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Abstract
We study the symmetric weighted first-order model
counting task and present ApproxWFOMC, a
novel anytime method for efficiently bounding the
weighted first-order model count of a sentence given
an unweighted first-order model counting oracle.
The algorithm has applications to inference in a
variety of first-order probabilistic representations,
such as Markov logic networks and probabilistic
logic programs. Crucially for many applications,
no assumptions are made on the form of the input
sentence. Instead, the algorithm makes use of the
symmetry inherent in the problem by imposing car-
dinality constraints on the number of possible true
groundings of a sentence’s literals. Realising the
first-order model counting oracle in practice using
the approximate hashing-based model counter Ap-
proxMC3, we show how our algorithm is competi-
tive with existing approximate and exact techniques
for inference in first-order probabilistic models. We
additionally provide PAC guarantees on the accu-
racy of the bounds generated.

1 Introduction
Given a propositional formula φ, the model counting problem
asks for the number of models (satisfying assignments) of
φ. Model counting is the prototypical #P-complete problem.
The weighted model counting (WMC) problem generalizes
this task by associating each assignment with a real-valued
weight, and asks for the weighted sum of the formula’s models.
In the past several years, the WMC task has attracted great
interest as an “assembly language” for probabilistic inference,
as inference in various formalisms such as graphical models
[Chavira and Darwiche, 2008] and probabilistic logic pro-
gramming languages [Fierens et al., 2015] can be reduced to
WMC. Many practical implementations of (weighted) model
counters have also been introduced, such as DSHARP [Muise
et al., 2012], MINIC2D [Oztok and Darwiche, 2015], and
d4 [Lagniez and Marquis, 2017]. In addition to exact
weighted model counters, another line of research has unfolded
among approximate model counters [Chakraborty et al., 2013;
Chakraborty et al., 2014], which are often capable of scaling
to much larger problem sizes than exact methods.

In practice, however, logical representations of real-world
domains are often first-order, and are typically grounded into
propositional logic before a weighted model counter can be
used to infer probabilities. In general, a first-order proba-
bilistic inference task can be reduced to an instance of the
weighted first-order model counting (WFOMC) problem, in
which weights are assigned to interpretations of a first-order
formula. In this paper, we consider the symmetric WFOMC
problem, where weights are associated with each predicate, as
opposed to the asymmetric case where each possible ground-
ing of a predicate may have a distinct weight.

WFOMC remains a difficult task. From a complexity point
of view, Beame et al. [2015] showed that the data complexity
of symmetric WFOMC for FOk (k ≥ 3) is #P1-hard, suggest-
ing that in general sentences with at least three distinct logical
variables are not domain-liftable.1 Nevertheless, the search for
practical methods for performing WFOMC remains an active
area of research. Some algorithms, such as FORCLIFT [Van
den Broeck et al., 2011] and ALCHEMY2 [Gogate and Domin-
gos, 2011], operate directly on the first-order representation
in order to circumvent the grounding step. The alternative
approach requires first grounding out the problem and then
passing it to a propositional weighted model counter.

One question that has received relatively little attention is
how one can efficiently exploit propositional model counters in
practice for first-order problems: in other words, can we lever-
age off-the-shelf propositional model counters for WFOMC,
in a more efficient manner than the naı̈ve ground-and-solve
approach? In this paper, we answer this question in the affir-
mative, and show how such a strategy can be efficiently im-
plemented using hashing-based approximate model counters.
As we shall show later, existing hashing-based approximate
model counting algorithms capable of dealing with weighted
instances need an exponential number of SAT queries in the
size of the domain when dealing with grounded first-order
formulas. In order to overcome this, we first propose a decom-
position of the weighted first-order model count (which, like
its corresponding problem, we abbreviate as WFOMC) into the
weighted sum of a number of (unweighted) first-order model
counts of the input formula conjoined with cardinality con-

1In the artificial intelligence literature, a problem is said to be
domain-liftable if inference can be performed in polynomial time in
the size of the domain [Van den Broeck, 2011].
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straints. These cardinality constraints serve to limit the number
of true instances of the formula’s atoms. We then extend our
approach to an anytime iterative algorithm with guarantees
that uses an intuitive search procedure to find dense regions
in the space of weighted models. We evaluate our approach
by computing the partition functions of challenging Markov
logic network instances that are unlikely to be domain-liftable
[Beame et al., 2015], and show that we are competitive with
existing methods, especially when seeking approximations.

