

Abstract
There is massive amount of news on financial
events every day. In this paper, we present a uni-
fied model for detecting, classifying and summa-
rizing financial events. This model exploits a
multi-task learning approach, in which a pre-
trained BERT model is used to encode the news
articles, and the encoded information are shared by
event type classification, detection and summari-
zation tasks. For event summarization, we use a
Transformer structure as the decoder. In addition to
the input document encoded by BERT, the decoder
also utilizes the predicted event type and cluster in-
formation, so that it can focus on the specific aspects
of the event when generating summary. Our experi-
ments show that our approach outperforms other
methods.

1 Introduction
News can play an important role towards influencing stock
market trends and other financial related activities. Financial
professionals and investors have shown great concerns in the
financial events. In many financial news analytic applications,
there are three main tasks: classifying them in appropriate
event types, clustering (detecting) the documents talking
about the same or relevant events into the same event cluster,
and automatically generating a summary for each event clus-
ter. Traditionally, this is done in a pipeline approach, and
each task has its own independent model, despite that there is
inter-dependence among these tasks, and some textual and
semantic information can be shared by them.

Multi-task learning has been applied in many NLP tasks,
and has shown its ability to improve the performance of these
tasks. This paper presents a joint learning model for classi-
fying, clustering and summarizing financial events. It has
the following features: 1. We fine-tune a pre-trained BERT
model [Devlin et al., 2019] to generate document representa-
tion, which is shared by all the three tasks. This shared model
will extract the common information and patterns among
these three tasks, and the pre-trained BERT model lets us ex-
ploit the grammar and semantic information of tokens learned
from large amount of text data. 2. The event type information
of a document can help clustering model by providing

additional information. In our model, the event type hidden
state is exploited by the clustering model to do better cluster-
ing. 3. The summarization component exploits both the event
type information and the cluster information by feeding them
into the decoding process, so that it can generate different
summary styles for different event types, and make the gen-
eration model focus more on topic-specific aspects. 4. Our
summarization model uses BERT as encoder and Trans-
former [Vaswani et al., 2017] as decoder. Because the BERT
encoder is pre-trained and the Transformer decoder is not, in
order to smoothly integrate these two parts together for better
generation performance, we employ two separate optimizers
for these two components during the training process.

2 Related Work
The task of event detection has been proposed in the Topic
Detection and Tracking program [Allan, 2002]. The objective
is to discover new or previously unidentified events. Online
clustering-based approaches are popular on detecting open-
domain events. Aggarwal and Subbian [2012] proposed a
stream-based clustering algorithm on each incoming message.
Petrovic et al. [2010] and Wurzer et al. [2015] used a Locality
Sensitive Hashing (LSH) to detect and cluster events from
high-volume streams in constant time and space. Li et al.
[2017a, 2018] extract semantic terms from documents and
use them to do event clustering. Multi-task learning has been
used in various NLP tasks [Collobert and Weston, 2008; Lan
et al., 2017; Wang and Zhang 2017; Li et al., 2019].

Sequence to sequence (seq2seq) learning has been used in
a variety of language generation applications. It has attracted
much attention in recent years due to the advance of deep
learning. Our summarization model also belongs to this
widely used seq2seq paradigm [Sutskever et al., 2014]. Rush
et al. [2015] and Nallapati et al. [2016] were among the first
to use the neural encoder decoder structure in text summari-
zation. See et al. [2017] enhance this model with a pointer
generator network which allows it to copy words from the
source text. Paulus et al. [2018] present a deep reinforced
model for abstractive summarization which handles the cov-
erage problem with an intra-attention mechanism. Celikyil-
maz et al. [2018] propose an abstractive system where multi-
ple agents represent the document together with a hierar-
chical attention mechanism for decoding.

