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Abstract

Human gaze reveals a wealth of information about
internal cognitive state. Thus, gaze-related research
has significantly increased in computer vision, nat-
ural language processing, decision learning, and
robotics in recent years. We provide a high-level
overview of the research efforts in these fields, in-
cluding collecting human gaze data sets, model-
ing gaze behaviors, and utilizing gaze information
in various applications, with the goal of enhanc-
ing communication between these research areas.
We discuss future challenges and potential applica-
tions that work towards a common goal of human-
centered artificial intelligence.

1 Introduction

Humans are surrounded by a complex world full of informa-
tion. How do humans survive without being overwhelmed?
There are often hundreds to thousands of objects and other
kinds of information within view, but our sensory and cog-
nitive capacities are limited. Fortunately, not all objects or
information matters for our current agenda or long-term goal
of survival. Through evolution and learning, humans have
gradually developed strategies for selecting information. This
is referred to as selective attention. As artificial intelligence
(AI) migrates from a simple digital world to the complex real
world, the same challenge awaits Al agents: How do they se-
lect important information from a world full of information?
A given computational model, either biological or digital, has
limited capacity. Therefore attentional selection is necessary
to ensure that resources are devoted to the key components.
Because humans actively seek the information they need,
gaze can reveal the underlying attentional patterns [Posner
and Petersen, 1990]. Humans have high acuity foveal vi-
sion in the central 1-2 visual degrees of the visual field (i.e.,
covering the width of a finger at arm’s length), with resolu-
tion decreasing in the periphery. They have learned to move
their foveae to the correct place at the right time to process
important task-relevant visual stimuli [Borji and Itti, 2014;
Hayhoe, 2017]. This type of selective attentional mechanism
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developed through evolution and is refined in a lifelong learn-
ing process. Given the amount of training data required dur-
ing this process, it may be easier for Al agents to learn at-
tention directly from human gaze data. Fortunately, human
gaze is one of the most cost-efficient types of physiological
data that can be collected in large quantities, as a result of
progress in eye-tracking hardware and software. The vision
science research community has a long history of studying
human gaze behaviors; hence, such behaviors are relatively
well understood. Because of these reasons, training Al agents
using human gaze has become a viable approach.

Another concern of using human gaze in Al research arises
as artificial agents and robots become more prevalent in hu-
man society—the importance of making Al agents under-
stand human intentions and goals cannot be overestimated.
In many scenarios, Al agents need to gather information
about their human fellows to facilitate mutual understand-
ing and coordination. Primates’ social gaze conveys infor-
mation about their dispositions, intentions, beliefs, emotions,
and other cognitive and emotional states [Emery, 2000]. The
ability to perceive gaze is critical in learning and social inter-
actions [Emery, 2000].

We have briefly discussed two reasons to include human
gaze in Al research, including (1) AI must develop an atten-
tion mechanism to cope with the information-rich world and
this mechanism can be learned from human gaze data, and
(2) AI agents need to perceive and understand human gaze
to better interact with humans. Motivated by these reasons,
multiple fields of Al including computer vision, natural lan-
guage processing, imitation and reinforcement learning, as
well as robotics, have started the effort of building human
gaze-assisted Al agents. Many state-of-the-art results can
only be achieved with human gaze information, especially in
realistic complex task domains. In this survey, we review rel-
evant studies in these four research areas that work towards
this common goal in the past five years. We further provide a
brief overview of modern eye-tracking software technologies
that allow for more accurate and accessible tracking results.

2 Gaze in Computer Vision

In order to understand how attention is controlled when view-
ing natural scenes, vision scientists first explored what im-
age properties or features capture the human gaze. Simi-
larly, computer vision engineers have tried to extract impor-
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Figure 1: Process of a typical human gaze assisted Al research. The process starts with gathering human gaze data using eye trackers then
building models to predict human attention distribution. The human gaze data and models can benefit various Al research fields.

tant (“salient”) visual features from images. Their combined
interests led to a large body of research concerning visual
saliency. A common goal here has been to develop compu-
tational models that can predict the human gaze given visual
images, where gaze is often treated as the ground truth to in-
dicate salient features.

Two different approaches are commonly taken to build
saliency models: hypothesis-driven and data-driven. Vision
scientists and early computer vision researchers mainly used
the former approach [Itti et al., 1998]. For instance, the clas-
sic work of Itti et al.[1998] hypothesized that features derived
from image statistics, such as color, intensity, and orientation,
capture human gaze. It follows that human gaze data can be
used to validate these hypotheses.