2 Background
In this section, we first briefly review the syntax of first-order
logic, and formally define the WFOMC problem. We then
explain the principles of hashing-based approximate model
counting techniques, and show their pitfalls when applied to
first-order problems.

2.1 First-order Logic
We deal with the function-free, finite domain fragment of first-
order logic. An atom of arity n takes the form P (t1, . . . , tn),
where P/n comes from a vocabulary of predicates, and each
argument ti is either a constant from a finite domain D, or a
logical variable from a vocabulary of variables. A literal is
an atom or its negation. A formula is formed by connecting
one or more literals together using conjunction or disjunction.
A formula may optionally be surrounded by one or more
quantifiers of the form ∃x or ∀x, where x is a logical variable.
A logical variable in a formula is said to be free if it is not
bound by any quantifier. A formula with no free variables
is called a sentence. A clause is a sentence consisting of a
disjunction of literals. A formula is in conjunctive normal
form (CNF) if it is the conjunction of one or more clauses
containing only universal quantification. We follow the usual
semantics of first-order logic.

2.2 Weighted First-order Model Counting
We review the definition of the (unweighted) first-order model
count of a sentence. Throughout this section, we fix a sentence
φ containing predicates P1/r1, . . . , Pk/rk.

Definition 1. The first-order model count (FOMC) of φ over a
domain of size d is defined as: FOMC(φ, d) = |modelsd(φ)|
where modelsd(φ) denotes the set of all models of φ under the
domain D = {1, . . . , d}.

In order to define the WFOMC of the formula, we must first
define the notion of a weighting.

Definition 2. Denote the set of predicates appearing in φ by
Pφ. A weighting on φ is a pair of mappings w : Pφ → R and
w̄ : Pφ → R.

Definition 3. Let (w, w̄) be a weighting on φ. The
weighted first-order model count of φ over a domain
of size d under (w, w̄) is: WFOMC(φ, d, w, w̄) =∑
µ∈modelsd(φ)

∏
L∈µT w(pred(L)) ·

∏
L∈µF w̄(pred(L))

where µT denotes the set of true ground atoms in the model µ,
and µF the false ground atoms. The notation pred(L) maps
an atom L to its corresponding predicate name.

2.3 Hashing-based Approximate Model Counting
The most obvious way to solve a WFOMC problem instance
is to simply ground it out and pass it to a (weighted) proposi-
tional model counter. One algorithm for model counting that
has enjoyed great success in recent years involves exploiting
universal hash functions to get approximate counts. We ex-
plain this idea here, along with the drawbacks of this approach
when applied to first-order problems.

Chakraborty et al. [2013] proposed an algorithm, Ap-
proxMC, which uses XOR-based hash functions in order to
obtain an approximate model count with arbitrary tolerance
and confidence guarantees. The basic working principle of this
idea involves adding a XOR constraint on a random subset of
the variables appearing in the formula, which cuts the number
of models approximately in half. After repeating this proce-
dure a sufficient number of times, we may compute exactly the
number of models in the constrained formula, and repeat this
procedure a number of times to get a good sample of the size
of an average “cell”. Multiplying the median cell size by the
number of cells created from imposing the XOR constraints
then gives an approximation of the overall model count.

This work later led to the development of even more ef-
ficient model counters using the same underlying principle.
In particular, ApproxMC2 [Chakraborty et al., 2016] was
developed which reduced the number of calls needed to a
SAT oracle to logarithmic in the number of variables of the
input. Finally, the latest revision, ApproxMC3 [Soos and
Meel, 2019], was released, which processes the constructed
CNF-XOR formulas in a more efficient manner.

