
 

 

Abstract 
There is massive amount of news on financial 
events every day.  In this paper, we present a uni-
fied model for detecting, classifying and summa-
rizing financial events.  This model exploits a 
multi-task learning approach, in which a pre-
trained BERT model is used to encode the news 
articles, and the encoded information are shared by 
event type classification, detection and summari-
zation tasks. For event summarization, we use a 
Transformer structure as the decoder. In addition to 
the input document encoded by BERT, the decoder 
also utilizes the predicted event type and cluster in-
formation, so that it can focus on the specific aspects 
of the event when generating summary. Our experi-
ments show that our approach outperforms other 
methods.  

1 Introduction 
News can play an important role towards influencing stock 
market trends and other financial related activities. Financial 
professionals and investors have shown great concerns in the 
financial events. In many financial news analytic applications, 
there are three main tasks: classifying them in appropriate 
event types, clustering (detecting) the documents talking 
about the same or relevant events into the same event cluster, 
and automatically generating a summary for each event clus-
ter.  Traditionally, this is done in a pipeline approach, and 
each task has its own independent model, despite that there is 
inter-dependence among these tasks, and some textual and 
semantic information can be shared by them.  

Multi-task learning has been applied in many NLP tasks, 
and has shown its ability to improve the performance of these 
tasks. This paper presents a joint learning model for classi-
fying, clustering and summarizing financial events. It has 
the following features: 1. We fine-tune a pre-trained BERT 
model [Devlin et al., 2019] to generate document representa-
tion, which is shared by all the three tasks.  This shared model 
will extract the common information and patterns among 
these three tasks, and the pre-trained BERT model lets us ex-
ploit the grammar and semantic information of tokens learned 
from large amount of text data. 2. The event type information 
of a document can help clustering model by providing 

additional information. In our model, the event type hidden 
state is exploited by the clustering model to do better cluster-
ing. 3. The summarization component exploits both the event 
type information and the cluster information by feeding them 
into the decoding process, so that it can generate different 
summary styles for different event types, and make the gen-
eration model focus more on topic-specific aspects. 4. Our 
summarization model uses BERT as encoder and Trans-
former [Vaswani et al., 2017] as decoder. Because the BERT 
encoder is pre-trained and the Transformer decoder is not, in 
order to smoothly integrate these two parts together for better 
generation performance, we employ two separate optimizers 
for these two components during the training process.  

2 Related Work 
The task of event detection has been proposed in the Topic 
Detection and Tracking program [Allan, 2002]. The objective 
is to discover new or previously unidentified events. Online 
clustering-based approaches are popular on detecting open-
domain events. Aggarwal and Subbian [2012] proposed a 
stream-based clustering algorithm on each incoming message. 
Petrovic et al. [2010] and Wurzer et al. [2015] used a Locality 
Sensitive Hashing (LSH) to detect and cluster events from 
high-volume streams in constant time and space. Li et al. 
[2017a, 2018] extract semantic terms from documents and 
use them to do event clustering.   Multi-task learning has been 
used in various NLP tasks [Collobert and Weston, 2008; Lan 
et al., 2017; Wang and Zhang 2017; Li et al., 2019]. 

Sequence to sequence (seq2seq) learning has been used in 
a variety of language generation applications. It has attracted 
much attention in recent years due to the advance of deep 
learning. Our summarization model also belongs to this 
widely used seq2seq paradigm [Sutskever et al., 2014]. Rush 
et al. [2015] and Nallapati et al. [2016] were among the first 
to use the neural encoder decoder structure in text summari-
zation. See et al. [2017] enhance this model with a pointer 
generator network which allows it to copy words from the 
source text. Paulus et al. [2018] present a deep reinforced 
model for abstractive summarization which handles the cov-
erage problem with an intra-attention mechanism. Celikyil-
maz et al. [2018] propose an abstractive system where multi-
ple agents represent the document together with a hierar-
chical attention mechanism for decoding.  
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Pre-training has been widely used in natural language pro-
cessing (NLP) tasks to learn better language representation, 
and several new pre-trained models have been published re-
cently, such as BERT [Devlin et al., 2019], XLNet [Yang et 
al., 2019a], RoBERTa [Liu et al., 2019], ALBERT [Lan et al., 
2019], ELMO [Peters, et al., 2018], etc.  The pre-training on 
large amount of unlabeled data and fine-tuning with small 
scale labeled data are helpful for many tasks, and it is also 
used in the encoder part of our model in this work. Devlin et 
al. [2019] proposed BERT based on masked language mod-
eling and next sentence prediction, and achieved state-of-the-
art results on multiple NLP tasks. There are also some works 
on pre-training the encoder-decoder model for language gen-
eration [Rothe et al., 2019; Edunov et al., 2019; Liu and 
Lapata, 2019]. The main difference between our generation 
model and others are that our model uses pre-trained BERT 
model in the encoder side and uses a non-pre-trained Trans-
former on the decoder side, and we fine-tune the encoder and 
train the decoder using two separate optimizers.  

