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Abstract

Stock Trend Prediction(STP) has drawn wide at-
tention from various fields, especially Artificial
Intelligence. Most previous studies are single-
scale oriented which results in information loss
from a multi-scale perspective. In fact, multi-
scale behavior is vital for making intelligent in-
vestment decisions. A mature investor will thor-
oughly investigate the state of a stock market at
various time scales. To automatically learn the
multi-scale information in stock data, we pro-
pose a Multi-scale Two-way Deep Neural Net-
work(MTDNN). It learns multi-scale patterns from
two types of scale information, wavelet-based and
downsampling-based, by eXtreme Gradient Boost-
ing and Recurrent Convolutional Neural Network,
respectively. After combining the learned patterns
from the two-way, our model achieves state-of-the-
art performance on FI-2010 and CSI-20161, where
the latter is our published long-range stock dataset
to help future studies for STP task. Extensive ex-
perimental results on the two datasets indicate that
multi-scale information can significantly improve
the STP performance and our model is superior in
capturing such information.

1 Introduction
Stock Trend Prediction (STP), which automatically predicts
future direction of the stock price movement, is of great im-
portance for investors. It is challenging because stock data
is non-stationary time series dominated by chaotic. It has at-
tracted many researchers to explore such stochastic data [Tsai
and Hsiao, 2010; Kara et al., 2011; Li et al., 2016].

To reduce the chaos in stock data, previous studies smooth
the data with a single specific time scale to analyze the behav-
ior of stock price movement (e.g. 5-minute moving average).

1https://github.com/marscrazy/MTDNN
2†:equal comtribution
3∗:corresponding author

However, the single-scale analysis ignores the multi-scale be-
havior within stock data. As depicted in Figure 1, stock trend
moves toward different direction with multiple time scales,
where s1,s2,s3 indicate the wrong direction and s4 conveys
information towards the correct direction. Single-scale is in-
sufficient to predict the moving trend.

Raw stock data
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t
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Figure 1: Intuitionistic view of multi-scale patterns within a stock
data.

Notice that time scale is just one type of scale-information.
[Hu and Qi, 2017] proposed a state-frequency memory net-
work that uses Fourier transform to decompose memory state
into multi-frequency components. [Lahmiri, 2014] used Dis-
crete Wavelet Transform (DWT) to decompose a stock time
series into multi-scale components of different resolutions.
[Cui et al., 2016] obtained multi-scale patterns directly by
downsampling with different time scales. It is worth men-
tioning that all the above methods are not for STP task. In
this paper, we insist that multi-scale information refers to
stock price behavior not only at multiple scales but also in
multiple types of scale-information. To explore the multi-
scale patterns from two types of scale-information for the
STP task, we propose a novel Multi-scale Two-way Deep
Neural Network (MTDNN). One way is DWT-based. It uses
eXtreme Gradient Boosting (XGBoost) to automatically en-
semble the DWT-based multi-scale patterns. The other is
downsampling-based. It uses Recurrent Convolutional Neu-
ral Network (RCNN) structure with a key operation to tempo-
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rally cascade the downsampling-based multi-scale patterns.
Finally, we fuse the two types of multi-scale patterns by a
fully connected layer to make predictions.

We evaluate our model on a benchmark dataset FI-2010.
However, FI-2010 only has 10-day stock events which easily
result in over-fitting. To address the above concerns, we col-
lect and build a one-year range of one-minute stock dataset,
China Stock Index 2016 (CSI-2016). Our model achieves
state-of-the-art performance on both datasets.

The major contributions of this paper are summarized as
follows:
(1) We propose a model that achieves state-of-the-art STP

performance on a benchmark dataset and a long-range
dataset, which strongly demonstrates the superiority of
our model.

(2) We conduct a series of experiments to 1) compare dif-
ferent approaches of using multi-scale patterns and 2)
analyze the scale characteristics of different types.

(3) We publish a new minute-level stock index dataset to
help future studies on the task of STP.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related works. Section 3 generally formalizes the
STP task. Section 4 describes the architecture of MTDNN.
Section 5 first introduces the dataset and experimental set-
tings, then analyze the results. Section 6 is the conclusion
and future works.