Crucial to all of these tools is that they give PAC guarantees
on the resulting model count. We follow the notation of the
papers above and denote by RF the set of models of a propo-
sitional formula F , and by RF↓S the projection of RF onto a
subset S of variables in the formula.
Theorem 1 ([Chakraborty et al., 2016]). Given a formula
F , sampling set S ⊆ Vars(F ), a tolerance ε > 0, and a
confidence 1 − δ ∈ (0, 1], ApproxMC3 returns a count c
such that P (|RF↓S |/(1 + ε) ≤ c ≤ (1 + ε)|RF↓S |) ≥ 1− δ.
Moreover, the number of SAT oracle calls required is k ∈
O
(

log(|S|) log( 1
δ )

ε2

)
.

This approach was extended to WISH [Ermon et al., 2013]
and WeightMC [Chakraborty et al., 2014], which each lever-
age related techniques to allow for weighted model counting.
In the latter paper, the authors identify a parameter, tilt, which
is the ratio of the maximum weight of all satisfying assign-
ments to the minimum weight of all satisfying assignments,
and show that their procedure runs in time polynomial in the
tilt of the input formula when equipped with a SAT oracle.
However, the tilt of the grounding of a first-order formula can
grow exponentially in the size of the domain.
Example 1. Let Φ = ∀x.Heads(x) ∨ Tails(x) ∧
∀x.¬Heads(x) ∨ ¬Tails(x), and let w(Heads) = 0.5,
w̄(Heads) = 1, and w(Tails) = 0.1, w̄(Tails) = 1. Let
D = {coin1, . . . , coinn}. Then tilt(Φ) = ( 0.5

0.1 )n = 5n.
Thus, using WeightMC on a first-order model may require

an exponential number of SAT queries in the size of the do-
main. Although Chakraborty et al. [2014] also describe (in
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Section 6 of their paper) a way to theoretically reduce the
runtime by adding constraints that split the space of solutions
into regions with small enough tilt, they mention that this
approach would require a pseudo-boolean solver capable of
efficiently handling XOR constraints, so there is no practical
implementation of this theoretical extension of WeightMC.

In this paper, we show how to build on unweighted hashing-
based approaches to solve first-order problems in such a way
that the number of SAT queries can be reduced to a number
polynomial in the domain size. This gives us a practical algo-
rithm that enables us to scale to problem instances that are too
large for exact approaches, and for which there currently exist
no other practical methods with PAC guarantees.

3 Algorithm
In this section, we first show how the WFOMC of a sentence
can be decomposed into a series of terms by making use of
cardinality constraints. Although the utility of this decom-
position is limited in practice, it forms the basis for the next
section, where we show how we can further take advantage
of cardinality constraints to design an anytime algorithm, Ap-
proxWFOMC, that computes bounds for the WFOMC. We
will initially assume the existence of an FOMC oracle, and
later explain how this can be realised in practice using the
hashing-based approximate model counter ApproxMC3.

3.1 An Exact Decomposition of the WFOMC
We start by decomposing a WFOMC problem into a sum of
terms.

Theorem 2. Consider a sentence φ with predicates
P1, . . . , Pk. Then the WFOMC of φ can be decomposed into
a weighted sum of first-order model counts as:

WFOMC(φ, d, w, w̄) =
∑

(n1,...,nk)∈K

k∏
i=1

[ w(Pi)
ni

· w̄(Pi)
ri−ni · FOMC(φ ∧ φCARD(n1,...,nk)

, d) ]

where ri = arity(Pi)
d, K = {(n1, . . . , nk) | ni ∈

{0, . . . , ri}}, and φCARD(n1,...,nk)
denotes the first-order cardinal-

ity constraint fixing every model of φ to have exactly ni true
instances of Pi.

The intuition behind Theorem 2 can be reasoned as follows:
consider the case of a sentence φ with a single predicate P and
a domain of size d, and suppose we add a cardinality constraint
to φ to fix P to have precisely n true groundings. Then every
model of φ with the cardinality constraint will have the same
weight of w(P )nw̄(P )d−n. The formula above generalises
this to multiple predicates. In practice, however, the decompo-
sition in Theorem 2 is typically too large to compute exactly,
even though the number of terms grows polynomially in the
size of the domain.