A Unified Model for Financial Event Classification, Detection and Summarization

Quanzhi Li and Qiong Zhang
Alibaba Group

{quanzhi.li, qz.zhang}@alibaba-inc.com

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4668

Pre-training has been widely used in natural language pro-
cessing (NLP) tasks to learn better language representation,
and several new pre-trained models have been published re-
cently, such as BERT [Devlin et al., 2019], XLNet [Yang et
al., 2019a], RoBERTa [Liu et al., 2019], ALBERT [Lan et al.,
2019], ELMO [Peters, et al., 2018], etc. The pre-training on
large amount of unlabeled data and fine-tuning with small
scale labeled data are helpful for many tasks, and it is also
used in the encoder part of our model in this work. Devlin et
al. [2019] proposed BERT based on masked language mod-
eling and next sentence prediction, and achieved state-of-the-
art results on multiple NLP tasks. There are also some works
on pre-training the encoder-decoder model for language gen-
eration [Rothe et al., 2019; Edunov et al., 2019; Liu and
Lapata, 2019]. The main difference between our generation
model and others are that our model uses pre-trained BERT
model in the encoder side and uses a non-pre-trained Trans-
former on the decoder side, and we fine-tune the encoder and
train the decoder using two separate optimizers.

3 The Unified Model
Figure 1 shows the high-level model structure. The incoming
document is encoded by a pre-trained BERT model, and this
encoder is shared by the three tasks. The event type hidden
state from the event type prediction model is fed to both the
clustering model and the decoder of the summarization model.
The cluster hidden state vector is also exploited by the sum-
marization decoder. The right side of the figure is the decoder
part, which is based on the Transformer architecture, consist-
ing of 6 layers of decoders. The event type state vector, clus-
ter state vector, and the shared document representation are
fed to each of the decoder layers, and used by the multi-head
attention layer described later. The event type state vector and
cluster state vector are also used at the final softmax layer of
the Transformer decoder, in order to add more context to help
the decoder choose the correct token.
Shared document representation. We use BERT to encode
an incoming document. BERT has been used to fine-tune var-
ious NLP tasks, but its application to text generation is not
straightforward, since it is trained to predict single word and
next sentence, not generating text sequence. This is why our
model uses BERT to encode the document, but utilizes Trans-
former on the decoding side to generate text sequence. Due
to the limitation of the input text length of the pre-trained
BERT, we take the first 510 tokens from the incoming docu-
ment and feed it to the BERT model. We observe that, for
most news articles and financial announcements, the first 510
tokens are enough to cover their main content. Our prelimi-
nary experiment also shows that using the first 510 tokens as
input performs better than selecting the same number of im-
portant sentences from the document as input.

3.1 Event Type Prediction
We use the shared document representation to predict the event
type for the input document. We take the final hidden state of
the first token [CLS] as the document representation, then it is
fed into a fully connected layer, and finally we get an event
type hidden state vector Ht:

Figure 1. The high-level unified model structure

 Ht = s (Wt h+bt) (1)

where Wt is the event prediction parameter matrix, bt is the bias,
and h is the [CLS] vector. A softmax operation is then applied
to Ht to predict the probability of event type. The pre-trained
BERT model is fine-tuned using training data, by minimizing
the cross-entropy loss between 𝑦"	and	𝑦 as follow:

										𝑙	(𝑦", y) = −∑ 𝑦/	𝑙𝑜𝑔(𝑦", 𝑘)
|4|
/56 (2)

3.2 Event Clustering
For an incoming document, we calculate a similarity score
with every document in the existing events. A threshold is
used to decide if the incoming document should form a new
cluster by itself or it should be assigned to an existing cluster.
This value is learned from the training data. If the similarity
score is greater than the threshold, then the cluster with the
most similar document will be the cluster the incoming doc-
ument should be assigned to. To compute the similarity score,
for each document in the existing clusters, we need two vec-
tors, one is the document’s representation vector, which is h
in Equation 1, and the other one is the average value of the
document representation vectors in this cluster. The average
document representation is to represent the cluster. For a
real-time system with large number of documents to process,
the choice of comparing the incoming document with every
document in the existing clusters may have issue of compu-
tation time. Another choice is to have one cluster vector, e.g.
the average document representation of the cluster, to repre-
sent the whole cluster, and the incoming document will be
compared to each cluster only once. The second choice may
be a better option for a real-time application with large data
to handle. In the experiment section, we did an ablation test
to see the performance difference between these two choices.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4669