2 Related Works
2.1 Multi-scale for Time Series
Many studies concentrate on extracting the multi-scale pat-
tern from time-series, to describe time-series more precisely.
The multi-scale information of financial time-series has been
extensively investigated [Dacorogna et al., 1996]. By the
similarity measured on multiple scales, the future price of
given security can be estimated by finding a similar history
price sequence across different financial markets [Papadim-
itriou and Yu, 2006]. In AI, some studies have explored the
multi-scale information of time-series. The most prior work,
ScaleNet [Geva, 1998], decomposes the time-series into dif-
ferent scales by Wavelet transform and extracts features from
each scale by different Neural networks to obtain a prediction.
More recently, Cui et al. [Cui et al., 2016] use Convolutional
Neural Network (CNN) to enhance the feature extraction abil-
ity, [Fernández et al., 2019] apply extreme learning machine
(ELM) and a Discrete Wavelet Transform (DWT) to capture
the scaling-properties. The above methods with multi-scale
information achieved remarkable improvement compared to
the single-scale methods.

2.2 Stock Trend Prediction
Stock Trend Prediction (STP) is a typical classification task.
Traditionally, Support Vector Machine (SVM) and Neural
Network (NN) are thought to be very effective for STP [Kara
et al., 2011]. Due to the excessive parameter size, models
are easily over-fitting to the training set. Ensemble-based
methods, such as Random Forest (RF) [Patel et al., 2015]
which ensembles multiple trees to achieve better prediction

and generalization performance, are introduced in STP. Re-
cently, some pioneer researches have explored the effective-
ness of deep learning models in STP [Deng et al., 2017;
Lin et al., 2017]. The above researches indicate that STP task
is lacking all kinds of publicly available benchmark dataset
and only focusing on single-scale models.

3 Task Formulation
STP takes stock data as input to predict its moving trend. A
stock data is a stock events time-series of T length, which we
denote as x = {xt}T where xt ∈ Rd is one stock event at
t-th timestep with d dimensions (e.g. prices, volumes). The
stock dataset is a collection of paired data D = {(xn, yn)}N
where N is the number of samples in the dataset. yn is the
category given the n-th stock data xn, where

yn =

{−1 ∆pT ≤ −α
0 −α < ∆pT < α
1 ∆pT ≥ α

(1)

represent the downward, stationary and upward stock price
moving trend, respectively. The α is a threshold for trend
direction judgement. ∆pT is the percentage change of the
future mid-price compared with the current price, which is
calculated as follows,

∆pT =
mT (k)− pT

pT
, (2)

where mT (k) = 1
k

∑k
i=1 pT+i, k is the prediction horizon.

STP is to construct a nonlinear function that can map an
input stock data xn to a category yn as follows:

ŷn = f(xn; θ), (3)

where f(·) is the nonlinear mapping function, θ is the param-
eters and ŷn is the predicted category. The objective is to
learn a set of parameters θ that best fit f(·) to map an input
xn to the correct category yn.

4 Model
4.1 Overview
The architecture of MTDNN is depicted in Figure 2. Our
MTDNN model is a two-way end-to-end model. It comprises
one wavelet-based way and one downsampling-based way.
The two ways convey discriminative information, where the
multi-scale information is the dominant force to help enhance
the prediction of the stock trend. In the following of this sec-
tion, we first define the wavelet-based way, then describe the
downsampling-based way, at last, explain output and objec-
tive of the MTDNN.

4.2 Wavelet-based Way
In this way, we explore the multi-scale behavior of the stock
data from a signal processing perspective. A set of stock data
is regarded as a non-stationary and discrete signal. After a
recursive decomposition of the signal by DWT, we can ob-
tain a series of transformed multi-scale components. We first
concatenate those components, then feed them to an XGBoost
model to automatically ensemble the multi-scale information,
finally output the category scores.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4556



1 scale
Conv

1×d
@16 3

Max
Pooling

2×1
Conv

3×1
@32

Max
Pooling

2×1
Conv

3×1
@32

Downsampling-based way

Wavelet-based way

3

3

d

d dimentions

2 scale

s scale

32×sPaddings

Paddings
CNN2

CNN1

CNNs

Key operation

XGBoost

T/2×d

T/s×d

T×d

x(1)

x(d)

wavelet

d1

a1

d2

a2

wavelet

HPF

LPF

HPF

LPF

d1

d2

d3

amDWT

m scales

Flattened
d×m

dimentions

GRU GRU

fc

fc

T

s scale Downsampling

32

Figure 2: The architecture of MTDNN.

