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Abstract

For the problem of early detection of atrial fib-
rillation (AF) from electrocardiogram (ECG), it is
difficult to capture subject-invariant discriminative
features from ECG signals, due to the high vari-
ation in ECG morphology across subjects and the
noise in ECG. In this paper, we propose an Discrete
Biorthogonal Wavelet Transform (DBWT) Based
Convolutional Neural Network (CNN) for AF de-
tection, shortly called DBWT-AFNet. In DBWT-
AFNet, rather than directly feeding ECG into CNN,
DBWT is used to separate sub-signals in frequency
band of heart beat from ECG, whose output is
fed into CNN for AF diagnosis. Such sub-signals
are better than the raw ECG for subject-invariant
CNN representation learning because noisy infor-
mation irrelevant to human beat has been largely
filtered out. To strengthen the generalization abil-
ity of CNN to discover subject-invariant pattern in
ECG, skip connection is exploited to propagate in-
formation well in neural network and channel at-
tention is designed to adaptively highlight infor-
mative channel-wise features. Experiments show
that DBWT-AFNet outperforms the state-of-the-art
methods, especially for classifying ECG segments
across different subjects, where no data from test-
ing subjects have been used in training.

1 Introduction

Atrial fibrillation (AF) is one of the most common sustained
arrhythmia observed in the clinical practice. The risk of the
disease increases as age grows, and it influences approxi-
mately 0.4% of adult population [Simona et al., 2006]. Disor-
dered activation and irregular atrial contraction are the main
causes of AF, usually accompanied by symptoms related to a
rapid heart rate. The disease is associated with an increased
risk of heart failure, dementia, stroke, coronary artery disease,
cardiomyopathy, and congenital heart disease [Munger er al.,
2014]. Therefore, it is essential to develop a Computer-Aided
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Diagnosis system to detect AF at any time for early treat-
ment even outside hospital. Long-term and continuous 12-
lead electrocardiogram (ECG) signals are non-invasive and
important tools to examine AF. However, it is cumbersome
to wear 12-lead device and so inconvenient since long-term
monitoring would lower the quality of daily life. An alter-
native is to exploit wearable devices which usually acquire
one-lead dynamic ECG recording. It has advantages of low
cost, ease of operation, and comfortable experience to users.
However, high noises are particularly prevalent in wearable
devices, and the morphology of such dynamic ECG shows
high variations among different persons. As a result, it is
of critical importance to find an effective way to detect AF,
not only invariant to cross-subject differences but also robust
against ECG noise.

Generally, ECG signal contains P, Q, R, S, and T waves
for normal sinus mode (NSR) person while the ECG from
AF patient is absent from P wave and shows irregular vari-
ability of R-R intervals. Therefore, most of existing meth-
ods for AF detection from ECG were divided into two cat-
egories: (1) absence of P wave; (2) the irregularity of R-
R intervals. The algorithms [Guidera and Steinberg, 1993;
Ladavich and Ghoraani, 2015] relied solely on the absence
of P wave and thus were limited in real applications. It is
because accurately detecting the fiducial position of a small
P wave is difficult, particularly in the presence of noise and
baseline drifting[Larburu et al., 2011].

Compared to the first category, more algorithms utilized
the irregularity of R-R intervals for automatic detection of
AF. Turning points ratio and root mean square of consec-
utive RR differences, and Shannon entropy were used to
detect AF [Dash et al., 2009; Huang ef al., 2011; Lee et
al., 2012]. Combination of convolutional neural network
(CNN) and recurrent neural network (RNN) was used to de-
tect AF with a series of RR intervals [Andersen et al., 2019;
Dang et al., 2019] as input. CNN by using RR intervals and
F-wave frequency spectrum was also presented for AF de-
tection [Lai et al., 2019]. However, the performance would
degrade when R peaks are detected by mistake in the case of
noisy signals [Asgari et al., 2015].

Several methods focused on manual feature extractors and
feature selection to build a set of features relevant to AF [Mar-
tis et al., 2013; Asgari et al., 2015; Minggang et al., 2018;
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Teijeiro et al., 2018; Rizwan er al., 2018]. For example,
higher order statistics [Martis et al., 2013], peak-to-average
power ratio and log-energy entropy [Asgari et al., 2015], mor-
phology information from P, Q, R, S, T waves and frequency-
based features [Minggang et al., 2018; Teijeiro et al., 2018;
Rizwan er al., 2018]. AF was then diagnosed by passing
these features into conventional machine learning classifiers,
e.g., k-nearest neighbor and support vector machine [Asgari
et al., 2015], decision tree ensemble [Minggang erf al., 2018;
Rizwan er al., 2018] and XGBoost [Teijeiro et al., 2018].
However, the fixed hand-crafted parameters may not be op-
timal for unknown signals.