Figure 2. Detailed structure of a decoder layer. This diagram shows

the first decoder layer

For a given document in a cluster C, we calculate the clus-
ter hidden state vector Hc as follow:

 Hc = s (Wc (h + Ht + Hd + Ha) + bc) (3)

Where h is the final hidden state of [CLS] token, Ht is the
event type hidden state from Equation 1, Hd is the document
representation vector for a document in the compared cluster,
Ha is the average of all document vectors of this cluster, and
+ denotes concatenation of vectors. Then a softmax operation
is applied to get the similarity probability score:
 S = softmax(WHc + b) (4)
Where W and b are model parameters. Based on this score we
can find the most similar document, and the cluster of this
document is the one where the new document will be as-
signed to. This approach has been used by previous studies
for document clustering [Katiyar and Cardie, 2016; Wang
and Zhang 2018].
Cluster merging. It is possible that documents talking about
the same event may be placed into different clusters, and
gradually we may have cluster segmentation problem. In a
real system, we may need a cluster merging process that tries
to handle this type of issue. Another purpose of cluster merg-
ing is to group related events together. For example, we can
group clusters talking about different development stages of
an event together into one cluster. The merging process runs
periodically to check if we need to merge two clusters to-
gether. The merging algorithm is similar to the clustering al-
gorithm.

3.3 Event Summarization
The right part of Figure 1 shows the decoding part of the sum-
marization component. There is a stack of six decoders in the
decoding side. Figure 2 presents the detailed structure of a
decoder, using the first decoder layer as an example. There
are two multi-head attention layers in this decoder, one is a
masked multi-head self-attention, and the other one is the de-
coder attended on the three types of contexts, i.e., the cluster
hidden state, the event type hidden state and the document
representation vector for the incoming document. Figure 1
has shown where these three vectors come from. After each
attention layer and the feedforward layer, there is a
Add&Normalize layer.

In our model, a summary is generated for each incoming
document. To get a summary for the whole cluster, we apply
a summary aggregation process. It works as follow: for the
first document in a cluster, its summary will be the summary
of this cluster. When we have more than one document in a
cluster, we use the approach used in [Erkan and Radev, 2004;
Hong and Nenkova, 2014; Yasunaga et al., 2017]. It is basi-
cally to choose the sentences that share common information
in the document summary set, and at the same time to avoid
redundancy. We describe the multi-head attention mecha-
nism in more details below.

Multi-head attention. In the multi-head attention structure,
attention is computed not once but multiple times, in parallel
and independently. The outputs are concatenated and linearly
transformed, as shown in Figure 3. In this figure, m is the
number of heads. Figure 4 shows how one head of the scaled
do-product attention is computed, which can be expressed as
follow:

Attention (Q, K, V) = softmax (78
9

:;<
) V (5)

where Q is a matrix that contains the query (vector represen-
tation of one word in the sequence), K are all the keys (vector
representations of all the words in the sequence), and V are the
values. For the first multi-head attention layer in each decoder,
V consists of the same word sequence as Q. However, for the
second attention module in each decoder, it considers the de-
coder sequence, the fact embedding, charge embedding and
law article embedding, and therefore, here V is different from
the sequence represented by Q.