Discrete Wavelet Transform
DWT is the discrete version of the wavelet transform. It trans-
fers the decomposition of a discrete signal into multi-scale
components. Top-left of Figure 2 depicts the decomposi-
tion process of DWT. At the first level, given original signal
x(i) = {xt,i}t∈[1,T ] on the i-th dimensional, it is decom-
posed into approximation components a1(i) = {a1n(i)}T

2

and detail components d1(i) = {d1n(i)}T
2

, by passing the
signal through a Low-Pass Filter (LPF) and a High-Pass Fil-
ter (HPF), respectively. In this way, signals are downsampled
by 2 so that frequency resolution is increased. For simplic-
ity, we drop the index i whenever it is unambiguous from the
context. The decomposition of the original signal can be for-
mulated as,

a1n =
∑
t

h[2n− t]xt , (4)

d1n =
∑
t

g[2n− t]xt , (5)

where the superscript of a and d indicate the level of DWT.
h and g are the LPF and HPF, respectively. n and t are the
index of the corresponding components. The second level of
DWT decompose the first level output a1 into a2 and d2, then
the third level till a specified level has been reached. The re-
cursive iteration of wavelet decomposition can be illustrated
as,

amn =
∑
t

h[2n− t]am−1t , (6)

dmn =
∑
t

g[2n− t]am−1t , (7)

wherem is the level index. am−1 = {am−1t }t∈[1, T

2m−1 ] is ap-
proximation components obtained from previous level. For a

set of stock data, the approximation components am (low-
frequency) maintain the information of the long-term moving
trend within the historical data, and the detail component dm

(high-frequency) maintains its short-term moving trend infor-
mation. Levels of DWT represent different resolutions of the
original signal, which capture information about long-short
term moving trends of different scales. We concatenate those
components into a single vector. Thus given x, the output is,

vi = [dm(i),dm−1(i), ...,d1(i),a1(i)] , (8)

where vi is the multi-scale feature vector for i-th feature di-
mension. We use V to represent output [v0,v1, ...,vd] for
simplify.

XGBoost
XGBoost is a scalable machine learning system for tree
boosting [Chen and Guestrin, 2016]. Based on the gradient
enhancement decision tree, it produces a prediction model
with an ensemble of weak tree-based prediction models. It
builds the model in a stage-wise fashion as other boosting
methods do, and it generalizes them by allowing optimization
of an arbitrary differentiable loss function. The tree-based na-
ture is suitable for extracting features from mixed multi-scale
information.

ŝwavelet = fxgb(v) (9)

where ŝwavelet ∈ R3 denotes the category score from
wavelet-based way, fxgb represents the XGBoost model.

4.3 Downsampling-based Way
In this way, we propose a novel strategy to temporally cascade
a sequence of increasing multi-scale information by a RCNN
structure. Firstly, we use a simple downsampling technique
to transform stock data into multi-scale formations, then they
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are fed to CNNs obtaining multi-scale spatial features. After
a key operation, we obtain a sequence of increasing multi-
scale information. Finally, we use GRU to temporally cas-
cade those information and output categories.

Downsampling
Downsampling technique is a straightforward way to trans-
form the original stock data x into multi-scale formations. Let
s be the scale for downsampling. Then every s-th data point
in x is kept to construct the new data xs = {x1+ls}l∈[0,Ls],
where Ls = bT/s− 1c is the length of xs. By setting dif-
ferent scales, we obtain a collection of down sampled multi-
scale stock data X = {xs}S .

RCNN Structure
To extract multi-scale features from X, we propose a RCNN
structure to cascade outputs from a series of CNNs by RNN,
where each independent CNN captures the spatial informa-
tion from one scale formation of stock data and RNN tempo-
rally cascade such multi-scale spatial information. The key
operation is how to construct and cascade the information.

We follow the structure of CNNpred [Ehsan and Saman,
2019] as our CNN method. CNNpred is a stock data-oriented
CNN whose structure outperforms the other CNNs[Gunduz
et al., 2017; Di Persio and Honchar, 2016] for STP task. The
configuration is depicted in the bottom of Figure 2. It is a
5-layer CNN. Given an input of stock data xs ∈ RL×d, the
first layer is a 1D convolution over features with 16 filters of
1 × d, after which is stacked with two convolutional layers
with 32 filters of 1×3, each followed by a 2×1 max-pooling
layer. The calculation of CNN can be simply represented as,

us = fscnn(xs) (10)
where us = {usi}i∈[1,L̇s]. Here, usi ∈ R32 is the i-th of all L̇s

spatial feature vector obtained by CNN fscnn(·) which is for
stock data in scale s.