In recent years, data-driven approaches became more pop-
ular as large-scale eye-tracking datasets became available for
images [Papadopoulos et al., 2014; Li et al., 2014; Xu et al.,
2014; Bylinskii et al., 2015b; Bylinskii ef al., 2015a; Krafka
et al., 2016], videos [Mathe and Sminchisescu, 2014; Wang
et al., 2018], and 360-degree videos [Zhang et al., 2018b;
Xu et al., 2018]. Eye-tracking devices and software are ex-
pensive. Hence researchers have often used alternative meth-
ods as surrogates for gaze data, such as mouse tracking [Jiang
et al., 2015]. When combined with deep neural networks,
data-driven saliency approaches have achieved tremendous
progress. Typical saliency networks are convolutional neu-
ral networks [Jetley et al., 2016; Kiimmerer er al., 2016;
Kruthiventi et al., 2017] or convolutional long short-term
memory (LSTM) networks [Cornia et al., 2018b]. In practice,
one can try to directly predict discrete human gaze positions.
Alternatively, it is common to convert discrete gaze positions
into a continuous distribution to account for the uncertainty in
tracking and modeling. The model should learn to predict the
discrete positions or converted probability distribution given
the image. This can be done using supervised learning where

4952

several distance metrics can be used as the loss function for
training [Bylinskii et al., 2019].

Visual saliency is a well-developed field compared to other
emerging ones we are about to discuss. We direct interested
readers to recent review papers on the topics of saliency eval-
uation metrics [Bylinskii ez al., 2019], saliency model perfor-
mance analyses [Bylinskii et al., 2016; He et al., 2019a] and
a closely related field called salient object detection [Borji et
al., 2015]. These saliency research studies typically model
the gaze of an observer looking at images or videos. Alterna-
tively, a related line of research named gaze following models
the gaze of people inside images or videos [Recasens et al.,
2015; Recasens et al., 2017].

Saliency models have a wide range of applications in com-
puter vision, graphics, and multimedia. Most of these appli-
cations are human-centered. In computer vision, ground truth
labels of recognition and detection tasks are often provided by
humans. As an example indicating how informative human
gaze can be, Karessli et al.[2017] showed that human gaze
patterns are class discriminative, so that gaze features can be
directly used for image classification. In computer graphics
and multimedia, many image manipulations such as render-
ing and compression, must address the need of human users.
Saliency-driven manipulations address human demands and,
at the same time, reduce the computation burden by selecting
only a few image regions to process. For a recent survey on
these applications, please see Nguyen et al.[2018].

Traditional saliency prediction does not involve active
tasks. Datasets have typically been collected by asking hu-
man participants simply to look at static images or videos,
called free-viewing, and only the gaze data is recorded and
modeled. This approach was thought to capture so-called
bottom-up attention which assumes that attention is driven by
visual stimulus. More recent work by Henderson et al.[2018],
however, suggests that viewers are trying to extract scene
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meaning. Salient stimulus features such as contrast correlate
highly with meaning, and meaning can explain more of the
variance after taking this correlation into account. Thus the
free-viewing task might reflect this basic visual process of ex-
tracting scene meaning. On the other hand, it is well known
that human attention is strongly modulated by top-down sig-
nals especially when engaged in an explicit task. Progress in
bottom-up, stimulus-driven visual saliency research has laid
the ground for further research in top-down, task-driven re-
search. Researchers have moved from gaze data collected
while passively viewing images and videos to those collected
while actively performing a wide range of daily tasks, such
as conversation, driving, gaming, social interaction, etc. We
will now discuss these types of gaze data.

3 Gaze in Language Tasks

We now consider language learning tasks that involve visual
stimuli. The association between human gaze and language
has been established since infants have learned the name of
an object for the very first time from their caregivers (known
as the word-referent association [Yu and Smith, 2011]). In-
deed, artificial language learners face a similar challenge as
infants do in vision-language learning tasks. Given a com-
plex visual scene and a verbal description, it is unclear which
language element refers to which visual entity without prior
knowledge. This issue is particularly challenging for modern
end-to-end, data-driven learning approaches. Human infants
solve the referent problem by following their teachers’ gaze
and such a gaze-following strategy was shown to be strongly
correlated with language learning scores [Brooks and Melt-
zoff, 2005]. If AI agents are provided the human teacher’s
gaze that makes the word-referent association clear, the learn-
ing task could be simplified.