Figure 3. Multi-head attention layer

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4670

Figure 4. Scaled dot-product attention

3.4 Model Training and Inference
In our model, the document encoder is based on a pre-trained
BERT model, and the decoder component is not pre-trained.
It is obvious that there is a mismatch between these two com-
ponents, because one is pre-trained and the other one needs
to be completely trained. This may make the training process
unstable, e.g. one component is underfitted and the other one
is overfitted. One way to handle this is to use two different
optimizers for the two components. In our model implemen-
tation, two Adam optimizers are used. Each has its own
learning rates and warmup steps. These values will be set so
that the pre-trained BERT model should be fine-tuned with a
smaller learning rate and decay, when the decoder becomes
stable. This is to make sure that the BERT model to be fine-
tuned with more accurate gradients. The learning rate update
is illustrated by the following equation:

 learnRate = learnRate * min (s-0.5, s * w-1.5) (6)

where s is the step and w is the warmup value, similarly to
[Vaswani et al., 2017; Liu and Lapata 2019]. For inference of
summarization, we use beam search, whose size is set to 4, to
find the best sequence. The generated word sequences will be
ranked and the one with the largest value will be chosen. The
loss of the joint learning model is the sum of loss of the three
tasks. There are previous studies on pre-training encoder-de-
coder model for language generation [Rothe et al., 2019;
Edunov et al., 2019; Liu and Lapata, 2019], and some of them
also use different optimizers for different components.

4 Experiments and Results

4.1 Data Set and Evaluation Metrics

Data Set
Our data set consists of financial news and announcements in
English. These documents belong to seven event categories,
shown in Table 1. There are 1600 events, and this table also
shows the event percentage for each category. To ensure the
quality of the data set, six annotators were trained on analyz-
ing financial events. To help the annotators, we first process
these documents by a program mainly based on some rules to
classify these documents into appropriate event types and
then cluster them. The annotators then work on these

Event type Description Events
(%)

Merger and
acquisition

announcements, forecasts, and can-
cellations of a merger/acquisition. 10.0

Management
change

resignation & appointment of board
directors and executives 17.3

Share change share buyback, stock split, reverse
stock split, etc. 20.2

Dividend
dividend announcements, forecasts,
payments, stable yields, raises, and
reductions

13.7

Debt debt announcements, forecasts, in-
creases, reductions, etc. 12.5

New product /
market

announcement or analysis of new
product, technology, etc. 16.2

Other other news or announcements 10.1

Table 1. Event types and description.

intermediate results for event type labeling and clustering.
For generating manual summary, they were asked to write
representative and informative summaries for these events.
The data set was split into training, validation and evaluation
parts, using a 70/10/20 split.

Evaluation Metrics
For event type classification, we use macro F1 measure,
which is calculated from precision and recall. For event clus-
tering, we use two quality metrics: Normalized Mutual Infor-
mation (NMI) [Manning et al., 2008] and B-cubed [Amigo et
al, 2008]. They have been used in previous studies. We chose
them because both metrics balance the desired clustering
properties: to maximize the homogeneity of events within
each cluster, and to minimize the number of clusters that doc-
uments of each event spread across. Cluster level precision
and recall can also be used as quality metrics, but they cannot
measure the cohesiveness within a cluster.
NMI. NMI measures how much information is shared be-
tween actual “ground truth" events, each with an associated
document set, and the clustering assignment. Specifically, for
a set of clusters C = (C1, C2, .., Cj) and events E = (E1, E2, …,
Ek), where each Cj and Ek is a set of documents, and n is the
total number of documents, NMI is defined as:

NMI (C, E) = =(>,?)
(@(>)A	@(?))/C

 (7)
Where

I(C,E) = ∑ ∑
|D<	∩	FG |

H
𝑙𝑜𝑔

H∗	|D<	∩	FG |

|D<	|∗	|JG	|/K , (8)

H(C) = -∑
|JG|

H
	𝑙𝑜𝑔

|JG|

HK (9)

And,
H(E) = -∑ |D<|

H
	𝑙𝑜𝑔 |D<|

H/ (10)

B-Cubed. It estimates the precision and recall associated
with each document in the dataset individually, and then uses

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4671

the average precision Pb and average recall Rb values for the
dataset to compute B-Cubed:

B-Cubed = C∗	LM∗	NM
LMA	NM

 (11)

For each document, precision is defined as the proportion of
items in the document’s cluster corresponding to the same
event, and recall is the proportion of documents correspond-
ing to the same event.