The key operation is to concatenate these multi-scale spa-
tial features in such a way,

vi =



[u1i ,0, ...,0], i ∈ [0, L̇1 − L̇2]

[u1i ,u
2
i−L̇1+L̇2 , ...,0], i ∈ (L̇1 + L̇2, L̇1 + L̇3]

...

[u1i ,u
2
i−L̇1+L̇2 , ..., u

S
i−L̇1+L̇S ], i ∈ (L̇1 − L̇S , L̇1]

(11)
where [, ..., ] concatenates multiple vectors into single vector
vi. 0 is zero padding ensuring the same dimension as {vi}L̇1 .
Such operation can 1) make {vi} contains multi-scale infor-
mation at each time-step; 2) let the multi-scale information
increases over time.

We use Gated Recurrent Unit (GRU) to temporally cascade
{vi}, which can be represented as

hi = fgru(vi, hi−1) . (12)
where hi is the hidden state at the i-th time-step and fgru is
the GRU cell. The last hidden state hL̇1 is passed to a fully
connected neural network to make prediction,

ŝsample = fnn(hL̇1) . (13)
where ŝsample ∈ R3 is the category score from
downsampling-based way, fnn denotes the fully connected
neural network.

4.4 Output and Objective
We use a network with two fully connected layers to fuse
category scores from both ways, and to output the category
prediction results.

ŷ = flogit(ŝsample, ŝwavelet) , (14)

where ŷ is the output score of our model, flogit(·) denotes the
output layer.

We use cross-entropy as our loss function to measure the
difference between our predicted classification distribution
ŷn and real distribution yn:

J = − 1

N

N∑
n=1

ynlog(ŷn), (15)

where θ represents all the parameter of the model, N is the
total number of samples.

5 Experiments
5.1 Datasets and Settings
We test our model on two datasets: FI-2010 [Ntakaris et al.,
2018] and CSI-2016. The statistics of the two datasets are
presented in Table 1.

Dataset Train Test

(%) samples (%) samples

FI-2010
↓ 32.03

352,300
31.18

31,837− 36.91 40.66
↑ 31.06 28.16

CSI-2016
↓ 38.34

143,262
25.99

30,000− 25.21 48.99
↑ 36.45 25.02

Table 1: Dataset statistics.

FI-2010 is the first publicly available benchmark dataset of
high-frequency Limit Order Book (LOB)1 data. It comprises
approximately 4.5 million events of 5 stocks from 10 con-
secutive days. Every 10 non-overlapping events are officially
represented as a 144-D feature vector.

Experimental settings on this dataset are as follows. Set-
ting the label threshold α = 0.002, prediction horizon k = 50
and the input window size T = 100. The dataset provides
3 off-the-shelf normalised data: z-score, min-max and dec-
imal precision normalisation. We follow the most previous
work [Zhang et al., 2019; Tran et al., 2018] that use the
first 40 z-score normalized dimensions as the feature vector
xt = [pia(t), via(t), pib(t), v

i
b(t)]i∈[1,10] which represent the

top 10 prices and volumes of both ask and bid orders.
CSI-2016 is our collected dataset from three one-minute

stock index data, including the Shanghai Stock Exchange

1A limit order book is a record of unexecuted limit orders main-
tained by the security specialist who works at the exchange. A limit
order is a type of order to purchase or sell a security at a specified
price or better, which is opposed to orders that match immediately.
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(SSE) Composite Index SH000001, Shenzhen Stock Ex-
change Small & Medium Enterprises (SME Boards) Price
Index SZ399005 and ChiNext Price Index SZ399006. It
has over 170, 000 samples spanning a year from January
1st, 2016, to December 30th, 2016. Each sample xt =
[ph(t), pl(t), po(t), pc(t), v(t), a(t)] is a one minute data of
6 dimensions which are high, low, open, close, volume and
amount, respectively.

Experimental settings on this dataset are as follows. The
datasets are splited in strictly temporal order. Setting the la-
bel threshold α = 0.01, prediction horizon k = 5, the input
window size T = 100 and the feature dimension d = 6.
All features are normalized by z-score. We firstly train the
wavelet-based way and freeze its parameters, then train the
rest of the model using the SGD algorithm with a learning
rate of 0.0001 and weight decay 0.9.

