁe(d|8,2)||ﬁ(ﬁ\us,g,ﬂs,z)]}‘
11: end for )
12: return 7y(als, %),z € Z

the trajectory in each episode. The observation set of skill z
consists of all the states in 7, ; for 1 <+¢ < L, given by

S.={s..;]1<i<L,1<j<T}. 3)

Thus, the key subset S of observation space can be expressed
asS 81U52U US‘Z‘
In the action collection, for each skill w(als, z), we sample

K actions on each of the observations in S, and reserve all the
actions in the following matrix A,

Az: [al,ag,...,aKNﬂ'(a‘s7z)|3€g], 4)

where it is worth noting that partial actions of 7(a|s, z) on S,

can be directly obtained from trajectories 7, 1, 7,2, .., Tz, L.
As the mixed signal for ICA, matrix A, has to be flat-

tened', i.e. A, = flatten(A.). After the processing of ICA,

we get independent components A: from A,. Then we re-
construct A; to matrix A, by adopting the inverse operation.

4.2 Generation of Independent Actions

In this subsection, the primitive action A,, z € Z is regarded
as mixed signal to generate independent actions Az 5 € Z.
Specifically, we aim to find a | Z| x | Z| matrix W p and | Z| x
|Z| full-rank matrix W 7, such that

AT AT

A7 A7
—wowe | 5)

~ . T

2 Az

'A general flattening like column-based or row-based conversion
works for the transformation of n x K|S| matrix A, into nK|[S| x
1 vector A., where n is the dimension of a. Here, column-based
transformation is applied.
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where /11, flg, - A‘ 2| are independent with each other.

In this paper, we use PCA [Wold er al., 1987] to esti-
mate W p, where the number of independent skills \2 | can
be achieved by clustering the eigenvalues of cross-correlation
matrix of A,. We take the eigenvalues in Figure 1 as an ex-
ample: for the case of 6 primitive skills, zZ | = 3is reasonable
since more than 98% component of primitive actions can be
represented by three independent components.

To estimate W, we employ the FastICA [Hyvirinen and
Oja, 20001, where the independent signals are actually inde-
pendent actions. The details are given as follows,

e First of all, the primitive actions A = [A1,---, Az|]
has to be whitened so that E[AAT] = I.
e Secondly, we estimate W = [w,ws, -, w z|] by

calculating each of its columns, separately. In each iter-
ation of ICA, we maximize the independence of output
signal via updating w; by

w; + E[Ag(w;A)] — E[g'(w;A)]w;, (6)

—x

for 1 < i < |Z|, where g(z) = 1-&-% g(7) = 5=,
and we orthogonalize W ; by
Wi (W,WH 2w, @)

After the algorithm converges, the independent actions As
for Z € Z can be obtained according to Eq. (5).

4.3 Generation of Independent Skills
After reconstructing Al,AQ,...,Al 3 into a vector form

Al, Ag, e A‘z‘, we assume that

Az = [dl,dg,...,d](N’frg(d|872)|8GS], ®)
and calculate the expectation p ; as well as standard devi-
ation o, ; of ai,as,...,ax for each observation s. Then,
we use neural networks to learn independent skills 7 (als, 2)
by minimizing the KL divergence between 7g(a|s, 2) and the
empirical distribution p(a|p ;, s 2):

Hgn{DKL [7}9(&‘872)||ﬁ(d|u’s,zﬁas,2)}}a (9)

where we employ Gaussian distribution to characterize
7tp(als, 2) and p(a@|p, z, 05 2). For more details about LIS,
please refer to Algorithm 1.

5 Independent Skill Transfer (IST)

In this section, we propose to transfer independent skills to
practical skills in a target environment by learning a transfer
policy wy ([ex, b]|s) as shown in Figure 4. Since primitive ac-
tions are linear combination of independent actions, the trans-
fer policy wy([er, b]|s) produces a weight o, and bias b, in
each time step ¢ based on observation s;, so the composite
action can be calculated by

a; :(AllOét}l +d2at’2+...+d‘é‘at"é‘ +1® by, (10)
where independent actions a; ~ 7g(alst,21), G2 ~

wro(alst,22), - - -, respectively, ® denotes the kronecker prod-
uct, and b; denotes the bias.
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Figure 4: Process of Independent Skill Transfer (IST).

After executing the composite action a;, the agent can
achieve the observation s;y1 ~ T(S¢41|8t,a+) and reward
(8¢, ay) from the target environment. Then, we employ SAC
to update the transfer policy wy ([, b]|s).

6 Experiment

In this section, we evaluate the behavior of independent skills
in skill transfer?, where our experiments are conducted to an-
swer the following three questions:

e Is our proposed collection of observation effective?
e Does our proposed IST outperform state-of-the-art?

e How is the performance of IST on difficult tasks?

In the pre-training stage, we employ DIAYN to learn 6
primitive skills (|Z| = 6), which can be used for both IST
and primitive skill transfer (PST). According to the source
environment HalfCheetah-v3 3, we set up target environ-
ments by considering extra key elements as shown in Fig-
ure 5, including HalfCheetah-Hurdle (HCH), HalfCheetah-
Ascending (HCA) and HalfCheetah-Upstair (HCU).

6.1 Collection of Observation

Figure 6 plots the loss of independent skills 7p(als, 2) on
training dataset and validation dataset. It is observed that
the proposed strategy sampling from the key subset S per-
forms better, where the loss converges to 10~8 on both train-
ing and validation sets, which indicates the validity of ob-
servation and action collection in characterizing the primitive
skills 7w(als, z). Furthermore, as the trajectory length 7" in-
creases from 150 to 250, a notable improvement can be ob-
tained. Hence, we keep 1" = 250 in the following experi-
ments. This answers the first question above.