Consequently, vision and natural language processing
(NLP) researchers have recently utilized human gaze data
as part of language learning tasks. Multiple datasets of
images [Yun er al., 2013; van Miltenburg et al, 2018;
Vaidyanathan et al., 2018; Balajee Vasudevan et al., 2018;
He et al., 2019b] and videos [Yu et al., 2017] with paired
gaze and verbal description data have been made publicly
available. As expected, incorporating human gaze infor-
mation leads to significant improvements in identifying the
referred object from all proposals (object referring) [Bala-
jee Vasudevan et al., 2018], generating descriptive captions
for images [Sugano and Bulling, 2016; Tavakoli et al., 2017;
Cornia et al., 2018a; Chen and Zhao, 2018; He et al., 2019b]
and videos [Yu et al., 2017], as well as visual question an-
swering [Qiao ef al., 2018].

It was found that the attention maps of neural network
models trained without human gaze on these language tasks
are different from human attention [Das et al., 2017; Tavakoli
etal.,2017; He et al., 2019b]. Understanding and quantifying
such differences may provide insights on the performance, es-
pecially failure, of current vision-language models. For these
models, the ground truth label-verbal annotations—are pro-
vided by humans, so it is indeed necessary to infer under-
lying human cognition, such as object referrals, through hu-
man gaze. The usefulness of gaze information should be even
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more evident when Al agents meant for NLP are deployed to
interact with humans in daily conversations—a hypothesis that
could be tested in robotic dialogue systems, for example.

4 Gaze in Decision-Making Tasks

In addition to language, another common type of task hu-
mans perform on a daily basis is visuomotor decision mak-
ing, ranging from simple behaviors like walking to sophis-
ticated behaviors such as cooking and driving. One goal of
Al research is to develop autonomous machines that can per-
form these tasks. A common approach to achieve this goal
is to make machines act like humans, by training machines
to recognize and then imitate human teachers’ actions— an
approach known as learning from demonstrations (LfD) or
imitation learning [Argall et al., 2009].

In the LfD paradigm, human data is typically presented in
the form of state-action pairs, where a state encodes relevant
information for decision making from the environment. The
goal of the learning agent is to learn the state-action mapping
so it can recognize human activity or perform the task on its
own. Learning such mapping is made difficult by the fact that
the state-action pairs do not provide enough information and
leave ambiguity about the demonstrator’s policy or intent. For
example, in training an autonomous driving agent to imitate
human driving behaviors, it needs to know that the human
driver slows down because a pedestrian has appeared. Here,
human gaze reveals why a particular decision is made. In this
sense, changes in gaze positions may also imply task switch-
ing or current behavioral target changing. It was proposed
that human gaze can be used as an auxiliary guiding signal in
the imitation learning paradigm [Zhang et al., 2019a].

We have discussed how one may formalize a task-
independent gaze prediction problem as saliency prediction
in Section 2. The question remains whether one can model
gaze in visuomotor tasks using a similar approach. In re-
cent years, researchers have collected human gaze and ac-
tion data in meal preparation [Li er al., 2018], human-to-
human (non-verbal) interactions [Zuo et al., 2018], driving
[Palazzi et al., 2018], and video game playing [Zhang et
al., 2019b]. Convolutional neural networks remain the most
popular tool for predicting human attention [Li er al., 2018;
Zhang et al., 2018a; Palazzi et al., 2018; Deng et al., 2019].
Since the chosen tasks are reward-seeking and cognitively de-
manding, human gaze is mostly directed towards visual ar-
eas that are strongly associated with reward and hence be-
come highly predictable. Not surprisingly, motion features
play a more important role in a task-driven case than tradi-
tional image features [Zhang et al., 2018al. A notable chal-
lenge here is egocentric gaze prediction in which the spatial
distribution of the gaze is highly biased towards the image
center, a problem further addressed by [Palazzi et al., 2018;
Tavakoli et al., 2019].

Being able to model human gaze allows researchers to fur-
ther investigate whether the gaze information can indeed help
agents better learn from human demonstrated actions. To in-
corporate human attention into action learning, one can treat
the predicted gaze distribution of an image as a filter or a
mask. This mask can be applied to the image to generate a
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representation of the image that highlights the attended vi-
sual features. Experimental results have shown that includ-
ing gaze information leads to higher accuracy in recognizing
or predicting human actions, in reaching [Ravichandar et al.,
2018], human-to-human interaction [Zuo et al., 2018], driv-
ing [Xia er al., 2018; Liu et al., 2019], meal preparation [Li
et al., 2018; Shen et al., 2018; Sudhakaran et al., 2019], and
video game playing [Zhang et al., 2018al.