For summarization, we use three ROUGE scores [Lin and
Hovy, 2003] as the evaluation metrics. ROUGE basically
measures the overlap of N-grams between the system and ref-
erence texts. However, the original ROUGE measure does
not tell you much as a metric. To get a good quantitative value,
in the context of ROUGE, we compute precision and recall
using the overlap, and then report the F1-measure of ROUGE.
In this study, we use ROUGE-1, which is based on unigram
overlap, ROUGE-2, which is based on bigram overlap, and
also ROUGE-L, which measures the longest common subse-
quence of reference and generated texts, to compute F1.

4.2 Compared Methods and Experiment Setting

Compared Methods
For event type classification. Our approach is compared to
the following methods: HAN [Yang et al., 2016] - Hierar-
chical attention networks for document classification;
ULMFiT - the language model fine-tuning method [Howard
and Ruder, 2018]. The BERT-base model – adding a text
classification layer on top of it.
For clustering. UMass – an old but still very effective and
popular event detection algorithm based on tf.idf and cosine
similarity by Allan et al [Allan et al., 2000a, 200b]. LSH
[Wurzer et al., 2015] - it uses Locality Sensitive Hashing
(LSH) to detect and track events on unbounded high volume
data streams in constant time and space. SemEntity – an ap-
proach based on calculating the similarity between two doc-
uments using extracted entities and semantic terms extracted
[Li et al., 2017a; Li et al., 2018]. BERT-sim – use the docu-
ment representation generated by BERT, and calculate simi-
larity between two documents using this representation.
For summarization. Bi-LSTM-attention - this approach is
based on seq2seq model with attention, and both the encoder
and decoder use a bidirectional-LSTM model [Sutskever et
al., 2014; Vaswani et al., 2017; Ye et al., 2018]. Attention
mechanism can catch the important input information for the
current output sequence. DCA - Celikyilmaz et al. [2018] use
multiple encoders to represent the document together with a
hierarchical attention mechanism for decoding. Their pro-
posed Deep Communicating Agents (DCA) model is trained
end-to-end with reinforcement learning.

Experimental Settings and Training
Like previous studies, we use the validation data set to tune
our model and hyper-parameters. Training process was ter-
minated if the model performance is not improved for suc-
cessive 10 times. We use the BERT-base-uncase model as the
encoder for encoding documents. This model uses 12 encoder
layers, and the embedding size is 768 for the input token, the

position embedding and the text segmentation embedding.
The multi-head attention has12 heads, drop out is 0.1, and L2
decay rate is 0.01. The summarization decoder side has six
layers, as illustrated in Figure 1. The input is shifted one to-
ken position to the right, utilizing a teacher forcing learning
approach. The other hype-parameters on the decoder side use
the default values of the original Transformer architecture.

As described before, in our model, the BERT encoder and
the decoder use two different optimizers. Their learning rates
are different. We use two Adam optimizers with β1 = 0.9 and
β2 = 0.999 for the encoder and the decoder, respectively, but
they have different learning rates and warmup-steps. In Equa-
tion 6, we set learnRate = 2e −3 and warmUp = 30,000 for
the BERT encoder, and we set learnRate = 0.05 and warmUp
= 15,000 for the decoder.