6.2 Performance of IST

We compare IST with state-of-the-art to show the effective-
ness and high efficiency of our proposed method.

Zhttps://github.com/qxtian/Learning-Independent-SKills
*https://gym.openai.com/envs/
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(a) HCH: The agent requires to stride over
a hurdle and walk to the destination, which
becomes harder as d and h increase.

(b) HCA: The agent has to climb up to a
hill to reach the destination, where it gets
harder as the inclination angle w increases.

(c) HCU: The agent goes upstairs to reach
the destination, where the task turns to be
harder as the height of stair A increases.

Figure 5: Complex tasks: We regard HalfCheetah-v2 as the source environment, and construct 3 target environments: HCH, HCA and HCU
by adding obstruction with adjustable size in the environment, where the difficulty-level depends on the size of obstacles.
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Figure 6: Convergence of loss, where the dark line and light color
mark the loss on training set and validation set, respectively, and the
sampling size from S (red) is identical with that of T'= 250 (black).

Compared with PST. Regarding PST [Peng et al., 20191,
the composite action is thought of as the linear combination
of primitive actions and SAC is adopted to learn the com-
bined weights. While for IST, PCA is employed for skill ac-
tions, where the percentages* are 60.57%, 27.25%, 10.55%,
1.46%, 0.15% and 0.02%, respectively, as given in Figure
1. As seen, the last 3 eigenvalues are negligible. Hence, we
consider to learn 3 independent skills (|2’| = 3) for the gen-
eration of practical skills. In such case, more than 98% com-
ponent of primitive skills can be reserved in the conversion
to independent skills. Furthermore, due to the independence
between skills and lower dimension of weight o decreased

from RIZ! to RIZ! IST allows more efficient skill transfer.
Consequently, as in Figure 7 (a)-(c), IST shows a higher ef-
ficiency of reward collection than PST for all cases. Partic-
ularly, from Figure 7 (f) where h = 0.3, the average return
of IST converges in less than 150 episodes. In contrast, the
average return of PST fails to converge, indicating the failure
of skill transfer in finite episodes.

Compared with primitive skill selection (PSS). In PSS
[Sharma er al., 2019], a network is trained to select an op-
timal skill from diverse pre-training primitive skills to deal
with a specific task. In each step, a single primitive skill
is selected and thus activated for transfer, but it is hardly as

“These percentages can be changed based on the real situation.
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amenable as the combination of independent skills for prac-
tical skills. In fact, selecting a single skill can be a special
case of linear combination of independent skills with weights
a; =[0,---,1,---,0] and bias b; = 0. Therefore, it is ob-
served from Figure 7 (a)-(c) that IST collects reward more ef-
ficiently and exhibits stronger generalization ability than PSS.

Compared with conventional RL. We compare the per-
formance of IST with the existing reinforcement learning:
SAC. Empirically, prior information of source environment
has been reserved in primitive skills and then refined to inde-
pendent skills as mentioned above. In contrast, SAC learning
from scratch has no reutilization of primitive skills or prior
environment. Hence, it is observed from Figure 7 (a)-(c) that,
IST enables a higher learning efficiency than SAC learning
from scratch by incorporating diverse prior experiences. Con-
clusively, the proposed method manages to reserve and refine
sufficient prior information from the source environment for
reutilization in a target environment.

6.3 SKkill Transfer on Difficult Tasks

In this subsection, we evaluate the performance of skill trans-
fer when the difficulty level gets increased. As shown in Table
1, when the given task gets harder (e.g. HCH h : 0.3 —0.35
etc.), all skill transfer methods suffer from a degradation of
performance in terms of success rate.

In such case, the proposed IST achieves the least degrada-
tion and the best performance compared with others (PST has
nearly the same degradation, but less success rate), indicating
that IST is less sensitive to the difficulty level of tasks. Fur-
thermore, IST shows the best performance over most of tasks
except for the negligible inferiority than SAC in HCA with
u = 13.76° and 19.5°. Hence, the proposed IST exhibits
its capability on difficult tasks, and we show in Figure 8 the
frames of learned different tasks completed by IST.

7 Conclusion

In this work , we propose to learn independent skills from
primitive skills and further transfer them to high-level com-
plex tasks. Effective observation collection and indepen-
dent skills guarantee the success of low-dimension skill trans-
fer. Experiment results show a higher learning efficiency and
stronger generalization ability of our proposed method.
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Figure 7: Reward collection of IST, PST, PSS and SAC on various tasks.
Environment HCH HCA HCU
. d=2.2 | d=3.2 | d=3.2
Difficulty-level u=8° | u=13.76° | ©v=19.5° | h=0.25 | h=0.3 | h=0.35
Y h=0.3 | h=0.3 | h=0.35
IST 932 % | 849 % | 83.8% | 100% 99.3% 97.2% 988% | 97.4% | 95.2%
PST 73.5% 69% 64.7% | 99.9% 99.1% 97.2% 97.3% 97.1% 94.8%
PSS 50.1% 32.4% 37.2% 95% 58.8% 45.1% 75.8% 72.3% —
SAC 80.5% | 75.4% — 99.2% 99.7 % 98.1% — — —

Table 1: Success rate of IST, PST, PSS and SAC over HCH, HCA and HCU within 1000 episodes, where ’—’ denotes failure.

\
(a) HCH.

(b) HCA.

T WAL WM W

(c) HCU.

Figure 8: For IST, we collect and show one trajectory in each of complex tasks.
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