An Al agent that has learned both the attention and deci-
sion models from humans can perform the task on its own. It
has been shown that incorporating a learned gaze model leads
to a large performance increase in video games [Zhang er al.,
2018al. For real-world tasks like autonomous driving, it is
reasonable to expect a similar improvement when incorporat-
ing human attention models. Due to physical constraints and
safety reasons, this is yet to be explored but preliminary tests
in simulated environments are possible.

The gaze and action datasets in visuomotor decision tasks
also provide an opportunity for seeking a deeper understand-
ing of why humans make certain decisions. The gaze is a nec-
essary component in closing the perception-cognition-action
loop. For instance, an approach called inverse reinforce-
ment learning (IRL) infers a human’s internal reward function
which explains their actions. Since human gaze is closely as-
sociated with the task reward [Hayhoe, 2017], a good reward
function should also be able to explain human gaze behav-
iors. In this case, it is desirable to model gaze (perception),
reward (cognition), and action in a joint model.

5 Gaze in Robotics

As robots, especially assistive robots, become more preva-
lent in our daily life, interaction and communication be-
tween robots and humans certainly have increased. Human-
robot interaction (HRI) research aims to enhance such inter-
action and communication, and shows that they can be fa-
cilitated by the sensitivity to human physiological signals,
such as human gaze. We will review recent progress in
robotics that utilize human or robot gaze in HRI settings.
For earlier work on this topic, we direct interested read-
ers to two previous survey papers [Ruhland er al., 2015;
Thomaz et al., 2016].

Unlike vision, language, and decision learning tasks where
gaze data is collected in advance, HRI requires robots to ac-
quire human gaze during the interaction. In an ideal setting,
a robot and its human partner are both equipped with ego-
centric cameras, and the human is further equipped with an
eye tracker. The robot has direct access to human camera and
gaze data, from which it calculates the human’s gaze vector
in the robot’s coordinate system [Penkov et al., 2017]. Per-
haps a more common but more challenging setting is that hu-
mans do not wear a camera nor an eye tracker, and the robot
needs to estimate the human gaze vector by looking at their
faces [Amos er al., 2016; Saran et al., 2018]. A rough esti-
mate can be computed from the human body and head orien-
tation but this was shown to be much less informative than
direct gaze measuring [Palinko et al., 2016].

Once human gaze information is obtained, the next chal-
lenge is to interpret the meaning of the gaze. Social gaze
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between humans is relatively well studied, and a similar ef-
fort has been made for understanding human gaze when in-
teracting with robots [Rich et al., 2010]. The interpretation
of human gaze and its benefits are highly context-dependent.
Humans and robots engage in various forms of interaction
tasks. Similar to decision learning tasks discussed in the
previous section, human gaze can facilitate robot learning
during teaching [Penkov et al., 2017; Saran et al., 2019].
In a reversed setting, intelligent tutoring systems can moni-
tor a human student’s gaze to infer her mental or emotional
state to encourage better engagement [Jaques et al., 2014;
Hutt er al., 2016]. Intention-revealing gaze enhances collabo-
ration in object referring [Fang e al., 2015], teleoperation [Yu
et al., 2014], shared autonomy [Aronson et al., 2018], collab-
orative manipulation [Huang and Mutlu, 2016], and assisted
reaching and grasping [Shafti er al., 2019]. Human gaze can
also help a robot infer the recipient of human verbal commu-
nication in a multi-party scenario [Richter et al., 2016].

In the effort of humanizing robots, anthropomorphic hu-
manoid robots can use their own ‘“gaze” to enhance com-
munication with humans [Admoni and Scassellati, 2017].
Robot gaze can resolve object referring [Admoni et al., 2016],
communicate intended actions to make interactions more flu-
ent [Moon et al., 2014], effectively manage the conversational
floor with humans [Andrist et al., 2014], encourage humans
to be more compliant [Admoni ef al., 2014], and improve a
human teacher’s estimate of the robot learner’s understanding
and the human’s teaching strategy [Huang et al., 2019]. But
designing robot gaze itself is challenging, at least one study
suggested that robotic gaze cues alone have no significant im-
pact on humans in certain scenarios [Fiore et al., 2013].

However, reproducibility is a challenge in HRI stud-
ies. Unlike in vision, language, and decision-making tasks,
robotics tasks are in general difficult to standardize and
benchmark, especially when humans are involved, due to the
variations in physical robots and human participants. Another
challenge is to make human-robot gaze communication bidi-
rectional [Andrist ef al., 2017] and make robot gaze behaviors
adaptive to different task settings and users.

