
Efficient and Modularized Training on FPGA for Real-time Applications

Shreyas Kolala Venkataramanaiah1 , Xiaocong Du1 , Zheng Li2 ,
Shihui Yin1 , Yu Cao1,2 and Jae-sun Seo1

1School of ECEE, Arizona State University, Tempe, AZ, USA
2School of CIDSE, Arizona State University, Tempe, AZ, US
{skvenka5, xiaocong, zheng.li.95, syin11, ycao, jseo28}@asu.edu

Abstract
Training of deep Convolution Neural Networks
(CNNs) requires a tremendous amount of compu-
tation and memory and thus, GPUs are widely used
to meet the computation demands of these complex
training tasks. However, lacking the flexibility
to exploit architectural optimizations, GPUs have
poor energy efficiency of GPUs and are hard to
be deployed on energy-constrained platforms.
FPGAs are highly suitable for training, such as
real-time learning at the edge, as they provide
higher energy efficiency and better flexibility to
support algorithmic evolution. This paper first de-
velops a training accelerator on FPGA, with 16-bit
fixed-point computing and various training mod-
ules. Furthermore, leveraging model segmentation
techniques from Progressive Segmented Training,
the newly developed FPGA accelerator is applied
to online learning, achieving much lower com-
putation cost. We demonstrate the performance
of representative CNNs trained for CIFAR-10
on Intel Stratix-10 MX FPGA, evaluating both
the conventional training procedure and the on-
line learning algorithm. The demo is available at
https://github.com/dxc33linger/PSTonFPGA demo.

1 Introduction
The recent development of machine learning algorithms and
computing hardware has enabled many modern edge applica-
tions, such as autonomous vehicles, surveillance drones, and
robots. Training of these ML-edge applications is typically
performed on cloud servers because of their high computing
capability. Sending the data to the cloud incur large latency
overhead and raises privacy/security concerns. Training at the
edge enables limited data exchange with the cloud and helps
in personalizing, improving energy efficiency and protecting
the private data. The edge devices are also preferred to han-
dle the learning from a data stream over time locally and in
real-time, i.e. online learning.

In order to enable online learning at the edge for real-
time applications, several major challenges need to be solved:
(1) When new data arrives in a stream, there is very lim-
ited or even no access to previously learned data. Yet the

learned knowledge (i.e. network parameters) from previous
data should not be forgotten (i.e. overwritten or deterio-
rated due to the learning of new observations) [Kirkpatrick
et al., 2017; Chaudhry et al., 2018; Li and Hoiem, 2017;
Rebuffi et al., 2017]. (2) The network should be able
to update its parameters according to the incoming data
stream. It is preferred that such adaption is completed lo-
cally and in real-time for an edge device [Du et al., 2019a;
Venkataramanaiah et al., 2019]. (3) Although GPUs pro-
vide remarkably high parallelism and throughput making it
a viable option for real-time learning, they are not suitable
for power constrained platforms. Hardware design for flex-
ible and energy efficient training at the edge is challenging
due to design complexity, large computation/memory/power
requirement and other resource budges [Han et al., 2016;
Han et al., 2015; Du et al., 2019b; Liu et al., 2015; Li et
al., 2015].

FPGAs are well suited to exploit these algorithmic ad-
vances and tackle the above-mentioned challenges as they
provide high energy efficiency, good flexibility, and large
on-chip and off-chip memories. Several FPGA based train-
ing/inference accelerators have been proposed [Liu et al.,
2018; Gomperts et al., 2011; Rafael et al., 2005; Liu et
al., 2017; Zhao et al., 2016; Choi et al., 2018; Guo et
al., 2019] but they fail to show end-to-end training capa-
bility. [Venkataramanaiah et al., 2019] proposes an FPGA
based fixed-point training accelerator capable of demonstrat-
ing end-to-end training. An RTL generator is used to generate
the architecture according to the network structure and de-
sign requirements. The proposed accelerator can also support
novel training methodologies like PST and provides great
flexibility to exploit optimizations.

In this work, we demonstrate online CIFAR-10 CNN learn-
ing on an FPGA based 16-bit fixed-point training accelera-
tor [Venkataramanaiah et al., 2019] on Intel Stratix-10 MX
FPGA [Deo et al., 2016]. The proposed accelerator is aug-
mented to support PST [Du et al., 2019a] which further im-
proves the performance of online CNN training. We also
demonstrate the PST algorithm by deploying the pretrained,
segmented model (i.e. selected weights are frozen in the net-
work) on the FPGA and training the network with new real-
time data.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

5237



Figure 1: The demonstration system consists of Intel Straix-10 FPGA initialized with pre-trainined model parameters. The new data is
streamed to the FPGA and learned locally in real-time using PST algorithm.

