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Abstract

Recently, deep spectral kernel networks (DSKN5)
have attracted wide attention. They consist of pe-
riodic computational elements that can be activated
across the whole feature spaces. In theory, DSKNs
have the potential to reveal input-dependent and
long-range characteristics, and thus are expected
to perform more competitive than prevailing net-
works. But in practice, they are still unable to
achieve the desired effects. The structural superi-
ority of DSKNs comes at the cost of the difficult
optimization. The periodicity of computational el-
ements leads to many poor and dense local min-
ima in loss landscapes. DSKNs are more likely
stuck in these local minima, and perform worse
than expected. Hence, in this paper, we propose
the novel Bayesian random Kernel mapping Net-
works (BaKer-Nets) with preferable learning pro-
cesses by escaping randomly from most local min-
ima. Specifically, BaKer-Nets consist of two core
components: 1) a prior-posterior bridge is derived
to enable the uncertainty of computational elements
reasonably; 2) a Bayesian learning paradigm is pre-
sented to optimize the prior-posterior bridge effi-
ciently. With the well-tuned uncertainty, BaKer-
Nets can not only explore more potential solutions
to avoid local minima, but also exploit these ensem-
ble solutions to strengthen their robustness. Sys-
tematical experiments demonstrate the significance
of BaKer-Nets in improving learning processes on
the premise of preserving the structural superiority.

1 Introduction

With the rapid development of machine learning, most classic
kernels are no longer suitable for solving increasingly com-
plex problems. Actually, some studies have figured out that
there are two fundamental drawbacks: 1) the inefficiency in
computational elements; 2) the limitation on locality [Bengio
et al., 2007a; Bengio et al., 2007b]. Concretely, the ineffi-
ciency means that the representation ability of these kernels
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Figure 1: The learning processes of DSKN and BaKer-Net.

depends heavily on exponentially sufficient computational el-
ements [Delalleau and Bengio, 2011], and the locality means
stationarity and monotonicity [Bengio er al., 2006]. In re-
sponse to such a situation, a new kind of more competitive
kernels termed as deep kernels have been arising.

Coveting the superiority of deep architectures in represen-
tation ability, most deep kernels directly combine deep neu-
ral networks as the front-end or the back-end of classic ker-
nels. Typically, the deep kernel learning algorithms set feed-
forward neural networks as the front-end of spectral mixture
kernels to extract features [Wilson et al., 2016b], which are
subsequently improved by kernel interpolation [Wilson and
Nickisch, 2015] and stochastic variational inference [Wilson
et al., 2016al. Neural kernel networks use sum-product net-
works as the back-end of multiple kernels to merge various
mappings [Sun ef al., 2018]. Tronically, as the cask effect im-
plies, the unsolved locality limits the combined kernels and
further interferes with the whole networks seriously.

Therefore, deep spectral kernel networks (DSKNs) have
been presented to not only improve the efficiency but also
break the locality at a stroke [Xue er al., 2019]. They de-
rive non-stationary and non-monotonic kernel mappings to
avoid the limitation on locality. These powerful mappings are
essentially periodic computational elements that can be acti-
vated across the whole feature spaces. Consequently, DSKNs
have the potential to reveal input-dependent and long-range
characteristics, and thus are expected to perform better than
prevailing kernels and deep neural networks. But as yet,
DSKNs are still unable to achieve the desired effects in prac-
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tical applications. They are inclined to make over-confident
but inaccurate decisions, due to low-quality optimization.

In fact, the reason for such a performance bottleneck is
that the structural superiority of DSKNs comes at the cost of
the profoundly hard optimization. Although the periodicity
of computational elements enables non-stationarity and non-
monotonicity, it also increases the complexity of networks,
and gives rise to numerous poor and dense local minima in
loss landscapes. Yet, this fundamental issue has not been
taken into account with deliberation. DSKNs are more likely
stuck in local minima, and perform worse than expected.
Hence, it is necessary to alleviate the difficulty of optimiza-
tion on the premise of preserving the structural superiority.