Recently, deep learning was used for an end-to-end AF
diagnosis by CNN [Xia et al., 2018; Acharya et al., 2017,
Fujita and Cimr, 2019; Cao et al., 2019], or by combining
CNN and RNN [Zihlmann et al., 2017; Warrick and Homsi,
2018; Xiong et al., 2018], requiring neither wave detection
nor hand-crafted feature extraction. However, they mainly
deal with intra-subject scenarios, where the training and test-
ing data contain ECG segments from the same subjects.

AF detection is based on the variations of heart beat.
The heart beats are in a narrow frequency band (FB), but
ECG has much wider FB. Thus, to facilitate CNN learn-
ing AF-relevant patterns from ECG, we are motivated to
select most relevant FB in ECG to AF as input of CNN
for accurate ECG classification. Inspired by [Xu, 2018;
Xie et al., 2019] which suggests turning time series into high-
dimensional space by feature enrichment (FE), we decom-
pose ECG signal into multiple sub-signals with different sub-
FBs by Discrete Biorthogonal Wavelet Transform (DBWT),
leading to discriminant input for better CNN representation
learning.

To detect AF in cross-subject scenario in an end-to-
end way, we propose an efficient DBWT Based Convolu-
tional Neural Network (DBWT-AFNet) to discover subject-
invariant features from AF ECG signals. Rather than directly
feeding ECG into CNN, we segregate sub-signals with sub-
FBs within FB of heart beat from ECG. Such sub-signals
are propagated up to CNN for AF diagnosis, which reduces
the difficulty of CNN to learn subject-invariant ECG repre-
sentation as it removes the interaction with various features
from irrelevant FB. To enhance the learning ability of CNN
to capture the underlying features in ECG, CNN is designed
to be guided by skip connection and channel attention (CA).
Specifically, the identity skip connection is exploited which
propagates information well in neural networks to avoid gra-
dient vanishing. To select the relevant feature maps to AF,
channel attention is explored to adaptively search the infor-
mative features across feature maps for AF detection. Ex-
perimental results demonstrate that our method outperforms
state-of-the-art works in not only patient-specific modeling
but also cross-patient setting. The proposed method pro-
vides a more accurate way to diagnose AF in real applications
where no data have been collected from the new patients to
train the model.
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Figure 1: The overview of the proposed method.

2 Methodology

We aim at detecting AF from sing-lead ECG in cross-subject
scenario. The challenge is to capture AF discriminant pat-
terns from ECG signals, robust against noise and high vari-
ation in the same person or across different persons. Figure
1 shows the overview of the proposed method for AF detec-
tion. Raw ECG is first preprocessed to remove out-of-band
frequencies. To generate discriminative input for CNN better
capturing patient-invariant patterns in ECG, the preprocessed
ECG can be transformed into high-dimensional space through
FE [Xu, 2018], e.g., multiple sub-signals by DBWT, or 2-D
image by discrete Short-Time Fourier Transform (DSTFT) as
in [Xie et al., 2019]. In this paper, we adopt DBWT consid-
ering the diverse contributions of different FBs to AF diag-
nosis. The most AF-relevant sub-signals selected according
to prior knowledge are fed into our CNN to learn discrimi-
native features. There are also other possible feature enrich-
ment methods and sub-signals selection methods, e.g., adap-
tively selected through attention mechanism, and we leave
them for future work. Finally, one fully-connected layer (FC)
with softmax activation takes the learned features as input to
distinguish between non-AF and AF.

2.1 Preprocessing

ECG signal is contaminated by various kinds of noises in real
applications, e.g., respiration signal and muscle contraction.
Since effective frequencies of ECG mainly lie in 1-20 Hz,
the 4th order Butterworth bandpass filter is constructed for
removing noises with cutoff frequencies of 1 and 20 Hz.