Remark 1. The number of terms (and thus, FOMC oracle
calls) in Theorem 2 for a sentence φ with k predicates over a
domain of size d is: M(φ, d) =

∏k
i=1(darity(Pi) + 1).

3.2 Approximating the WFOMC Using an Exact
FOMC Oracle

Our approach, ApproxWFOMC, to bounding the value of
WFOMC(φ, d, w, w̄) is described in Algorithm 1. One begins
by obtaining the coarsest bounds possible for the WFOMC.
This is done by computing the unweighted FOMC and mul-
tiplying by the weight obtained when all groundings of each
predicate are true, or the case when all are false, depending on
which is larger. It is not difficult to see that this indeed gives
valid bounds on the true WFOMC.

Example 2. Consider again the coin toss example from
Example 1, and fix a domain of size d = 6. We have
FOMC(φ) = 26 = 64. Moreover, we know that the posi-
tive weights for both predicates are lower than their respective
negative weights. Thus, we may compute the lower bound:
LB = w(Heads)d·w(Tails)d·FOMC(φ) = 0.56·0.16·64 =
10−6 and upper bound: UB = w̄(Heads)d · w̄(Tails)d ·
FOMC(φ) = 16 · 16 · 64 = 64. We therefore get the global
bounds (LB,UB) = (10−6, 64) for the coarsest constraints
possible {Heads→ (0, 6), Tails→ (0, 6)}.

We then split the space by considering two possible cases for
each weighted predicate: one where at most half of all ground-
ings of the predicate are true, and one where at least half are
true. Given p weighted predicates, we thus have 2p possible
halves. Using an appropriately defined heuristic whose de-
tails are explained later, we may select one of the p predicates
which corresponds to its two halves. For each half of the split,
we can compute the FOMC using cardinality constraints, and
bounds on the maximum and minimum possible weights for
these regions can also be computed accordingly. Then, the
upper and lower bound for the WFOMC for each half can be
stored in a queue that is sorted according to another heuristic
function on these bounds. Most importantly, the upper bounds
and the lower bounds of the two non-overlapping halves can be
used to improve the upper and lower bounds UB and LB that
we have for WFOMC(φ, d, w, w̄). Specifically, denoting the
old upper and lower bounds (before splitting) as u and l and the
new pair of upper and lower bounds by (l1, u1), and (l2, u2),
we can update the upper bounds as UB := UB−u+(u1+u2)
and LB := LB − l + (l1 + l2).

Example 3. We now take the constraints from Example 2
and split it into 4 possible subconstraints: c1 = {Heads→
(0, 3), Tails → (0, 6)}, c2 = {Heads → (4, 6), Tails →
(0, 6)}, c3 = {Heads → (0, 6), Tails → (0, 3)} and
c4 = {Heads → (0, 6), Tails → (4, 6)}. Note that the
constraint pair c1, c2 (resp. c3, c4) describes non-overlapping
regions and corresponds to a split on Heads (resp. Tails).
Suppose our heuristic functions selects the predicate Heads.
Then imposing each cardinality constraint in turn gives us
FOMC(φ ∧ φCARDc1 ) = 42 and FOMC(φ ∧ φCARDc2 ) = 22.
We may now follow a similar process as that in the last exam-
ple and compute upper and lower bounds for each of these
non-overlapping regions, and push these bounds along with
their respective constraints onto a queue. We now also update
our global bounds (LB,UB) on the WFOMC: suppose we
compute the bounds (li, ui) for each constraint ci. Then we
can tighten our bounds from (10−6, 64) to (l1+l2, u1+u2) =
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Algorithm 1 ApproxWFOMC
Input FO CNF φ, weights (w, w̄), domain size d, tolerance τ
Output (b1, b2) s.t. b1 ≤WFOMC(φ, d, w, w̄) ≤ b2 and b2

b1
<

1 + τ

1: /* Initialization */:
2: queue← new priority queue
3: LB, UB← FOMC(φ, d)
4: for P in WeightedPredicates(φ) do
5: ξ ← darity(P )