Specifically, in this paper, we propose the novel Bayesian
random Kernel mapping Networks (BaKer-Nets) in the light
of the definite motivation, that is to improve the learning pro-
cesses by escaping from most poor and dense local minima
with some probability. The key is to enable the proper uncer-
tainty of computational elements, which is implemented by
two core components:

e To enable the uncertainty of computational elements rea-
sonably, a prior-posterior bridge with copulas is derived.

e To optimize the prior-posterior bridge efficiently, a
Bayesian learning paradigm with stochastic variational
inference is presented.

Hence, with the well-tuned uncertainty, the advantages of
BaKer-Nets depend on two aspects:

e More potential solutions can be explored to avoid poor
local minima in learning processes.

e These ensemble solutions can be exploited to strengthen
their robustness in generalization processes.

To illustrate this issue intuitively, we conduct a syn-
thetic experiment to learn 1-dimensional cos(x), where z €
[—47,4w]. Both DSKN and BaKer-Net have only one com-
putational element including two weights w,w’. As shown in
Figure 1, the loss landscape is rugged and rough even though
the target function is simple enough. DSKN and BaKer-Net
are initialized at the same point marked by the blue arrow.
DSKN is stuck quickly in the poor local minimum marked
by the yellow arrow. In contrast, BaKer-Net escapes from the
local minimum and achieves a much better solution marked
by the red arrow, as the optimization continues.

Systematical experiments further demonstrate the competi-
tive performance of BaKer-Nets, and indicate the significance
in improving the learning processes on the premise of pre-
serving the structural superiority.

2 Preliminary

According to Yaglom’s theorem [Yaglom, 19871, a real-
valued bounded continuous function k£ on R” x R” is a non-
local positive semi-definite kernel with non-stationarity and
non-monotonicity, if it can be represented as

bz, ') = Oy / Euvror (@, Yplw, & )dwde, (1)

where p is a probability density associated to some probabil-
ity distribution P, and C'; is a non-negative scaling constant.
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Furthermore, Eq. (1) can be equivalently transformed into

k(x,x') = C4 /72,’“,/ (x, 2" )p(w,w)dwdw', 3)

where T, o (x, ') is defined by

1

wia + @) cos(w ' + @)

+cos(w' @ 4 ) cos(w” &’ + @)

T

o @
w' x+ @)cos(w’ ' + @)

+ cos

—_— =~ A~ =

+cos(w' @ + @) cos(w'Tx’ + go)]

Obviously, Eq. (3) is an expectation on (w,w’) ~ P and
¢ ~ [—m, 7], and thus it can be approximated unbiasedly by
Monte Carlo method.

k(z,z') = C4E(w wp [72,,@/(:107:13')} ~ (D(x), ©(x')), (5)

cos(wiax + 1) + cos(wiT:c +p1)

where ®(x) is defined by
M

_ ./ C+
(6)

D, M are the dimensions of inputs and weights, respectively.
At this point, the non-stationary and non-monotonic kernel
mapping ® is derived. The detailed structure of @ is illus-
trated in Figure 2. Moreover, DSKNs are constructed by nat-
urally integrating these specially-designed kernel mappings
into deep architectures layer-by-layer. By the way, stacked
random Fourier features can be considered as the stationary
cases of DSKNs to some extent [Zhang et al., 2017].
According to Eq. (6) and Figure 2, ® is actually a double-
edged sword that consists of a group of periodic computa-
tional elements essentially. On the one hand, the periodicity

cos(wise + oar) + cos(wﬁa: + om)
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Table 1: Some important bivariate copulas.
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Table 2: Some classic kernels and their probability densities.

enables non-stationarity and non-monotonicity to break the
limitation on locality. Thus, DSKNs have the potential to effi-
ciently reveal input-dependent characteristics and long-range
correlations in theory. On the other hand, the periodicity also
causes the extremely high complexity of networks, and leads
to numerous poor and dense local minima in loss landscapes.
Hence, DSKNs are more likely stuck in these local minima,
and perform worse than expected in practice.

But as yet, this fundamental issue still has not been taken
into account very well. DSKNs directly optimize all weights
(w, w’) with point estimation, instead of sampling them from
the intrinsic probability distribution P. Therefore, the opti-
mization is directly affected by the periodicity of computa-
tional elements. Moreover, the essential uncertainty of com-
putational elements is neglected, and thus DSKNs lose the
ability to escape from any local minimum.