2.2 Discrete Biorthogonal Wavelet Transform

To investigate the contribution of different frequency bands
to AF diagnosis, we exploit Discrete Biorthogonal Wavelet
Transform (DBWT) suitable for non-stationary signal analy-
sis [Averbuch et al., 2014] to decompose ECG into multiple
sub-signals with each sub-signal encompassing different fre-
quency bands. DBWT is constructed by two scaling functions
to generate different multi-resolution analyses as:

J
DBWT(s(n)) = vs(n) + > _w;(n), (1)

j=1
where s(n) is input signal, v;(n) and w,(n) denote different

sub-signals with different frequency bands. v;(n) and w;(n)
are calculated with:

vi(n) = Z 2_-7/2ci<p(2_jn —k) 2)
k

wi(n) = 277 2dlp(27n — k). 3)
k
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Figure 2: Plots of representative sub-signals of AF and non-AF de-
composed by DBWT.

¢}, dJ,, are recursively computed as:

co=5 (€]
017:_1 = Zh(l - Qk’)cg7 )
l
l

©(n), ¥(n), h(n), and g(n) are scaling function, mother
function, loss-pass filter coefficient, and high-pass filter co-
efficient, respectively, corresponding to ‘bior 3.5’.

Through DBWT, the preprocessed ECG are decomposed
into J + 1 sub-signals. Concretely, we divide ECG into six
sub-signals (w1, wa, w3, Wy, ws, v5). Since the main frequen-
cies of the preprocessed ECG are below 20 Hz, the sub-FBs
of w; are [20/27,20/27~1] Hz and vs are below 0.625 Hz.
FB of heart beat contains w4 and ws, so we combine these
two sub-signals by simply applying point-wise addition. Fig-
ure 2 illustrates the sub-signals of AF and non-AF by DBWT.

2.3 AFNet Network

To distinguish between AF and non-AF, CNN is constructed
to learn distinct AF relevant features from sub-signals. The
details of the CNN structure in AFNet network are given in

with kernel number of m, kernel size of k, and stride of 1.

the left of Figure 3. In this study, the convolutional layer with
filter number of m, kernel size of k, and stride of 1 is denoted
by Conv(m, k). AFNet is built based on Basic Blocks and
each Basic Block contains 3-layer convolutional module with
the same shape to reduce the free choice of hyper-parameters,
where Basic Block(n) represents the filter number of all con-
volutional layers within it is n. In AFNet, all convolutional
layers use Rectified linear unit (ReLU) to introduce nonlin-
earity and all the max pooling layers adopt pool size of 2 and
stride of 2, denoted as Max pooling(2,2), to reduce compu-
tation complexity in the following processing. To improve
CNN performance and help CNN capture patient-invariant
features contained in sub-signals, a identity skip connection
is employed to efficiently pass the information and to avoid
gradient vanishing, forming Bottle Block, as suggested in
Residual Network architecture [He et al., 2016]. To further
enhance the generalization ability of CNN for better AF di-
agnosis, one channel attention (CA) is added to Bottle Block
to adaptively make emphasis on informative features, inspired
by Squeeze-and-Excitation Networks [Hu er al., 2018], yield-
ing CA Block. Each CA Block includes one global averaging
pooling, one ReLU, two convolutional layers with kernel size
of 1, and one sigmoid function. The filter number of the first
convolutional layer in CA is the filter number of Basic Block
(n) divided by four while it is the same as n for the second
convolutional layer. To reduce parameter number and capture
the global information in every channel, global max pooling
is used to generate channel-wise statistics (C,,). Note that the
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filter numbers of convolutional layer of Bottle Blocks and CA
Blocks are given in the overall AFNet structure. For exam-
ple, Bottle Block(64) and CA Block(256) represent the filter
numbers as 64 and 256, respectively, for all three convolu-
tional layers in Basic Block of Bottle Block and CA Block.

2.4 AF Diagnosis

To detect AF, channel-wise statistics C',, are fed into FC with
softmax as activation to produce the probabilities p of the
input ECG being non-AF (pg) and AF (p;) as:

P = (poap1) = Softmax(WCw + b) 7)

where W € R?*512 and b € R? are parameters to learn.

2.5 Loss Function

We use cross-entropy between the ground truth and the pre-
dicted probability to calculate the loss for the total of M sam-
ples as:

M
1
Loss = Y Zyz log p1 + (1 — i) log(po), ®)

i=1

where y; € (0, 1) is ground truth with y; = 0 representing the
corresponding ECG segment is non-AF and y; = 1 denoting
the ECG segment is AF.

3 Experimental Results

3.1 Dataset

All ECG data were collected from two databases in the pub-
licly accessible PhysioNet [Goldberger et al., 2000], MIT-
BIH Atrial Fibrillation Database (AFDB) [Moody and Mark,
19831 and PhysioNet Challenge 2017!.