6: LB← LB ·min(w(P )ξ, w̄(P )ξ)
7: UB← UB ·max(w(P )ξ, w̄(P )ξ)
8: constraints[P ]← (0, ξ)

9: Store (constraints, newLb, newUb) in queue
10: /* Main loop */:
11: while newUb

newLb
≥ 1 + τ and queue is non-empty do

12: Pop (constraints, lb, ub) from queue
13: /* Constructing refined constraints (splitting) */
14: if constraints cannot be split further then
15: continue
16: O ← select optimal predicate according to heuristic
17: leftConstr, rightConstr ← constraints
18: leftConstr[O]← (l, b l+u

2
c)

19: rightConstr[O]← (b l+u
2
c+ 1, u)

20: /* Recomputing LB and UB using split constraints */
21: LB← LB− lb
22: UB← UB− ub
23: for refinedConstr in {leftConstr, rightConstr} do
24: lo, hi← 1
25: for P in WeightedPredicates(φ) do
26: ξ ← darity(P )

27: (l, u)← refinedConstr[P ]
28: lo← lo ·min(w(P )lw̄(P )ξ−l, w(P )uw̄(P )ξ−u)
29: hi← hi ·max(w(P )lw̄(P )ξ−l, w(P )uw̄(P )ξ−u)

30: mc← FOMC(φ ∧ φCARDrefinedConstr, d)
31: LB← LB + lo ·mc
32: UB← UB + hi ·mc
33: Push (refinedConstr, lo ·mc, hi ·mc) to queue

return (LB,UB)

(6.5625 × 10−4 + 3.4375 × 10−7, 42 + 2.2 × 10−3) =
(6.5659375× 10−4, 42.0022).

The first element is then popped from the queue, and the
procedure repeats until the bounds are sufficiently tight.

Details
The pseudocode shown in Algorithm 1 uses some notation
that has not been described yet. We provide the details
here. The function WeightedPredicates(φ) returns the set
of all non-neutral predicates in φ (i.e. all predicates having
a positive or negative weight other than 1). The notation
φCARDa denotes the first-order formula imposing the cardinal-
ity constraints contained in the dictionary a. For example, if
a = {P1 → (0, 1), P2 → (0, 2)}, then φCARDa would impose
the constraint that predicates P1 and P2 have at most one and
two true groundings respectively.

The “optimal” predicate on line 16 is selected according to
the following heuristic: first, refine the bounds for WFOMC on
the currently processed region by updating the bounds using
the binary split on that predicate (as shown above). Then select
the predicate which minimises lnUi − lnLi.

The priority queue is sorted in decreasing order according
to another heuristic function on the elements: given a tuple
(constraints, lb, ub), its heuristic is computed as ub− lb. It
thus splits regions with the largest gap between upper and
lower bounds first.

3.3 Approximating the WFOMC Using an
Approximate FOMC Oracle

In practice we may only have access to an approximate FOMC
oracle rather than an exact one: for example, in our imple-
mentation we ground the input sentence and use ApproxMC3
to provide such an oracle. In this case, in order to provide
ε-δ style guarantees in ApproxWFOMC, we need to set the
correct parameters to ApproxMC3.

Theorem 3. Given a sentence φ, let (LB,UB) =
ApproxWFOMC(φ,w, w̄, d, τ). Suppose each FOMC ora-
cle call is made by grounding the problem and calling Ap-
proxMC3 with tolerance ε and confidence δi, where i is the
number of oracle calls made so far on lines 3 and 30, and let
δ =

∑
i δi. Then we have:

Pr
[

LB
1 + ε

≤WFOMC (φ,w, w̄, d) ≤ UB (1 + ε)

]
≥ 1− δ.