3 The Unified Model 
Figure 1 shows the high-level model structure. The incoming 
document is encoded by a pre-trained BERT model, and this 
encoder is shared by the three tasks. The event type hidden 
state from the event type prediction model is fed to both the 
clustering model and the decoder of the summarization model. 
The cluster hidden state vector is also exploited by the sum-
marization decoder. The right side of the figure is the decoder 
part, which is based on the Transformer architecture, consist-
ing of 6 layers of decoders. The event type state vector, clus-
ter state vector, and the shared document representation are 
fed to each of the decoder layers, and used by the multi-head 
attention layer described later. The event type state vector and 
cluster state vector are also used at the final softmax layer of 
the Transformer decoder, in order to add more context to help 
the decoder choose the correct token. 
Shared document representation. We use BERT to encode 
an incoming document. BERT has been used to fine-tune var-
ious NLP tasks, but its application to text generation is not 
straightforward, since it is trained to predict single word and 
next sentence, not generating text sequence. This is why our 
model uses BERT to encode the document, but utilizes Trans-
former on the decoding side to generate text sequence. Due 
to the limitation of the input text length of the pre-trained 
BERT, we take the first 510 tokens from the incoming docu-
ment and feed it to the BERT model. We observe that, for 
most news articles and financial announcements, the first 510 
tokens are enough to cover their main content. Our prelimi-
nary experiment also shows that using the first 510 tokens as 
input performs better than selecting the same number of im-
portant sentences from the document as input.  

3.1 Event Type Prediction  
We use the shared document representation to predict the event 
type for the input document. We take the final hidden state of 
the first token [CLS] as the document representation, then it is 
fed into a fully connected layer, and finally we get an event 
type hidden state vector Ht: 

 

 
Figure 1. The high-level unified model structure 

                    Ht = s (Wt h+bt)                             (1) 

where Wt is the event prediction parameter matrix, bt is the bias, 
and h is the [CLS] vector. A softmax operation is then applied 
to Ht to predict the probability of event type. The pre-trained 
BERT model is fine-tuned using training data, by minimizing 
the cross-entropy loss between 𝑦"	and	𝑦 as follow: 

										𝑙	(𝑦", y) = −∑ 𝑦/	𝑙𝑜𝑔(𝑦", 𝑘)
|4|
/56              (2) 

3.2 Event Clustering 
For an incoming document, we calculate a similarity score 
with every document in the existing events. A threshold is 
used to decide if the incoming document should form a new 
cluster by itself or it should be assigned to an existing cluster. 
This value is learned from the training data. If the similarity 
score is greater than the threshold, then the cluster with the 
most similar document will be the cluster the incoming doc-
ument should be assigned to. To compute the similarity score, 
for each document in the existing clusters, we need two vec-
tors, one is the document’s representation vector, which is h 
in Equation 1, and the other one is the average value of the 
document representation vectors in this cluster. The average 
document representation is to represent the cluster.  For a 
real-time system with large number of documents to process, 
the choice of comparing the incoming document with every 
document in the existing clusters may have issue of compu-
tation time. Another choice is to have one cluster vector, e.g. 
the average document representation of the cluster, to repre-
sent the whole cluster, and the incoming document will be 
compared to each cluster only once.  The second choice may 
be a better option for a real-time application with large data 
to handle. In the experiment section, we did an ablation test 
to see the performance difference between these two choices.  
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Figure 2. Detailed structure of a decoder layer. This diagram shows 

the first decoder layer 

For a given document in a cluster C, we calculate the clus-
ter hidden state vector Hc as follow: 