AFDB provided 23 available two-lead ECG recordings
from 23 subjects. Each recording has duration of approxi-
mately 10 hours with sampling frequency of 250 Hz. The
annotation of start and ending time of AF for each recording
was given by expert. In our study, only the lead-one ECGs
were taken for AF diagnosis.

PhysioNet Challenge 2017 included 8528 single-lead short
ECG recordings. The individual recordings were each 9-60
seconds in duration sampled by 300 Hz. All the recording
were labelled into 5076 normal rhythm (N), 758 AF rhythm,
2415 other rhythm (O), and 279 noisy (~) recordings accord-
ing to V3 version of labels.

All the ECG recordings were normalized into range [0,1].
Based on the two databases, three scenarios were constructed
to test our method. We divided all ECGs in AFDB into fixed
length of 10 seconds using sliding window without overlap-
ping. A total of 84043 segments were obtained from AFDB.
Our method was evaluated in both cross-subject and intra-
subject scenarios based on AFDB as follows:

e Cross-subject scenario: For training the proposed net-
work, the first 13 recordings were used, including 33824
non-AF segments and 13460 AF segments, while the re-
maining 10 recordings were used for the evaluation of

"https://www.physionet.org/challenge/2017/
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the proposed classifier, including 16737 non-AF seg-
ments and 20022 AF segments. This process ensures
that ECG data for training and testing sets do not con-
tain recordings from the same subjects.

e [ntra-subject scenario: To test our network in intra-
subject scenario as other recent works [Asgari et al.,
2015; Xia et al., 2018; Lai et al., 2019], 5-fold cross-
validation was used to evaluate the proposed method. In
this procedure, all ECG segments were separated into 5
smaller datasets with almost equal ECG segments. The
model was trained by 4 of 5 ECG segments while the re-
maining part (1 of 5) of the ECG segments was used to
validate the performance of the proposed network. This
approach was iterated 5 times by alternating the testing
data. The performances were assessed based on testing
data in each iteration. Finally, the overall performances
of the proposed system were obtained by taking mean
value of the performances acquired in all 5 iterations.

To compare with recent works [Cao ef al., 2019; Ming-
gang et al., 2018; Teijeiro et al., 2018; Rizwan et al., 2018;
Zihlmann et al., 2017; Warrick and Homsi, 2018; Xiong et
al., 2018; Teijeiro et al., 2018] which tested their perfor-
mance on PhysioNet Challenge 2017, we also assessed our
method on this database. To make fair comparison with other
works, we adopted the same procedure in [Cao et al., 2019]
to generate ECG segments. In this procedure, all ECGs were
sliced into 9 seconds. Only one short segment is intercepted
from the middle of each normal recording. For other rhythm
those last less than 20 seconds, we intercepted a short seg-
ment from the middle while two samples were randomly in-
tercepted without overlapping for those longer than 20 sec-
onds. For AF rhythm and Noisy rhythm with fewer samples,
we sliced the ECG with overlapping of 6 seconds and 8§ sec-
onds, respectively. Six-fold cross-validation was then used to
evaluate the proposed method as [Cao et al., 2019].

3.2 Training

We applied stochastic gradient descent to minimize cross-
entropy loss function. Adam algorithm [Kingma and Ba,
2015] was used with a learning rate (Ir) of 0.00002, and to-
tal epoch of 3 in cross-subject scenario. In intra-subject sce-
nario and PhysioNet Challenge 2017 dataset, Ir decayed as
0.0002/(1+42 x epoch) until epoch increased to 10. The pro-
posed network was implemented on Nvidia Titan Xp GPU
with Tensorflow framework and trained with batch size of 64.

3.3 Baseline Models

To make ablation analysis of the proposed DBWT-AFNet net-
work in Figure 1, we implement several baseline models to
evaluate the effectiveness of each step as follows:

o AFNet: AFNet straightly applies AFNet to the prepro-
cessed ECG for AF detection. It is used to evaluate
the effectiveness of DBWT which separates sub-signals
with sub-FBs within FB of heart beat from ECG.

e w;-AFNet and v;-AFNet: w;-AFNet and v;-AFNet
classify ECG through only feeding the sub-signal w; or
v; to AFNet. These models are used to investigate the
contribution of different sub-FBs to AF diagnosis.
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Method Acc(%) Sen(%) Spe(%) Ppr(%) F1 Method Acc(%) Sen(%) Spe(%) Ppr(%) F1
[Acharya et al., 2017] 50.22 20.14 86.19 63.58  0.306 [Asgari et al., 2015] 96.4 96.6 96.3 - -
[Fujita and Cimr, 2019] 51.47 16.90 92.83 73.82 0273 [Xia er al., 2018] 98.29 98.34 98.24 - -