6 New Tracking Algorithms

Finally, we briefly review modern eye-tracking technologies
that are the foundations for many of the research works dis-
cussed above. Modern eye trackers range from desktop track-
ers that have high spatio-temporal resolution used for psy-
chophysics studies, to wearable trackers that can be mounted
on glasses, or even webcams. They differ in tracking accu-
racy, portability, and cost. Therefore, a wide variety of eye-
tracking hardware is made for different applications.

We have discussed how eye-tracking technology can ben-
efit artificial intelligence research. The reverse is also true.
Recent progress in computer vision has improved eye tracker
accuracy and portability by a significant margin. Appearance-
based algorithms using convolutional neural networks have
been shown to have better tracking accuracy and are more
robust to visual appearance variations [Zhang et al., 2015;
Wood et al., 2015; Krafka et al., 2016; Shrivastava et al.,
2017; Zhang et al., 2017; Park ef al., 2018], compared to



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

more traditional approaches like hand-crafted feature-based
or model-based algorithms. Advanced tracking software has
allowed real-time eye tracking on low-cost devices such as
webcams [Papoutsaki ef al., 2016] and mobile tablets and
phones [Huang et al., 2017; Krafka et al., 2016]. Due to this
progress, collecting human gaze data along with other forms
of human data is now feasible. This is a main reason for the
emerging research applications we have discussed.

7 Discussion

We have seen that human gaze can benefit vision, language,
decision-making, and robotics research. The main reason for
the successes in these fields is the effort of collecting and pub-
lishing large-scale high-quality eye-tracking datasets. These
datasets are fundamental for modern data-driven research.
Another driving force is the progress in machine learning re-
search, especially deep neural networks.

We have also seen how gaze reveals different information
in various contexts. In vision tasks, gaze indicates visual fea-
tures that are generally attractive for humans. In language,
gaze helps resolve the word-referent problem. In decision-
making tasks, gaze bridges perception and decision-making
by indicating the current behavioral target. In robotics, social
cues revealed by human or robot gaze facilitate communica-
tion and enhance collaboration.

Human gaze information is commonly used in three ways:
as an additional channel of information, as a mask on the in-
put to filter out unimportant information, or as a secondary
optimization objective. For example, in training a neural net-
work, the above methods correspond to concatenating a gaze
map with the input image, masking the input image with the
gaze map, and adding gaze prediction as an auxiliary loss
term in the objective function, respectively.

We now discuss a few important future research directions.

Human vs. Al attention. Al agents can learn to de-
velop their own attention mechanism which is the key com-
ponent of many state-of-the-art models [Mnih et al., 2014;
Vaswani et al., 2017]. Such a mechanism is often a byprod-
uct of the main learning objective. We can ask at least three
questions. First, given the same task and learning objec-
tive, does machine learn an attention that is different from
humans? Second, if they do differ, which one is more pre-
ferred under different conditions? In word-referent associ-
ation learning tasks human attention is preferred, but what
about decision-making tasks especially in which Al agents
outperform humans? Could human attention be biased and
fail to capture the correct information? Third, if human at-
tention is preferred, how should we incorporate human gaze
information into the learning procedure of these machines?
Answering these questions can help us better understand the
differences between human and machine attention .

Individual differences. A frequently overlooked issue in
many studies is individual differences in human gaze behav-
iors: Given the same visual stimulus, humans may pay atten-
tion to different visual entities. Sometimes it is necessary to
consider the variability in collected human data. Researchers
need to carefully trace the roots of such variability and con-
sider whether to build models to account for this variability.
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For example, two distinct gaze distributions may indicate that
the two humans are engaged in different tasks and pursuing
different behavioral goals. In HRI settings, individual differ-
ences require robots to adapt to gaze behaviors on-line for
different users.

Assisting humans. Most works we have discussed utilize
human gaze to assist Al agents. It is possible in the future that
attentive Al systems could assist humans in cognitively de-
manding tasks. One prototype application is advanced driver-
assistance systems (ADAS) that monitors the driver’s gaze
that is mainly used for fatigue or distraction detection nowa-
days. We may foresee that ADAS one day could build a
gaze model of focused expert drivers, and it could monitor
and alert its current driver if abnormal gaze behaviors are de-
tected. Furthermore, for humans with motor or language im-
pairments, their gaze is one of the most important remaining
communication channels. Al agents that are built with the
ability to perceive and understand their gaze behaviors could
better infer their needs, and be able to better assist them in
performing daily tasks. However, research in this direction is
still limited [Betke, 2010].
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