Proof. Let M denote the number of calls to ApproxMC3
made by ApproxWFOMC and let ci denote the output of
the i-th call to ApproxMC3. Observe that at any point
in ApproxWFOMC’s run both LB and UB are weighted
sums of the outputs of ApproxMC3: UB =

∑M
i=1 γi · ci

and LB =
∑M
i=1 γ

′
i · ci (the values of the coefficients γi

and γ′i are not important for the purposes of the proof).
Next let c∗i denote the true model count corresponding to
the approximate value ci returned by ApproxMC3 and let
UB∗ =

∑M
i=1 γi · c∗i and LB∗ =

∑M
i=1 γ

′
i · c∗i be the re-

spective bounds returned by ApproxWFOMC. It follows
from the guarantees on ApproxMC3 (Theorem 1) that the
probability that ci 6∈ [

c∗i
1+ε , (1 + ε) · c∗i ] is no greater than

δi. Then by the union bound, we have that the probabil-
ity that at least one ci 6∈ [

c∗i
1+ε , (1 + ε) · c∗i ] is at most

δ =
∑M
i=1 δi. Hence, with probability at least 1− δ it holds

LB ≤ (1 + ε)LB∗ and UB∗

1+ε ≤ UB from which we then have
LB

(1+ε) ≤ LB∗ and UB∗ ≤ (1 + ε)UB. Next it follows from
a simple inspection of the pseudocode of ApproxWFOMC
that LB∗ ≤ WFOMC (φ,w, w̄, d) ≤ UB∗. Using the prob-
abilistic bounds just derived for LB and UB, we obtain that

LB
1+ε ≤ WFOMC (φ,w, w̄, d) ≤ UB (1 + ε) with probability
at least 1− δ.

If we do not want to bother the user with setting τ and ε
separately, we can also just ask for δ and τ and then set ε′ :=
3
√

1 + τ−1 and τ ′ := 3
√

1 + τ−1, then call ApproxWFOMC
with the parameters ε′, τ ′ and δ. The algorithm will return
numbers LB and UB: we set LB′ := LB/(1 + ε′) and UB′ :=
(1+ε′)UB and return these two numbers to the user. It follows
from Theorem 1 (and simple algebraic manipulations) that we
are then guaranteed that, with probability at least 1 − δ, the
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following holds: LB′ ≤ WFOMC (φ,w, w̄, d) ≤ UB′ and
UB′/LB′ ≤ 1 + τ .

One remaining question is how to set the values of the indi-
vidual δi’s. One obvious possibility is to set δi := δ/M(φ, d)
where M(φ, d) is the theoretical maximum number of calls to
ApproxMC3 defined as in Remark 1, and δ is the confidence
parameter set by the user. However, we can do better, by
exploiting the fact that in most cases the algorithm will need
fewer calls to ApproxMC3 than the worst-case upper bound.

Proposition 1. For the PAC bounds in Theorem 3 to hold for
a given δ > 0, it suffices to set δi := δ/(i · (lnM(φ, d) + 1)).

Proof. Since the sum of the first M(φ, d) elements of the
harmonic series is at most ln(M(φ, d)) + 1, we will always
have

∑M
i=1 δi ≤ δ for M ≤M(φ, d).

Proposition 2. Let M be the number of calls to Ap-
proxMC3 made by a run of ApproxWFOMC with
δi’s as defined in Proposition 1. Then in total
O
(
M · log(|S|)·(log(

1
δ )+logM+log(lnM(φ,d)+1))

ε2

)
calls to a

SAT oracle will be made by ApproxWFOMC.

Proof. Follows directly from Theorem 1 and Proposition 1.

Cardinality constraints. One point that has not yet been
explained is how the cardinality constraints in the algorithm
can be implemented in practice. Cardinality constraints ex-
press bounds on the number of true instances of members of a
set of propositions: for ApproxWFOMC, we are interested in
expressing this constraint on the number of true groundings
of a first-order predicate. As we use ApproxMC3 to provide
an FOMC oracle by grounding out first-order formulas, we
may express this constraint in propositional form. In our im-
plementation, we employ an efficient encoding by Bailleux
and Boufkhad [2003]. It adds O(n log n) auxiliary variables
and O(n2) additional clauses of length at most 3, where n is
the size of the constrained variable set.