To improve the learning processes by escaping randomly
from poor and dense local minima, it is necessary to en-
able the proper uncertainty of computational elements on the
premise of preserving the structural superiority.

3 BakKer-Nets

In this section, we elaborate the methodology of BaKer-Nets:
1) a prior-posterior bridge with copulas is derived to enable
the uncertainty of computational elements; 2) a Bayesian
learning paradigm with stochastic variational inference is pre-
sented to optimize the prior-posterior bridge.

3.1 Prior-Posterior Bridges

To enable the uncertainty of computational elements, it needs
to derive a probability density p(w,w’) and its probability
distribution P(w,w"), according to Eq. (5). The performance
of BaKer-Nets almost completely depends on p and P. Thus,
it is very important to construct universal and scalable p and
P in an interpretable way.

Compared with aimlessly random initialization with intol-
erable risks, it is a better choice to reasonably derive the pow-
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erful p and P with classic kernels as the prior knowledge. In
this situation, these initial classic kernels can be regarded as
the special cases of BaKer-Nets under specific constraints. At
least, the practical performance of BaKer-Nets is guaranteed
to be better than that of classic ones. With proper optimiza-
tion, BaKer-Nets can achieve more competitive performance.

Copulas are vital to bridge the gap between BaKer-Nets
and classic kernels. In more detail, Sklar’s theorem states
that a multivariate joint probability density can be decom-
posed into univariate marginal probability densities, uni-
variate marginal probability distributions and a copula den-
sity [Sklar, 1959]. Here, we pay attention to deriving the D-
dimensional bivariate joint probability density p(w, w’) from
the D-dimensional univariate marginal ones p(w), ' (w’).

Specifically, given two stationary classic kernels
k(xz),k'(x'), their probability densities p(w),p (w’)
can be derived by

plw) =C; / (@) d,

N (N
ﬁ/(wl) :C+ /e—zw x k'(w')dw'.

Furthermore, considering the dimensional consistency be-

tween kernels and probability densities, p(w, w’) can be mod-
eled by integrating p(w), p’(w’) with bivariate copula densi-
ties {c'}2, for all dimensions Vi = 1,--- , D.
Ci(Pi(wi), P/z( /1)) 1(
where P*(w’), P"(w'") are the distributions associated to the
densities p’(w’)p" (w"), respectively. Without losing gener-
ality, the distribution P*(w®,w’") with the density p*(w*, w")
can be also derived by

pl(w' W) = 8w, ®)

Plw',w") = C'(P'(w'"), P" (")), )

where C" is the copula with the density c¢'. Consequently, the
density p(w, w’) and the distribution P(w, w’) are as follows.

={p'(@" w1,
:{Pi(wi’w/i)}zpzl.

(w,w’) can be sampled from P dimension-by-dimension.

p(w,w”)

10
P(w,w’) 1o

(w,w') = {(w',w)}il1, (11)

where (w?, w'") ~ Pt

The whole framework, termed as copula-based prior-
posterior bridge, essentially connects the prior p, p’ and the
posterior p. p, P represent the characteristics of marginals.
{c*}P | model their intricate correlation structures. There-
fore we can construct the universal and scalable posterior
p for BaKer-Nets by choosing different classic kernels and
copulas. There are many parametric copulas available, such
as the Gaussian copula [Li, 2000; Aas et al., 2006] and the
Archimedean copula family [Charpentier and Segers, 2009;
Whelan, 2004]. Some important bivariate copulas are shown
in Table 1. Some representative classic kernels and their prob-
ability densities are also collected in Table 2.
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3.2 Bayesian Learning Paradigms with Stochastic
Variational Inference

Owing to the non-analytically sampling process (w,w’) ~

P, a Bayesian learning paradigm with stochastic variational

inference is further presented to efficiently optimize the

whole network, including the prior-posterior bridge.

Above all, the notation of weights in all layers are sim-
plified to Q, €/, that is (2,9) = {(Q,Q)}_, and
(Q,Q") = {(v}, w )}}L,. Thus, the probability density
is further represented as

I M

p(2,9) =T [] 2 (w} w). (12)

i=1j=1

p(2), 7' (') have similar independent assumption.