4.3 Evaluation Result and Analysis
Experiment result. Table 2, 3 and 4 present the comparison
results. R-1, R-2, R-L are the F1 values of ROUGE-1,
ROUGE-2 and ROUGE-L, respectively. The result shows
that our proposed approach performs better than other meth-
ods. To verify if the performance improvement is statistically
significant, we conducted t-test between our model and oth-
ers. The t-test results show that the performance improve-
ments are statistically significant at the level of p=0.05, for
the evaluation metrics of event clustering and summarization
tasks. It also outperforms the two baseline methods on event
type classification, but the difference is not statistically sig-
nificant. The result also shows that for event clustering
UMass is better than LSH, which is similar to the results re-
ported by [Petrovic et al., 2012; Wurzer et al., 2015], in terms
of the quality of clusters. The reason is that the focus of LSH
is speed, not clustering accuracy.

Method F1
HAN 92.5

ULMFit 93.3
BERT 94.8

Our approach 95.5

Table 2. Event type classification result

Method NMI B-Cubed
UMass 0.665 0.310
LSH 0.613 0.263

SemEntity 0.708 0.391

BERT-sim 0.717 0.397
Our approach 0.742 0.414

Table 3. Event clustering result

Method R-1 R-2 R-L
Bi-LSTM-attention 52.8 34.0 49.2

DCA 54.1 35.5 50.9
Our approach 56.5 37.7 53.3

Table 4. Event summarization result

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4672

Method NMI B-Cubed
Our approach 0.742 0.414
- No event type hidden state 0.738 0.411
- Use only the average document state of
an event for similarity calculation 0.730 0.402

- Use only the closest document state of
an event for similarity calculation 0.734 0.406

Table 5. Ablation test result on clustering

Method R-1 R-2 R-L

Our approach 56.5 37.7 53.3

- No event type info 55.2 36.8 52.2
- No event type info in the final
softmax output layer

55.9 37.3 52.7

- No cluster info 54.9 36.5 52.1

- No cluster info in the final softmax
output layer

55.3 36.7 52.4

Table 6. Ablation test result on summarization

Ablation Test
The experiment results have shown that the joint leaning ap-
proach, where the three tasks share common document rep-
resentation generated by the pre-trained BERT model, do im-
prove the performance for all three tasks. In our proposed
model, as shown in Figure 1, the hidden state of event type is
also fed to the clustering and summarization components, and
the hidden state of the cluster where the document is assigned
is also exploited by the summarization component. To see
how these features affect the performance of clustering and
summarization, we conducted ablation tests. The result is pre-
sented in Table 5 and 6.

For clustering task, we can see that excluding the hidden
state vector of event type from the similarity calculation
Equation 3 slightly affected the clustering performance (e.g.
NMI changed from 0.742 to 0.738). One reason the perfor-
mance did not go down much is that we only compare the
document to the event clusters in the same evet type as the
document, which means the event type information is already
considered, and so removing this hidden feature vector from
the similarity calculation will not affect the clustering perfor-
mance much. Table 5 also shows that when calculating simi-
larity with existing clusters, the performance will decrease if
we use only the average document state of all documents in
an event or use only the most similar document state of an
event in Equation 3.
 For summarization task, Table 6 shows that excluding ei-
ther the event type information or the cluster information will
drag down the performance. And the cluster information will
affect the performance a little more. One reason is that the
cluster information will give the decoder a more complete
picture about the cluster. The Event type information can
provide more information about the specific event type. For
example, the event arguments we want to mention in the sum-
mary for a merger and acquisition event will be very different
from a management change event. The arguments of a merger
and acquisition event usually involve acquirer, target, time

and the amount of money, while management change event
will involve person name, title and time. Therefore, event
type information can help the generation model know what
aspects should be focused on for a specific event type. This
ablation test also shows that adding event type or cluster in-
formation to the final softmax layer will improve the genera-
tion performance, since they provide more context for de-
coder to choose the right token.

5 Conclusion
We present a joint learning model for financial event clas-
sifying, clustering and summarizing. This uses pre-trained
BERT to encode the incoming document, and the encoded
information are then shared by the event type classification,
detection and summarization components. For event sum-
marization, we use a Transformer structure as the decoder.
In addition to the input document encoded by BERT, the de-
coder also considers the predicted event type and cluster in-
formation, so that it can focus on the specific aspects of the
event type when generating summary. The experiment results
show that our approach outperforms other compared methods.