2 System Overview
2.1 Demo System
Figure 1 depicts the overall system setup to demonstrate train-
ing of CNNs using PST algorithm. First, a large amount of
knowledge is pretrained and important model parameters are
frozen in the network (Figure 1a) following the process de-
scribed in [Du et al., 2019a]. The pretrained model is sent to
RTL generator which generates the customized training ac-
celerator and HBM2 memory initialization files (Figure 1b).
The generated training accelerator uses the frozen weights
stored in HBM2 and performs the inference. This forms
an inherited model, which is used to acquire new knowl-
edge; the model is then exposed to a new unlearned data
stream and the network parameters are updated accordingly
in real-time on the FPGA (Figure 1c). The entire system
is demonstrated on Intel Stratix-10 MX FPGA board (Fig-
ure 1d). Benefiting from the model inheritance, the online
training of new observations requires much less computation
cost and lower latency, as compared to traditional continual
learning scheme that learns from scratch. PST greatly aids in
improving the computation cost by updating only the required
weights instead of updating all the network parameters in the
traditional training schemes. Latency breakdown graph (Fig-
ure 1e) shows the latency benefit of using PST compared to
conventional training in the weight update (WU) phase.

2.2 CNN Training Hardware
The RTL generator generates the CNN training hardware us-
ing the high-level network details given by the user. It uses
a highly parameterized handwritten RTL module library de-
signed to support various layers of CNN training. The user
can also reconfigure the architecture by changing the FPGA
design parameters such as precision, MAC array size, tiling,
and layer scheduling. To support novel training algorithms
like PST, the RTL generator is designed to read the pretrainied
CNN model and generate the HBM2 initialization files to load
the frozen weights.

The CNN training hardware is flexible to support forward
pass (FP), backward pass (BP) and weight update (WU)

phases of training. The hardware consists of a global con-
trol logic that governs all the modules and enables layer by
layer execution by using the parameters generated by the RTL
generator. The HBM2 stores all the initial weight param-
eters (or weights from a pretrained model), activations and
computed weight gradients/new weights. The input/output
on-chip buffer is used to store the input/output parameters re-
quired for a given layer. For example, while computing a con-
volution layer the input buffers stores the input activations,
weights and output buffers store the convolved outputs.

The core compute blocks reads the data from the input
buffers and perform the computation based on the layer type
and the outputs are sent to output buffers. The convolution
block uses a 2D systolic MAC array flexible to support all
three phases of the training. The weight update block com-
putes and accumulates the weight gradients. At the end of the
batch, the accumulated weight gradients are scaled and new
weights are computed using the stochastic gradient descent
algorithm. To support PST where we need to only update the
selected weights, the control logic was augmented to skip the
HBM2 access if the frozen weights thereby reducing the off-
chip communication. The weight updates and weight gradi-
ent computation was performed only for the selected weights.

2.3 Demonstration Setup
We showcase our system with CIFAR-10 [Krizhevsky et al.,
2009] dataset. The CIFAR-10 dataset consists of 60,000 32×
32 color images in 10 classes, with 5,000 training images and
1,000 testing images per class. The classes include common
objects such as plane, bird, truck, etc. We demonstrate on-
line learning on FPGA with a CNN structure of 16C3-16C3-
MP-32C3-32C3-MP-64C3-64C3-MP-FC, where ‘NCk’ rep-
resents convolution layer with ‘N’ output feature maps and
kernel size of ‘k’, ‘MP’ represents max pooling layer and
‘FC’ represents a fully connected layer. The accelerator was
synthesized by Intel Quartus 19.2 at 150 MHz frequency. We
used Stratix-10 MX equipped with HBM2 as the target hard-
ware and Intel(R) Core(TM) i7-9800X as a host machine. All
the parameters used 16-bit fixed point precision.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

5238



Acknowledgments
This work was supported in part by the Semiconductor Re-
search Corporation (SRC) and DARPA. It was also partially
supported by National Science Foundation (NSF) under CCF
#1715443.

References
[Chaudhry et al., 2018] Arslan Chaudhry, Marc’Aurelio

Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.
Efficient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420, 2018.