Specifically, given the observed data D and the weights
Q, €Y sampled from the posterior probability density p as-
sociated to some prior probability densities p, o', a learning
problem can be defined by a log-probability log P(D). Ac-
cording to Bayesian inference, it can be formalized as fol-
lows.

log P(D) =logP(D, 2, 2) — log P(Q, Q'|D)
P(D,Q,Q) | B D)
p(@2) @)

P(D,Q,Q') , ,
= | log ———=p(Q2, Q2)dQ2IN
/ 8 i) M) (13)
p(2, Q)
+ [ 10s B, )"

L(D,2,Q7)
KL(p(2,9)||P(£2,2'|D))

PR

=log

Q')dQdY’ .

Because logP(D) is a constant when D is given, max-
imizing the Evidence Lower BOund (ELBO) L(D,Q, )
is equivalent to minimizing the Kullback—Leibler divergence
(KL-divergence) K L(p(£2, ') ||P(€2, Q'|D)). Generally, we
consider optimizing £(D, €2, ') with all available param-
eters @ including the parameters of the copula-based prior-
posterior bridge.

arg min —£(D, Q, Q)
)

!
= arg min [/log 7{)((}19 ) p

Q, Q)dQde
. )y @) )

KL—Divergence

_ / log P(D€2, 2)p(€2, ') ds2as?’ | (14)

Likelithood—Loss

(p(2, ) [[p()p' (2'))
Structural Risk

—Eq.a/~p [log P(D|e, Q/)] ]

= arg min [KL
0

Empirical Risk

Then, the optimization problem —L(D, 2, €2’) can be di-
rectly solved by Monte Carlo method.

argmin —£(D, Q, Q")
o
1 K
~ arg min K ; [log p(€2, ) —log (B ()] 5,

1 K
— = > logP(D|2, )],
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where K is the number of sampling the weights €2, €2’. The
analytical gradient Vg [ — £(D, Q, Q)] is approximated un-
biasedly by [Ranganath et al., 2014; Mandt and Blei, 2014]

Vo[- L(D,Q,Q")]
~ 3" Vologp(€, 2) [log p(2, ) — log(p()7' ()]

i=1

K
- % > Vologp(2, Q') log P(D|2, Q).
i=1
(16)
Rao-Blackwellization method [Casella and Robert, 1996]
and control variates [Ross, 1994] can be further used to re-
duce the variance of the gradient estimator.

According to the above optimization, the copula-based
prior-posterior bridge is not directly interfered by the peri-
odicity of computational elements. BaKer-Nets focus on op-
timizing the parameters 6 of the prior-posterior bridge rather
than the internal weights €, €', Thus, the loss landscapes of
optimizing BaKer-Nets are much flatter than that of DSKNss,
and the the intrinsic structural superiority is preserved very
well. Based on the improved learning processes, BaKer-Nets
can escape from some poor and dense local minima with
proper probability, and thus can achieve better performance
and stability. All components in BaKer-Nets can be jointly
optimized by prevailing algorithms, such as SGD and Adam,
with the derived analytical gradient. Besides, either the time
complexity (serial sampling) or the space complexity (paral-
lel sampling) of BaKer-Nets is linearly correlated with K.

As shown in Figure 3 and Figure 4, the prior-dependent
KL(p(2,)||p(2)p' () represents the complexity and
the potential structural risk, which indicates that it is prone
to be simple and generalizable by taking the network closer
to the initial classic kernels k, k’. Correspondingly, the data-
dependent —Eq q/~p[log P(D|Q2, Q)] reflects the learn-
ing ability and the practical empirical risk, which indicates
that it is inclined to be complex and powerful by revealing
highly non-linear and highly-varying details implied in the
observed data D. Therefore, the complexity dominated by
the KL-divergence and the learning ability dominated by the
likelihood-loss strike an elegant balance in BaKer-Nets.