References
[Gottlob et al., 2002] Georg Gottlob, Nicola Leone, and Fran-

cesco Scarcello. Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences,
64(3):579–627, May 2002.

[Gottlob, 1992] Georg Gottlob. Complexity results for non-
monotonic logics. Journal of Logic and Computation,
2(3):397–425, June 1992.

[Aggarwal and Subbian, 2012] Charu C Aggarwal and
Karthik Subbian. Event detection in social streams. In
SDM, volume 12, pages 624–635. SIAM 2012.

[Allan et al., 2000a] James Allan, Victor Lavrenko, and Hu-
bert Jin, First story detection in TDT is hard. CIKM 2000

[Allan et al., 2000b] James Allan, Victor Lavrenko, Daniella
Malin, and Russell Swan, Detections, bounds, and time-
lines: UMass and TDT–3. TDT–3 2000.

[Allan, 2002] James Allan, editor. Topic Detection and
Tracking: Event-based Information Organization. Kluwer
Academic Publishers, 2002.

[Amigo et al., 2008] Enrique Amigó, Julio Gonzalo, Javier
Artiles and Felisa Verdejo. A comparison of extrinsic
clustering evaluation metrics based on formal constraints.
Information Retrieval, 2008.

[Celikyilmaz et al., 2018] Asli Celikyilmaz, Antoine Bosselut,
Xiaodong He, and Yejin Choi. Deep communicating
agents for abstractive summarization. NAACL 2018

[Collobert et al., 2011] Ronan Collobert, Jason Weston,
L´eon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel P. Kuksa. Natural language processing (almost)
from scratch. JMLR, 12:2493–2537, 2011.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Kenton
Lee, and Kristina Toutanova. BERT: Pre-training of deep

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4673

bidirectional transformers for language understanding.
NAACL 2019

[Edunov et al., 2019] Sergey Edunov, Alexei Baevski, and
Michael Auli. Pre-trained language model representa-
tions for language generation. NAACL 2019

[Erkan and Radev, 2004] Gunes Erkan, Dragomir R. Radev.
Lexrank: graph-based centrality as salience in text sum-
marization, JAIR 2014

[Hong and Nenkova 2004] Kai Hong and Ani Nenkova.
2014. Improving the estimation of word importance for
news multidocument summarization. EACL 2004

[Howard and Ruder, 2018] Jeremy Howard and Sebastian
Ruder. 2018. Universal language model fine-tuning for
text classification. arXiv preprint arXiv:1801.06146 .

[Katiyar and Cardie, 2016] Arzoo Katiyar and Claire Cardie.
Investigating lstms for joint extraction of opinion entities
and relations. ACL 2016.

[Lan et al, 2019] Zhenzhong Lan, Mingda Chen, Sebastian
Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut,
ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations,
https://arxiv.org/abs/1909.11942, 2019

[Li et al., 2017a] Quanzhi Li, Armineh Nourbakhsh, Sameena
Shah, Xiaomo Liu, Real-Time Novel Event Detection in
Twitter, IEEE ICDE 2017

[Li et al., 2018] Quanzhi Li, Armineh Nourbakhsh, Sameena
Shah, Systems and methods for event detection and
clustering, US Patent App. 15/800,876, 2018.