        Hc = s (Wc (h + Ht + Hd + Ha ) + bc )        (3) 

Where h is the final hidden state of [CLS] token, Ht is the 
event type hidden state from Equation 1, Hd is the document 
representation vector for a document in the compared cluster, 
Ha is the average of all document vectors of this cluster, and 
+ denotes concatenation of vectors. Then a softmax operation 
is applied to get the similarity probability score: 
                            S = softmax(WHc  + b)                         (4) 
Where W and b are model parameters. Based on this score we 
can find the most similar document, and the cluster of this 
document is the one where the new document will be as-
signed to.  This approach has been used by previous studies 
for document clustering [Katiyar and Cardie, 2016; Wang 
and Zhang 2018]. 
Cluster merging. It is possible that documents talking about 
the same event may be placed into different clusters, and 
gradually we may have cluster segmentation problem.  In a 
real system, we may need a cluster merging process that tries 
to handle this type of issue.  Another purpose of cluster merg-
ing is to group related events together. For example, we can 
group clusters talking about different development stages of 
an event together into one cluster. The merging process runs 
periodically to check if we need to merge two clusters to-
gether.  The merging algorithm is similar to the clustering al-
gorithm. 

3.3 Event Summarization 
The right part of Figure 1 shows the decoding part of the sum-
marization component. There is a stack of six decoders in the 
decoding side. Figure 2 presents the detailed structure of a 
decoder, using the first decoder layer as an example. There 
are two multi-head attention layers in this decoder, one is a 
masked multi-head self-attention, and the other one is the de-
coder attended on the three types of contexts, i.e., the cluster 
hidden state, the event type hidden state and the document 
representation vector for the incoming document. Figure 1 
has shown where these three vectors come from. After each 
attention layer and the feedforward layer, there is a 
Add&Normalize layer.  

In our model, a summary is generated for each incoming 
document. To get a summary for the whole cluster, we apply 
a summary aggregation process. It works as follow: for the 
first document in a cluster, its summary will be the summary 
of this cluster. When we have more than one document in a 
cluster, we use the approach used in [Erkan and Radev, 2004; 
Hong and Nenkova, 2014; Yasunaga et al., 2017]. It is basi-
cally to choose the sentences that share common information 
in the document summary set, and at the same time to avoid 
redundancy. We describe the multi-head attention mecha-
nism in more details below.  

Multi-head attention. In the multi-head attention structure, 
attention is computed not once but multiple times, in parallel 
and independently. The outputs are concatenated and linearly 
transformed, as shown in Figure 3. In this figure, m is the 
number of heads. Figure 4 shows how one head of the scaled 
do-product attention is computed, which can be expressed as 
follow:  

Attention (Q, K, V) = softmax (78
9

:;<
) V             (5) 

where Q is a matrix that contains the query (vector represen-
tation of one word in the sequence), K are all the keys (vector 
representations of all the words in the sequence), and V are the 
values. For the first multi-head attention layer in each decoder, 
V consists of the same word sequence as Q. However, for the 
second attention module in each decoder, it considers the de-
coder sequence, the fact embedding, charge embedding and 
law article embedding, and therefore, here V is different from 
the sequence represented by Q.  