In addition, unlike the conventional point estimation in
DSKNs, the weights €, Q' here are represented as random
variables with proper uncertainty subject to the posterior
probability distribution P. Thus instead of learning a sin-
gle network, the proposed approach learns an infinite ensem-
ble of networks in the sense of probability, where each net-
work has its weights drawn from the shared P. The ensemble
with greater uncertainty leads naturally to better exploration
and exploitation. More potential solutions can be explored to
avoid poor local minima in learning processes. These ensem-
ble solutions can be exploited to enhance their robustness in
generalization processes.

4 Experiments

In this section, we systematically evaluate the practical per-
formance of BaKer-Nets compared with state-of-the-art re-
lated algorithms.
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4.1 Experimental Settings

For standardization, we cautiously follow the experimental
settings in the official publication of DSKNs [Xue et al.,
2019]. Specifically, the scales of all deep architectures are
set to 1000 x 500 x 50. Sigmoid activation is applied to
deep neural networks. Moreover, all algorithms are initialized
according to the Xavier method [Glorot and Bengio, 20101,
and are optimized by Adam [Kingma and Ba, 2014]. The
learning rate is initially set to a commonly-used default value
0.001 [Paszke et al., 20171, which is automatically tuned by
the optimizer. Epochs are set to be large enough to ensure the
convergence for all algorithms. Accuracy and Mean Squared
Error (MSE) are chosen as the evaluation criteria for classifi-
cation and regression, respectively.

To be representative, the well-known Gaussian kernels are
used as the initial classic kernels k, k’. Thus, the correspond-
ing prior probability densities p, p’ are Gaussian probability
densities. Their intricate correlation structures are modeled
by a group of bivariate Gaussian copulas.

Compared Algorithms

BaKer-Net is compared with related algorithms including:

e DNN [Goodfellow er al., 2016]: Deep Neural Networks.

e DKL-LI [Wilson et al., 2016b]: Deep Kernel Learning with
Llnear kernels.

e DKL-GA [Wilson e al., 2016b]: Deep Kernel Learning
with GAussian kernels.

e DKL-SM [Wilson et al., 2016b]: Deep Kernel Learning
with Spectral Mixture kernels.

e SRFF [Zhang et al., 2017]: Stacked Random Fourier Fea-
tures.

e DSKN [Xue er al., 2019]: Deep Spectral Kernel Networks.

Datasets

Firstly, we conduct a benchmark experiment on four clas-
sification datasets and four regression datasets, which are
collected from UCI [Blake and Merz, 1998] and LIB-
SVM [Chang and Lin, 2011]. These data are randomly di-
vided into non-overlapping training and test sets, which are
equal in size. The division, training and test are indepen-
dently repeated ten times. We assess the convergent perfor-
mance on average. Secondly, we conduct an image classifica-
tion experiment on MNIST, FMNIST and CIFAR10 [LeCun et
al., 1998; Xiao et al., 2017, Krizhevsky et al., 20091, and ana-
lyze the learning processes. The division of image datasets is
consistent with their default settings. Here, all deep architec-
tures follow the classic design in LeNet [LeCun et al., 1998].

4.2 Experimental Results

Benchmark
To evaluate the comprehensive performance of BaKer-Nets,
the benchmark experiment is conducted.

As shown in Table 3, although these deep kernel learning
algorithms are based on DNN, they have relatively poor per-
formance. In these algorithms, the combined kernels more
likely interfere with the feature extraction, due to their un-
solved locality. Whether in classification or regression, the
performance of DSKN is similar to that of SRFF. The struc-
tural superiority of DSKN is wasted to some extent. In con-
trast, BaKer-Net impressively outperforms these compared
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Classification Accuracy (1)

Regression MSE (J.)