[Li et al., 2017b] Quanzhi Li, Sameena Shah, Xiaomo Liu,
Armineh Nourbakhsh, Data sets: Word embeddings
learned from tweets and general data, The 11th
International AAAI Conference on Web and Social
Media (ICWSM-2017)

[Li et al., 2019] Quanzhi Li, Qiong Zhang, Luo Si, Rumor
Detection by Exploiting User Credibility Information,
Attention and Multi-task Learning, ACL 2019

[Lin and Hovy, 2003] Chin-Yew Lin and Eduard Hovy.
Automatic evaluation of summaries using n-gram co-
occurrence statistics. NAACL 2003

[Liu and Lapata, 2019] Yang Liu and Mirella Lapata, Text
Summarization with Pretrained Encoders, EMNLP 2019

[Liu et al., 2019] Yinhan Liu, Myle Ott, Naman Goyal,
Jingfei Du, Mandar Joshi, et al., RoBERTa: A Robustly
Optimized BERT Pretraining Approach,
https://arxiv.org/abs/1907.11692

[Liu et al., 2017] Xiaomo Liu, Armineh Nourbakhsh,
Quanzhi Li, et al., Reuters Tracer: Toward Automated
News Production Using Large Scale Social Media Data,
IEEE BigData 2017

[Mannin g et al., 2008] Christopher D. Manning. Prabhakar
Raghavan. Hinrich Schütze. Introduction to Information
Retrieval. Cambridge Univ. Press, 2008

[Mueller and Thyagarajan, 2016] Jonas Mueller and Aditya
Thyagarajan. Siamese recurrent architectures for
learning sentence similarity. AAAI 2016.

[Nallapati et al., 2016] Ramesh Nallapati, Bowen Zhou,
Cicero Nogueira dos santos, Caglar Gulcehre, Bing
Xiang. Abstractiv text summarization using sequence-
tosequence RNNs and beyond. CoNLL 2016

[Peters, et al., 2018] Matthew E. Peters, Mark Neumann,
Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, Luke Zettlemoyer, Deep contextualized word
representations, NAACL 2018

[Petrovic et al., 2010] Sasa Petrovic, Miles Osborne, and
Victor Lavrenko. Streaming first story detection with
application to Twitter. HLT-ACL 2010

[Rothe et al., 2019] Sascha Rothe, Shashi Narayan, and
Aliaksei Severyn. Leveraging pre-trained checkpoints
for sequence generation tasks. arXiv preprint
arXiv:1907.12461, 2019

[Rush et al., 2015] Alexander M. Rush, Sumit Chopra, and
Jason Weston. A neural attention model for abstractive
sentence summarization. EMNLP 2015

[See et al., 2017] Abigail See, Peter J. Liu, and Christopher
D. Manning. Get to the point: Summarization with
pointer generator networks. ACL 2017

[Strehl et al., 2002] Alexander Strehl, Joydeep Ghosh.
Cluster ensembles – a knowledge reuse framework for
combining multiple partitions. JMLR, 3:583 - 617, 2002.

[Sutskever et al., 2014] lya Sutskever, Oriol Vinyals, and
Quoc V. Le. Sequence to sequence learning with neural
networks. NIPS 2014

[Wang and Zhang, 2017] Zhongqing Wang and Yue Zhang,
A Neural Model for Joint Event Detection and
Summarization, IJCAI 2017

[Wurzer et al. , 2015] DominikWurzer, Victor Lavrenko, and
Miles Osborne. Twitter-scale new event detection via
kterm hashing. EMNLP 2015.

[Yang et al., 2019a] Zhilin Yang, Zihang Dai, Yiming Yang,
Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le,
XLNet: Generalized Autoregressive Pretraining for
Language Understanding, NIPS 2019

[Yang et al., 2016] Zichao Yang, Diyi Yang, Chris Dyer,
Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical attention networks for document
classification. NAACL 2016

[Yasunaga et al., 2017] Michihiro Yasunaga, Rui Zhang,
Kshitijh Meelu, et al. Graph-based Neural Multi-
Document Summarization, CoNLL 2017Conference
Name:ACM Woodstock conference

[Ye et al., 2018] Hai Ye, Xin Jiang, Zhunchen Luo, Wenhan
Chao, Interpretable Charge Predictions for Criminal
Cases: Learning to Generate Court Views from Fact
Descriptions, NAACL 2018

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4674