5.2 Results and Analysis
We conduct a series of experiments to evaluate the perfor-
mance of our model. We choose not only classical methods
but also recently proposed an advanced model for compari-
son. In this section, we first analyze benchmark performance
on FI-2010, then, analyze the results on our CSI-2016, finally
give an ablation study to help understand the modules in our
MTDNN. [Ntakaris et al., 2018] suggests to use F1 as the
major metrics, while we also present ACC performance for
reference.

Model ACC % F1 %

SVM [Tsantekidis et al., 2017b] - 49.42
MLP [Tsantekidis et al., 2017b] - 55.95
CNN-I [Tsantekidis et al., 2017a] - 59.44
LSTM [Tsantekidis et al., 2017b] - 61.43
CNN-II [Tsantekidis et al., 2018] - 47.00
B (TABL) [Tran et al., 2018] 75.58 73.64
C (TABL) [Tran et al., 2018] 79.87 78.44
DeepLOB [Zhang et al., 2019] 80.51 80.35
BL-GAM-RHN-7 [Luo and Yu, 2019] 82.00 80.88

Downsampling RCNN 80.79 80.72
DWT XGBoost 80.81 80.74
MTDNN 81.12 81.05

Table 2: Results of predicting the mid-price movements in the next
50 events on FI-2010 dataset.

Results on FI-2010
The model performance on FI-2010 is presented in Table 2,
in which all the results are quoted from the original paper. All
of the listed models for comparison are single-scale oriented
methods.

Our two-way model achieved SOTA performance with
81.05% F1 score and 81.12% accuracy. In STP, a tiny im-
provement in classification would lead to a dramatic rise in
profits. MTDNN achieves a higher F1 score than the previ-
ous SOTA model BL-GAM-RHN-7. We analyze the result
from three aspects, 1) The two-way structure of MTDNN is

more effective in extract multi-scale patterns than the one-
way models. The one-way model can promote trend pre-
diction performance to the same level (80+%). By combin-
ing the output score of two single-way models, our model
achieves higher performance. 2) As we can see, DWT, Neu-
ral Tensor Network [Luo and Yu, 2019] and CNN are use-
ful feature extractors in 80%-club models. Besides, most of
the 80%-club models have the RNN structure, except DWT
XGBoost. 3) Our key operation can effectively utilize the
multi-scale patterns for STP. The Downsampling RCNN and
DeepLOB has a similar structure, the major difference is the
multi-scale transform and key-operation, which help Down-
sampling RCNN outperform the strong baseline DeepLOB.

Model ACC % F1 %

SVM [Kim, 2003] 51.50 51.81
RF [Kara et al., 2011] 52.30 51.96
TreNet [Lin et al., 2017] 52.38 52.50
FDNN [Deng et al., 2017] 52.32 52.45
CNNPred [Ehsan and Saman, 2019] 56.63 52.93

SFM [Hu and Qi, 2017] 52.96 52.97
DWT MLP [Lahmiri, 2014] 57.29 54.19

Downsampling RCNN 62.74 61.35
DWT XGBoost 62.19 60.74
MTDNN 63.07 61.65

Table 3: Results on CSI-2016.

Results on CSI-2016
We choose seven models for comparison, where SFM is of-
ficially implemented and the others are implemented by our-
selves. The middle two models are original multi-scale mod-
els for regression of stock prices, we modify them into STP
models. The first five models are single-scale models origi-
nally for STP.

We present both ACC and F1 results in the table 3. Our
MTDNN achieves the highest accuracy 63.07% and F1 score
61.65%. Compared with single-scale models. CNN was the
strongest model for STP, however, it falls behind a simple
MLP with just DWT multi-scale features. Both our single-
way and two-way models outperform the other multi-scale
models. It reveals that our models are superior existing
multi-scale models in extracting and utilizing multi-scale fea-
tures. Compared with the two adapted multi-scale models,
our model obtains higher scores. It’s noticeable that the DWT
MLP uses the same input as our DWT XGBoost. The only
difference between the aforementioned methods is the model
used for extracting multi-scale features. The results suggest
that the XGBoost is more effective than MLP in extracting
multi-scale features from data after DWT.