ala ionosphere sonar wbdc airfoil power wine-red wine-white R.
DNN | 0.80640.024e¢  0.828+0.103e 0.783+0.126 0.9334-0.107 0.08040.010e  0.056+0.002e¢  0.662+0.036e¢  0.64910.011e | (4)(6)
DKL-LI | 0.8184+0.010e  0.809+0.118¢  0.658+0.110e  0.976+0.006e | 0.0784+0.005e¢  0.05940.001e 0.629+0.025 0.63540.019 3)2)
DKL-GA | 0.816+0.010e  0.74340.115¢  0.605£0.112e 0.9024-0.148 0.11740.039¢  0.059+£0.002e 0.6231+0.020 0.63410.008e | (7)(5)
DKL-SM | 0.8194+0.009¢  0.78840.1068  0.652+0.118e 0.9404-0.103 0.144+0.019¢  0.062+0.004e  0.651+0.020e  0.657+0.027e | (6)(7)
SRFF | 0.8024+0.006e  0.88240.020e  0.818+0.039e¢  0.9611+0.009e | 0.0764+0.011e¢  0.061£0.001e 0.63110.023 0.638+0.017¢ | (3)(3)
DSKN | 0.8184+0.011e 0.917+0.033 0.81940.038¢  0.974+£0.007e¢ | 0.063+0.010e  0.05540.002¢  0.652+0.030e  0.6511-0.012e¢ | (2)(4)
BaKer-Net ‘ 0.835+0.008 0.934+0.022 0.859+0.040 0.9834-0.003 ‘ 0.051+0.002 0.046+0.001 0.612+0.020 0.62240.005 ‘ 1ma

Table 3: Classification accuracy and regression MSE (mean=std.) on the benchmark datasets. (1) indicates the larger the better, while ()
indicates the smaller the better. The best results are highlighted in bold and the average ranks on accuracy and MSE are listed in R.. ¢/o
indicates whether BaKer-Net is statistically superior/inferior to the compared algorithms (pairwise z-test at 0.05 significance level).
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Figure 5: Test accuracy curves in all epochs. Different curves represent the learning processes of different algorithms where BaKer-Net is

denoted as the best orange-red curve.

MNIST FMNIST CIFARIO
conv best conv best conv best
DNN | 0989 0.990 | 0.889 0.898 | 0.590  0.620
DKL-LI | 0980 0990 | 0.895 0.896 | 0.627  0.627
DKL-GA | 0983  0.991 0.830 0.883 | 0.558  0.605
DKL-SM | 0985 0.991 0.871 0.888 | 0.510 0.585
SRFF | 0988 0988 | 0.882 0.894 | 0.529 0.585
DSKN | 0989 0989 | 0.888 0.893 | 0.549 0.585
BaKer-Net \ 0.995  0.995 \ 0.908 0.911 \ 0.674  0.675

Table 4: Classification accuracy on the image datasets. conv means
the convergent accuracy in the last epoch and best means the best
accuracy in all epochs. The best results are highlighted in bold.

algorithms on all datasets. The results explicitly demonstrate
that BaKer-Net is compatible with practical learning tasks
well, and achieves credible performance improvement.

Image Classification

Specially, to demonstrate that BaKer-Net can improve the
learning processes by escaping from some poor and dense lo-
cal minima, the image classification experiment is conducted.
The results are illustrated in Table 4 and Figure 5.

With the increasing difficulty of MNIST, FMNIST and CI-
FARI0, almost all compared algorithms gradually fall into
worse and worse fluctuations. The trends are clearly pre-
sented in Figure 5. In the early stages of optimization, these
compared algorithms fall into annoying local minima, and
begin to fluctuate in 0 — 50 epochs, as indicated by the red
arrows. As the optimization continues, they are still stuck
in these poor local minima. After the automatically-tuned
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learning rates almost decrease to 0, they converge to terri-
ble solutions. In contrast, due to enabling the uncertainty of
computational elements, BaKer-Net escapes from these local
minima and further achieves better performance by explor-
ing more potential solutions. It also enhances robustness by
exploiting these ensemble solutions. Consequently, BaKer-
Net not only achieves the best accuracy but also obtains great
stability, benefiting from the prior-posterior bridge and the
Bayesian learning paradigm.

5 Conclusion

To alleviate the difficulty of optimization on the premise
of preserving the structural superiority, we propose BaKer-
Nets with preferable learning processes. Specifically, a prior-
posterior bridge is derived to enable the uncertainty of com-
putational elements reasonably. Subsequently, a Bayesian
learning paradigm is presented to optimize the prior-posterior
bridge efficiently. Hence, BaKer-Nets can not only explore
more potential solutions to avoid local minima, but also ex-
ploit these ensemble solutions to strengthen their robustness.
Systematical experiments demonstrate the competitive per-
formance of the proposed approach, and further indicate the
significance of BaKer-Nets in improving learning processes.
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