 
Figure 3. Multi-head attention layer 
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Figure 4. Scaled dot-product attention 

3.4 Model Training and Inference 
In our model, the document encoder is based on a pre-trained 
BERT model, and the decoder component is not pre-trained. 
It is obvious that there is a mismatch between these two com-
ponents, because one is pre-trained and the other one needs 
to be completely trained. This may make the training process 
unstable, e.g. one component is underfitted and the other one 
is overfitted.  One way to handle this is to use two different 
optimizers for the two components. In our model implemen-
tation, two Adam optimizers are used.  Each has its own 
learning rates and warmup steps. These values will be set so 
that the pre-trained BERT model should be fine-tuned with a 
smaller learning rate and decay, when the decoder becomes 
stable. This is to make sure that the BERT model to be fine-
tuned with more accurate gradients. The learning rate update 
is illustrated by the following equation: 

        learnRate = learnRate * min (s-0.5, s * w-1.5)             (6) 

where s is the step and w is the warmup value, similarly to 
[Vaswani et al., 2017; Liu and Lapata 2019]. For inference of 
summarization, we use beam search, whose size is set to 4, to 
find the best sequence. The generated word sequences will be 
ranked and the one with the largest value will be chosen. The 
loss of the joint learning model is the sum of loss of the three 
tasks. There are previous studies on pre-training encoder-de-
coder model for language generation [Rothe et al., 2019; 
Edunov et al., 2019; Liu and Lapata, 2019], and some of them 
also use different optimizers for different components.  

4 Experiments and Results 

4.1 Data Set and Evaluation Metrics 

Data Set  
Our data set consists of financial news and announcements in 
English. These documents belong to seven event categories, 
shown in Table 1. There are 1600 events, and this table also 
shows the event percentage for each category. To ensure the 
quality of the data set, six annotators were trained on analyz-
ing financial events. To help the annotators, we first process 
these documents by a program mainly based on some rules to 
classify these documents into appropriate event types and 
then  cluster  them.   The   annotators   then   work   on  these  
  

Event type Description Events 
(%) 

Merger and 
acquisition 

announcements, forecasts, and can-
cellations of a merger/acquisition. 10.0 

Management 
change 

resignation & appointment of board 
directors and executives 17.3 

Share change share buyback, stock split, reverse 
stock split, etc. 20.2 

Dividend 
dividend announcements, forecasts, 
payments, stable yields, raises, and 
reductions 

13.7 

Debt debt announcements, forecasts, in-
creases, reductions, etc. 12.5 

New product / 
market 

announcement or analysis of new 
product, technology, etc. 16.2 

Other other news or announcements 10.1 

Table 1. Event types and description. 

intermediate results for event type   labeling   and   clustering.           
For generating   manual summary, they were asked to write 
representative and informative summaries for these events. 
The data set was split into training, validation and evaluation 
parts, using a 70/10/20 split. 

Evaluation Metrics 
For event type classification, we use macro F1 measure, 
which is calculated from precision and recall. For event clus-
tering, we use two quality metrics: Normalized Mutual Infor-
mation (NMI) [Manning et al., 2008] and B-cubed [Amigo et 
al, 2008]. They have been used in previous studies. We chose 
them because both metrics balance the desired clustering 
properties:  to maximize the homogeneity of events within 
each cluster, and to minimize the number of clusters that doc-
uments of each event spread across. Cluster level precision 
and recall can also be used as quality metrics, but they cannot 
measure the cohesiveness within a cluster.  
NMI. NMI measures how much information is shared be-
tween actual “ground truth" events, each with an associated 
document set, and the clustering assignment. Specifically, for 
a set of clusters C = (C1, C2, .., Cj) and events E = (E1, E2, …, 
Ek), where each Cj and Ek is a set of documents, and n is the 
total number of documents, NMI is defined as: 

NMI (C, E) =  =(>,?)
(@(>)A	@(?))/C

          (7)  
Where 

I(C,E) = ∑ ∑
|D<	∩	FG |

H
𝑙𝑜𝑔

H∗	|D<	∩	FG |

|D<	|∗	|JG	|/K ,      (8)  

H(C) = -∑
|JG|

H
	𝑙𝑜𝑔

|JG|

HK                 (9) 

And, 
H(E) = -∑ |D<|

H
	𝑙𝑜𝑔 |D<|

H/            (10) 

B-Cubed. It estimates the precision and recall associated 
with each document in the dataset individually, and then uses 
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the average precision Pb and average recall Rb values for the 
dataset to compute B-Cubed: 

B-Cubed = C∗	LM∗	NM
LMA	NM

               (11) 

For each document, precision is defined as the proportion of 
items in the document’s cluster corresponding to the same 
event, and recall is the proportion of documents correspond-
ing to the same event. 