[Fan et al., 2018] 85.65 82.51 89.41 9048  0.862 [Lai et al., 2019] 97.5 97.8 97.2 - -
AFNet—CA 89.34 85.41 94.05 9449  0.898 DBWT-AFNet 99.10 99.20 99.04 98.57  0.989
AFNet 90.51 90.64 90.35 91.89 0912

DBWT-AFNet—CA 92.50 88.82 96.90 97.21  0.927 . . . .
DBWT-AFNet 95.81 95.69 9596 9659  0.962 Table 3: Comparative results with state-of-the-art algorithms in

Table 1: Comparative results with state-of-the-art algorithms under
cross-subject scenario.

Method Acc(%) Sen(%) Spe(%)

v5-AFNet 59.73 29.75 95.60 89.04  0.445
ws-AFNet 69.88 48.84 95.04 9228  0.638
w4 -AFNet 92.46 89.14 96.43 96.76  0.928
ws-AFNet 88.49 80.70 97.83 97.81  0.884
wz-AFNet 82.39 72.86 93.80 9339  0.818
w1 -AFNet 86.43 77.44 97.19 97.09  0.860

Ppr(%) Fl

Table 2: Comparative results for different FBs under cross-subject
scenario.

e DBWT-AFNet—CA and AFNet—CA: DBWT-
AFNet—CA and AFNet—CA merely remove channel
attention in DBWT-AFNet and AFNet, respectively.
These two baselines are applied to prove the effec-
tiveness of CA which automatically highlight useful
channel-wise features.

3.4 Performance Metrics

Five statistical metrics are adopted to evaluate the effective-
ness of the proposed classifier, e.g., accuracy (Acc), sensi-
tivity (Sen), specificity (Spe), positive predictivity (Ppr), and
F1 score. F1 score is the harmonic average of Ppr and Sen,
which is widely used in the field of information retrieval and
very useful to evaluate classifier performances in the case of
class imbalance.

3.5 Results in Cross-Subject Scenario

We train all the methods starting from a random initializa-
tion on the parameters. To reduce the influence of random
initialization on the model performance, we run the training
and testing five times, and the final performance is measured
by the average value of all metrics for five times under the
cross-subject scenario. Table 1 lists the performance of the
proposed method as well as other related methods.

It can be observed from Table 1 that the proposed DBWT-
AFNet achieves the best performance. Compared to the
highest scores for each index among the existing methods
[Acharya er al., 2017; Fan et al., 2018; Fujita and Cimr, 2019]
for AF detection, DBWT-AFNet improves from 85.65% to
95.81% for Acc, from 82.51% to 95.69% for Sen, from
92.83% to 95.96% for Spe, and from 90.48% to 96.59% for
Ppr. The scores for Sen are low by most methods, indicat-
ing that the false negatives are high. In terms of F1 score,
which trades off between Sen and Ppr, DBWT-AFNet im-
proves from 0.862 to 0.961. To summarize, DBWT-AFNet
learns the patient-invariant discriminant patterns for AF de-
tection, much better than the existing methods do.
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intra-subject scenario.

We test several ablation models to quantify the contribution
of the key components to DBWT-AFNet on the performance
improvement. We can see from Table 1 that the performances
of AFNet and AFNet—CA are improved by DBWT-AFNet
and DBWT-AFNet—CA, respectively. These results demon-
strate it is important to separate low frequencies in the FB of
heart beat from ECG through DBWT for more accurate AF
diagnosis. The probable reason is that using such sub-signals
as input of CNN removes the irrelevant information in ECG,
which makes CNN become easier to learn discriminative fea-
tures for AF detection. DBWT-AFNet achieves improvement
compared to DBWT-AFNet—CA and AFNet shows supe-
rior performance to AFNet—CA. They indicate the effective-
ness of CA which assists CNN to discover subject-invariant
ECG representation for more accurate AF detection through
adaptively emphasizing useful information across feature
maps. The accuracy is very low for [Acharya et al., 2017,
Fujita and Cimr, 2019] which use four and three convolu-
tional layers, respectively, to learn ECG representation. It
is because it may be hard for shallow CNN to capture non-
subject-specific features from complex variations of ECG
across different subjects. The performance is improved by
[Fan et al., 2018] applying two-stream CNNs with each CNN
including 13-layer convolution to discover AF relevant fea-
tures, which shows that deep CNN is more capable of find-
ing underlying features in ECG. The performance is further
surpassed by AFNet—CA. This is probably due to that skip
connection makes information well propagated through deep
neural networks and better captures patient-invariant patterns
in ECG.