4 Implementation and Experiments
We have implemented our algorithm and tested it on the encod-
ings of two Markov logic network (MLN) instances [Richard-
son and Domingos, 2006]. Inference in the particular networks
we use is known to be especially challenging, as the corre-
sponding formulas are conjectured to not be liftable [Beame
et al., 2015]. We first review how computation of the par-
tition function can be cast as a WFOMC task, and follow
with an analysis of our experimental results. The FOMC or-
acle is implemented using ApproxMC3 as described earlier.
Throughout this section, we fix ε = 0.8, δ = 0.2, and τ = 0.5.
All experiments were performed on a computer with a six-core
Intel i7 2.2GHz processor and 16 GB of RAM.

4.1 Encoding an MLN
Recall that an MLN comprises a set of tuples (w, φ),
where w is a real-valued weight and and φ is a first-
order formula. For example, consider the MLN below,

“transitive-smokers-mln”:

1.22 stress(X)→ smokes(X)

2.08 friend(X,Y ) ∧ smokes(X)→ smokes(Y )

0.69 friend(X,Y ) ∧ friend(X,Z)→ friend(X,Z)

The first rule states that people who are stressed are
likely to smoke. The second states that friends of smok-
ers tend to also be smokers. The last rule states that the
friends relation is typically transitive. Note that it is
the presence of this transitivity rule that is conjectured to
make the problem not domain-liftable [Beame et al., 2015].
That is, unlike in the standard “smokers-mln”, inference in
the “transitive-smokers-mln” is hard. In order to cre-
ate a second even more challenging network, we also ex-
tended the MLN above with the following two rules to create
“transitive-smokers-drinkers-mln”:

2 stress(X)→ drinks(X)

1.5 friend(X,Y ) ∧ drinks(X)→ drinks(Y )

Definition 4 ([Van den Broeck et al., 2014]). The WFOMC
encoding (∆, w, w̄) of an MLN is constructed as follows: for
each tuple (wi, φi(xi)) in the MLN, where xi denotes the free
logical variables occurring in φi, we introduce an auxiliary
predicate Pi/|xi|. Then for each formula in the MLN, ∆ is
formed by conjoining the sentences ∀xiPi ↔ φi(xi). The
weighting is defined by setting w(Pi) = ewi , w̄(Pi) = 1, and
w(Q) = w̄(Q) = 1 for all other predicates Q.

The encoding of the first rule of
transitive-smokers-mln earlier is therefore:

∀XP1(X)↔ (stress(X)→ smokes(X))

with w(P1) = e1.22, w̄(P1) = 1, and w(stress) =
w(smokes) = w̄(stress) = w̄(smokes) = 1.

We can take advantage of some domain-specific knowledge
of the MLN encoding in order to further optimize our algo-
rithm when computing the partition function of an MLN. We
first recall the definition of an (in)dependent support.
Definition 5 ([Ivrii et al., 2016]). Let F denote a proposi-
tional formula, and let X denote the set of variables appear-
ing in F . Then I ⊆ X is said to be an independent support
of F if, for any two models σ1, σ2 ∈ RF that agree on I , we
have σ1 = σ2. In other words, the truth values of I uniquely
determine the truth value of every variable in X \ I . The
remaining variables X \ I are called a dependent support.
Remark 2. Let (∆, w, w̄) denote the WFOMC encoding of
an MLN. Then, after grounding ∆ over some domain D, the
ground instances of all non-auxiliary predicates form an inde-
pendent support for the grounding of ∆.