Ablation Study
To further understand the multi-scale behavior in stock data,
we make several variations of our model. The variations are
tested under single- and multi-scale environment. The results
are presented in Table 4. In single-scale environment, vari-
ations are fed with only raw data. The results are listed in
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Model CSI-2016 FI-2010

ACC F1 ACC F1

Single-scale

XGBoost 54.16 53.52 45.56 41.85
CNN 56.63 52.93 56.73 58.22
RNN 57.56 51.21 57.29 56.65
RCNN 57.11 54.12 65.16 64.72

Multi-scale

DWT XGBoost 62.19 60.74 80.81 80.74
DWT CNN 57.90 54.96 57.56 59.24
DWT RNN 57.14 54.17 44.02 40.35
DWT RCNN 57.58 50.21 44.58 37.71
Downsampling XGBoost 54.18 53.51 45.60 41.82
Downsampling RCNN* 57.21 51.95 59.45 58.03
Downsampling RCNN 62.74 61.35 80.79 80.72
Downsampling RCNN XGBoost 62.42 60.73 80.75 80.69
Multi-kernel RCNN 58.14 54.40 67.16 66.85

Table 4: Ablation study

single-scale rows, which reveal the capability of each single
model in STP task. In multi-scale environment, variations
are fed with three types of scale-information. The results are
listed in multi-scale rows, which demonstrate that models are
sensitive to the type of scale-information. In this section, we
give our analysis from two aspects as follows.

The single-scale rows presents the performance of four
variations, where XGBoost directly regards the raw data as
features to make predictions, CNN has a convolutional fea-
ture extraction before making predictions, RNN makes pre-
dictions by considering the temporal information over time,
RCNN captures the temporal information from a series of
CNN receptive fields (local spacial information). From the
results, RCNN achieves the best performance on most of
the indices, and XGBoost gets weak performance. It means
1) CNN features can significantly imporve the prediction of
RNN, and raw data is hard to predict the moving trend even
by a strong classifier (XGBoost achieves many SOTA perfor-
mance in Kaggle tasks). Note that the structure of RCNN
is very similar to [Zhang et al., 2019], however we cannot
reproduce their results in FI-2010.

In multi-scale rows, the first four rows are aforementioned
variations fed with DWT-based multi-scale features. The
following four variations are fed with downsampling-based
multi-scale features. The last variation is fed with a new type
of scale-information obtained by CNN with multiple kernel
size.

Comparing the first four variations with their counterpart,
XGBoost obtains significant increase, from the worst to the
best, about 8 points in CSI-2016 and over 30 points in FI-
2010. While the other variations get negative or slightly pos-
itive results. We analyze that DWT is a recursive convolution
over low-frequency components with specified filters, which
is similar to the operation in CNN. Thus CNN is hard to ex-
tract more information from DWT convolved features. The
bad performance of RNN is due to the broken temporal struc-
ture in DWT features.

Comparing downsampling RCNN* and downsampling

RCNN, where RCNN* is an alternative way of using output
features from different CNNs and RCNN use our proposed
key operation. In RCNN*, each CNN is followed with an in-
dependent RNN to temporally fuse the features of one scale.
The output of each RNN is concatenated to make predictions.
The results shows the superior of our key operation in using
multi-scale information.

Comparing XGBoost, DWT XGBoost, downsampling
XGBoost, downsampling RCNN and downsampling RCNN
XGBoost, we can understand that 1) downsampling features
valid on RCNN is useless on XGBoost, and 2) downsampling
do not provide any new features which result in an equiva-
lent performance between XGBoost and downsampling XG-
Boost, and 3) features from dowsampling RCNN cannot fur-
ther boost the performance XGBoost.

Last, but not the least, Comparing DWT RCNN, downsam-
pling RCNN and multi-kernel RCNN, we can understand that
RCNN is better at capturing downsampling-based features.
We think that downsampling can weaken the nonstationary in
the raw data by explicitly droping out points in the raw data,
and the denoised raw data can help CNN to extract more use-
ful features.

6 Conclusion and Future Works
This paper proposes a multi-scale oriented model, MTDNN,
for STP. Our motivation is to fully explore the potential of
multi-scale information within the stock data. We explore
two types of multi-scale information extracted from two mod-
ules, downsampling with RCNN and DWT with XGBoost, as
the two way of our MTDNN. By combining the two mod-
ules, MTDNN achieves state-of-the-art performance on the
benchmark FI-2010 dataset. We publish a one-minute dataset
CSI-2016 and present the result for further study on the STP
task. The results on both datasets reveal the effectiveness of
multi-scale information and the superior of our model in us-
ing such information. In the future, we prepare to introduce
an attention mechanism to dynamically choose the most rele-
vant scale of information.
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