To study the influence of each sub-FB for AF diagnosis,
we apply the proposed AFNet to every sub-signal and all the
performances are listed in Table 2. Heart beats in the sub-FB
of [1.25, 2.5] is most frequent corresponding to w4 and sub-
FB of [2.5, 5] corresponding to w3 is secondarily happened.
It can be viewed that w4-AFNet exploiting sub-signal (wy)
as input presents the best performance while ws-AFNet with
wsg as input obtains the second ranking. These results further
indicate that the discriminant features between AF and non-
AF may concentrate on the FB of heart beat. Both w, and w3
contains relevant features to ECG types, and hence combing
them to recognise ECG classes can improve accuracy. It is
reflected as the improvements of DBWT-AFNet, compared
to w4-AFNet and w3-AFNet.

3.6 Results in Intra-Subject Scenario

The intra-subject scenario is easier than the cross-subject
scenario for the problem of AF detection, because subject-
specific patterns can be utilized in the former case to im-
prove the classification performance. Specifically, in intra-
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Method N AF Other  Mean
[Zihlmann et al., 20171 0.888 0.764  0.726  0.792
[Cao et al., 2019] 0.881 0.966  0.851 0.899
[Minggang et al., 2018] 0.93 0.88 0.82 0.87
[Teijeiro et al., 2018] 0953 0.838 0.850 0.880
[Rizwan et al., 2018] 0.889  0.791 0.702  0.794
[Warrick and Homsi, 2018] 0910  0.810  0.780  0.853
[Xiong er al., 2018] 0919 0.858 0.816 0.864
DBWT-AFNet 0.927 0950 0.924 0934
AFNet 0.794 0913  0.682  0.796
DBWT-AFNet—CA 0923 0950 0920 0931
AFNet—CA 0.796 0913  0.660  0.789

Table 4: Comparative F1 score with state-of-the-art algorithms in
PhysioNet Challenge 2017.

subject scenario, although the ECG segments from the train-
ing and testing datasets are not the same, they can come
from the same person. The models trained in intra-subject
scenario can be generalized better to testing data, by reduc-
ing the variation of ECG across different persons via in-
cluding representative ECG beats of testing subjects in the
training set. Table 3 shows the results in intra-subject sce-
nario. In this scenario, our method also surpasses the ex-
isting methods by [Asgari et al., 2015; Xia et al., 2018;
Lai et al., 2019]. Since the performance of all methods is al-
ready beyond 96%, the improvement by the proposed method
is marginally small.

3.7 Results in PhysioNet Challenge 2017

Table 4 summaries the state-of-the-art published research re-
sults of ECG classification based on PhysioNet Challenge
2017 public dataset. As these works only reported the F1
scores with respect to normal, AF, other classes, and mean
F1, we use the same indicators to make direct comparison.
It can be observed from Table 4 that the proposed DBWT-
AFNet and DBWT-AFNet—CA outperform other methods in
terms of mean F1, which is improved from 0.899 by [Cao
et al., 2019] to 0.934 by DBWT-AFNet. The performance
of DBWT-AFNet and DBWT-AFNet—CA are much supe-
rior to AFNet and AFNet—CA. These results further prove
that the features of different classes are mainly located in
heart beat FB. Merely feeding these sub-signals into CNN re-
duces the feature interference among different sub-FBs, and
hence deceases the difficulty of CNN to learn distinguishable
information among different types. Compared to DBWT-
AFNet—CA and AFNet—CA, DBWT-AFNet and AFNet also
achieve slight improvement, respectively, which demonstrate
that channel attention indeed facilitates CNN to recognise dif-
ferent ECG types.

4 Conclusion

This paper presents a new method for learning ECG rep-
resentation from single-lead ECG to diagnose AF, without
any peak detection or hand-crafted features. For this pur-
pose, we explore DBWT to separate relevant sub-signals to
AF with sub-FBs in FB of heart beat. Then, the CNN gated
by skip connection and channel attention mechanism further
learns the discriminant features for AF detection with such
sub-signals as input. The experimental results show that the
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proposed method achieves significant improvement in cross-
subject AF detection, indicating that the proposed method
has indeed learnt subject-invariant discriminant patterns. The
proposed method can be used in real applications where no
data from new patients has ever been collected as training
data.
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