Based on the observation in Lemma 2, we may pass the
ground instances of all non-auxiliary predicates as a sampling
set to every call of ApproxMC3 in ApproxWFOMC, and
perform projected model counting. This has the effect of
shortening the XOR constraints which must be processed by
ApproxMC3, and provides a significant speed-up to the model
counting times. Finally, observe that all non-auxiliary predi-
cates have neutral weight, so constraints will only be imposed
on the auxiliary predicates.
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Figure 1: (a) Runtime of different WFOMC methods for the transitive-smokers-mln problem with various domain sizes. SDD
compilation runs out of memory for domain sizes larger than 4. d4 runs out of memory for domain sizes larger than 5. (b) Same as (a) for
transitive-smokers-drinkers-mln. SDD compilation runs out of memory for domain sizes larger than 4. (c) Ratio of ApproxMC3
calls made by ApproxWFOMC (until convergence) to FOMC oracle calls in the decomposition in Theorem 2. (d) Bounds obtained
by ApproxWFOMC versus true WFOMC for varying number of ApproxMC3 calls, for a representative domain size d = 4 on the
transitive-smokers-mln problem. The true WFOMC is indicated by the red dashed line.

4.2 Experimental Results
We tested ApproxWFOMC on the encod-
ings of the transitive-smokers-mln and
transitive-smokers-drinkers-mln networks, and
set out to answer the following questions:

1. How does the performance of ApproxWFOMC on first-
order probabilistic models compare to solving the same
problem using exact knowledge compilation?

2. How significant of an improvement does the search
method proposed by ApproxWFOMC yield over the
decomposition in Theorem 2, in terms of the number of
FOMC oracle calls?

3. How quickly do the bounds converge as the number of
FOMC oracle calls made by ApproxWFOMC increases?

We investigate each question individually.

Q1 In Figures 1a and 1b, we show how the domain size
affects the runtime of ApproxWFOMC and compare it to the
SDD library [Choi and Darwiche, 2013] and the Decision-
DNNF compiler d4 [Lagniez and Marquis, 2017]. Note that
a small increase in domain size makes the resulting infer-
ence problem significantly harder, as the number of Boolean
random variables in the joint distribution grows quadratically.
Although SDDs outperform ApproxWFOMC at small domain
sizes (d = 2, 3 and 4), ApproxWFOMC performs better with
larger domains, with SDD compilation running out of memory
already with a domain of size 5 on both networks. d4 was
more resilient, and is able to handle domains of size up to 5
(but no higher) in the smokers network, and all domain sizes
we tested up to 5 in the smokers-drinkers network. We
also tried to experiment with WeightMC but the tilt parame-
ter (cf. Section 2.3) was so high that it rendered WeightMC
unusable beyond a domain of size 2.

Q2 In Figure 1c, we show the efficiency gain of ApproxW-
FOMC over using a naı̈ve decomposition of the form in Theo-
rem 2, by quantifying the ratio between the number of FOMC
oracle calls made by ApproxWFOMC to the number needed
in the decomposition. In both networks the “efficiency ratio”
improves significantly as domain size increases, showing that

the heuristic-guided search becomes increasingly effective in
finding dense regions in the space of weighted models.

Q3 In Figure 1d, we measure how quickly ApproxWFOMC
converges to the true WFOMC for a representative domain
size d = 4. The bounds rapidly approach a value near that of
the true WFOMC (indicated by the red dashed line), meaning
that most ApproxMC3 calls are made when the bounds are
already relatively close to convergence. This suggests that
ApproxWFOMC is well-suited to obtaining rough bounds
very quickly (corresponding to large values of τ ).

5 Conclusion
We introduced ApproxWFOMC, an anytime approximate
WFOMC algorithm with PAC guarantees, and showed how it
can be applied to inference in first-order probabilistic models.
Results show that it is able to scale to domain sizes that are too
large for existing exact methods. Other approximate methods
such as MCMC either need exponential time to converge, or
are used in practice in such a way that does not guarantee
convergence to the stationary distribution (and can therefore
give drastically incorrect results). Our method is somewhere
in between these: it comes with guarantees, and scales beyond
what exact methods can do. Even though a lot of future work is
needed before methods like ours bring us efficient inference in
large domains, we believe that this paper is an important first
step in that direction. There are still several avenues for further
research, including tighter integration between the cardinality
constraints and ApproxMC3, and application of our method to
inference in other statistical relational learning systems such
as ProbLog [Fierens et al., 2015].
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