For summarization, we use three ROUGE scores [Lin and 
Hovy, 2003] as the evaluation metrics. ROUGE basically 
measures the overlap of N-grams between the system and ref-
erence texts. However, the original ROUGE measure does 
not tell you much as a metric. To get a good quantitative value, 
in the context of ROUGE, we compute precision and recall 
using the overlap, and then report the F1-measure of ROUGE. 
In this study, we use ROUGE-1, which is based on unigram 
overlap, ROUGE-2, which is based on bigram overlap, and 
also ROUGE-L, which measures the longest common subse-
quence of reference and generated texts, to compute F1.  

4.2 Compared Methods and Experiment Setting 

Compared Methods 
For event type classification. Our approach is compared to 
the following methods: HAN [Yang et al., 2016] - Hierar-
chical attention networks for document classification; 
ULMFiT  - the language model fine-tuning method [Howard 
and Ruder, 2018]. The BERT-base model – adding a text 
classification layer on top of it.   
For clustering. UMass – an old but still very effective and 
popular event detection algorithm based on tf.idf and cosine 
similarity by Allan et al [Allan et al., 2000a, 200b]. LSH 
[Wurzer et al., 2015] - it uses Locality Sensitive Hashing 
(LSH) to detect and track events on unbounded high volume 
data streams in constant time and space. SemEntity – an ap-
proach based on calculating the similarity between two doc-
uments using extracted entities and semantic terms extracted 
[Li et al., 2017a; Li et al., 2018]. BERT-sim – use the docu-
ment representation generated by BERT, and calculate simi-
larity between two documents using this representation. 
For summarization. Bi-LSTM-attention - this approach is 
based on seq2seq model with attention, and both the encoder 
and decoder use a bidirectional-LSTM model [Sutskever et 
al., 2014; Vaswani et al., 2017; Ye et al., 2018]. Attention 
mechanism can catch the important input information for the 
current output sequence.  DCA - Celikyilmaz et al. [2018] use 
multiple encoders to represent the document together with a 
hierarchical attention mechanism for decoding. Their pro-
posed Deep Communicating Agents (DCA) model is trained 
end-to-end with reinforcement learning.  

Experimental Settings and Training 
Like previous studies, we use the validation data set to tune 
our model and hyper-parameters.  Training process was ter-
minated if the model performance is not improved for suc-
cessive 10 times. We use the BERT-base-uncase model as the 
encoder for encoding documents. This model uses 12 encoder 
layers, and the embedding size is 768 for the input token, the 

position embedding and the text segmentation embedding. 
The multi-head attention has12 heads, drop out is 0.1, and L2 
decay rate is 0.01. The summarization decoder side has six 
layers, as illustrated in Figure 1. The input is shifted one to-
ken position to the right, utilizing a teacher forcing learning 
approach. The other hype-parameters on the decoder side use 
the default values of the original Transformer architecture. 

As described before, in our model, the BERT encoder and 
the decoder use two different optimizers. Their learning rates 
are different. We use two Adam optimizers with β1 = 0.9 and 
β2 = 0.999 for the encoder and the decoder, respectively, but 
they have different learning rates and warmup-steps. In Equa-
tion 6, we set  learnRate = 2e −3  and warmUp = 30,000 for 
the BERT encoder, and we set learnRate = 0.05 and warmUp 
= 15,000 for the decoder.  

4.3 Evaluation Result and Analysis 
Experiment result. Table 2, 3 and 4 present the comparison 
results. R-1, R-2, R-L are the F1 values of ROUGE-1, 
ROUGE-2 and ROUGE-L, respectively. The result shows 
that our proposed approach performs better than other meth-
ods. To verify if the performance improvement is statistically 
significant, we conducted t-test between our model and oth-
ers. The t-test results show that the performance improve-
ments are statistically significant at the level of p=0.05, for 
the evaluation metrics of event clustering and summarization 
tasks. It also outperforms the two baseline methods on event 
type classification, but the difference is not statistically sig-
nificant.   The result also shows that for event clustering 
UMass is better than LSH, which is similar to the results re-
ported by [Petrovic et al., 2012; Wurzer et al., 2015], in terms 
of the quality of clusters. The reason is that the focus of LSH 
is speed, not clustering accuracy. 