[Choi et al., 2018] Seungkyu Choi, Jaehyeong Sim,
Myeonggu Kang, and Lee-Sup Kim. TrainWare: A
memory optimized weight update architecture for
on-device convolutional neural network training. In
Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED), 2018.

[Deo et al., 2016] Manish Deo, Jeffrey Schulz, and Lance
Brown. Intel stratix 10 mx devices solve the memory band-
width challenge. Intel White Paper, 2016.

[Du et al., 2019a] Xiaocong Du, Gouranga Charan, Frank
Liu, and Yu Cao. Single-net continual learning with pro-
gressive segmented training. In 2019 18th IEEE Interna-
tional Conference On Machine Learning And Applications
(ICMLA), pages 1629–1636, Dec 2019.

[Du et al., 2019b] Xiaocong Du, Zheng Li, Yufei Ma, and
Yu Cao. Efficient network construction through structural
plasticity. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 9(3):453–464, 2019.

[Gomperts et al., 2011] Alexander Gomperts, Abhisek Ukil,
and Franz Zurfluh. Development and implementation of
parameterized FPGA-based general purpose neural net-
works for online applications. IEEE Transactions on In-
dustrial Informatics, 7(1):78–89, 2011.

[Guo et al., 2019] Kaiyuan Guo, Shuang Liang, Jincheng
Yu, Xuefei Ning, Wenshuo Li, Yu Wang, and Huazhong
Yang. Compressed cnn training with fpga-based accelera-
tor. In Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages
189–189, 2019.

[Han et al., 2015] Song Han, Huizi Mao, and William J
Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149, 2015.

[Han et al., 2016] Song Han, Xingyu Liu, Huizi Mao, Jing
Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: efficient inference engine on compressed deep
neural network. ACM SIGARCH Computer Architecture
News, 44(3):243–254, 2016.

[Kirkpatrick et al., 2017] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceed-
ings of the national academy of sciences, 114(13):3521–
3526, 2017.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny im-
ages. 2009.

[Li and Hoiem, 2017] Zhizhong Li and Derek Hoiem.
Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947,
2017.

[Li et al., 2015] Zheng Li, Chenchen Liu, Yandan Wang, Bo-
nan Yan, Chaofei Yang, Jianlei Yang, and Hai Li. An
overview on memristor crossabr based neuromorphic cir-
cuit and architecture. In 2015 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC),
pages 52–56. IEEE, 2015.

[Liu et al., 2015] Chenchen Liu, Bonan Yan, Chaofei Yang,
Linghao Song, Zheng Li, Beiye Liu, Yiran Chen, Hai Li,
Qing Wu, and Hao Jiang. A spiking neuromorphic design
with resistive crossbar. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE,
2015.

[Liu et al., 2017] Zhiqiang Liu, Yong Dou, Jingfei Jiang,
Qiang Wang, and Paul Chow. An FPGA-based processor
for training convolutional neural networks. In Proceedings
of the International Conference on Field Programmable
Technology (ICFPT), pages 207–210, 2017.

[Liu et al., 2018] Qiang Liu, Jia Liu, Ruoyu Sang, Jiajun Li,
Tao Zhang, and Qijun Zhang. Fast neural network training
on FPGA using quasi-newton optimization method. IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 26(8):1575–1579, 2018.

[Rafael et al., 2005] G Rafael, C Ricardo, C Joaquı́n, C An-
gel, and Wakamura M Maeda. FPGA implementation of a
pipelined on-line backpropagation. Journal of VLSI Signal
Processing, 40(2):189–213, 2005.

[Rebuffi et al., 2017] Sylvestre-Alvise Rebuffi, Alexander
Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 2001–2010, 2017.

[Venkataramanaiah et al., 2019] Shreyas Kolala Venkatara-
manaiah, Yufei Ma, Shihui Yin, Eriko Nurvithadhi, Ar-
avind Dasu, Yu Cao, and Jae-sun Seo. Automatic compiler
based fpga accelerator for cnn training. In 2019 29th In-
ternational Conference on Field Programmable Logic and
Applications (FPL), pages 166–172. IEEE, 2019.

[Zhao et al., 2016] Wenlai Zhao, Haohuan Fu, Wayne Luk,
Teng Yu, Shaojun Wang, Bo Feng, Yuchun Ma, and
Guangwen Yang. F-CNN: An FPGA-based framework
for training convolutional neural networks. In Proceed-
ings of the IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP),
pages 107–114, 2016.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

5239


	Introduction
	System Overview
	Demo System
	CNN Training Hardware
	Demonstration Setup