Method F1 
HAN 92.5 

ULMFit 93.3 
BERT 94.8 

Our approach 95.5 

Table 2. Event type classification result 

Method NMI B-Cubed 
UMass 0.665 0.310 
LSH 0.613 0.263 

SemEntity 0.708 0.391 

BERT-sim 0.717 0.397 
Our approach 0.742 0.414 

Table 3. Event clustering result 

Method R-1 R-2 R-L 
Bi-LSTM-attention 52.8 34.0 49.2 

DCA 54.1 35.5 50.9 
Our approach 56.5 37.7 53.3 

Table 4. Event summarization result 
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Method NMI B-Cubed 
Our approach 0.742 0.414 
- No event type hidden state 0.738 0.411 
- Use only the average document state of 
an event for similarity calculation 0.730 0.402 

- Use only the closest document state of 
an event for similarity calculation 0.734 0.406 

Table 5.  Ablation test result on clustering 

Method R-1 R-2 R-L 

Our approach 56.5 37.7 53.3 

- No event type info 55.2 36.8 52.2 
- No event type info in the final 
softmax output layer 

55.9 37.3 52.7 

- No cluster info 54.9 36.5 52.1 

- No cluster info in the final softmax 
output layer 

55.3 36.7 52.4 

Table 6.  Ablation test result on summarization 

Ablation Test 
The experiment results have shown that the joint leaning ap-
proach, where the three tasks share common document rep-
resentation generated by the pre-trained BERT model, do im-
prove the performance for all three tasks.   In our proposed 
model, as shown in Figure 1, the hidden state of event type is 
also fed to the clustering and summarization components, and 
the hidden state of the cluster where the document is assigned 
is also exploited by the summarization component.  To see 
how these features affect the performance of clustering and 
summarization, we conducted ablation tests. The result is pre-
sented in Table 5 and 6.  

For clustering task, we can see that excluding the hidden 
state vector of event type from the similarity calculation 
Equation 3 slightly affected the clustering performance (e.g. 
NMI changed from 0.742 to 0.738). One reason the perfor-
mance did not go down much is that we only compare the 
document to the event clusters in the same evet type as the 
document, which means the event type information is already 
considered, and so removing this hidden feature vector from 
the similarity calculation will not affect the clustering perfor-
mance much. Table 5 also shows that when calculating simi-
larity with existing clusters, the performance will decrease if 
we use only the average document state of all documents in 
an event or use only the most similar document state of an 
event in Equation 3.  
 For summarization task, Table 6 shows that excluding ei-
ther the event type information or the cluster information will 
drag down the performance. And the cluster information will 
affect the performance a little more. One reason is that the 
cluster information will give the decoder a more complete 
picture about the cluster.  The Event type information can 
provide more information about the specific event type. For 
example, the event arguments we want to mention in the sum-
mary for a merger and acquisition event will be very different 
from a management change event. The arguments of a merger 
and acquisition event usually involve acquirer, target, time 

and the amount of money, while management change event 
will involve person name, title and time. Therefore, event 
type information can help the generation model know what 
aspects should be focused on for a specific event type. This 
ablation test also shows that adding event type or cluster in-
formation to the final softmax layer will improve the genera-
tion performance, since they provide more context for de-
coder to choose the right token. 

5 Conclusion 
We present a joint learning model for financial event clas-
sifying, clustering and summarizing.  This uses pre-trained 
BERT to encode the incoming document, and the encoded 
information are then shared by the event type classification, 
detection and summarization components. For event sum-
marization, we use a Transformer structure as the decoder. 
In addition to the input document encoded by BERT, the de-
coder also considers the predicted event type and cluster in-
formation, so that it can focus on the specific aspects of the 
event type when generating summary. The experiment results 
show that our approach outperforms other compared methods.  
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