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Abstract
Population aging is becoming an increasingly im-
portant issue around the world. As people live
longer, they also tend to suffer from more chal-
lenging medical conditions. Currently, there is a
lack of a holistic technology-powered solution for
providing quality care at an affordable cost to pa-
tients suffering from co-morbidity. In this paper,
we demonstrate a novel AI-powered solution to
provide early detection of the onset of Dementia
+ Parkinson’s disease (DPD) co-morbidity, a con-
dition which severely limits a patient’s ability to
live actively and independently. We investigate use-
ful in-game behaviour markers which can support
machine learning-based predictive analytics on pa-
tients’ risk of developing DPD co-morbidity.

1 Introduction
Parkinson’s disease (PD) and dementia are chronic neurode-
generative diseases where symptoms progressively deterio-
rate with no cure currently available. PD patients exhibit
motor symptoms like tremor, rigidity, bradykinesia, abnormal
gait [Nussbaum and Ellis, 2003]. Dementia patients exhibit
cognitive deficits like long-term memory loss, difficulty in
reasoning, decline in visual and spatial abilities, and depres-
sion [Nussbaum and Ellis, 2003]. Research has shown that
dementia develops in over 80% of PD patients after 20 years
[Hely et al., 2008]. This has been attributed to the possible
spread of PD pathology (i.e., Lewy-body-type degeneration)
to the hippocampus and cerebral cortex which are the main re-
gions that experience atrophy in Alzheimer’s disease [Emre,
2003]. Suffering from dementia and Parkinson’s disease at
the same time, i.e. DPD co-morbidity, drastically decreases
quality of life for patients. This puts a massive strain on both
economy and healthcare infrastructure to care for these pa-
tients. Neurodegenerative diseases have an increased onset
with age. With many countries facing an aging population,
this is a pressing problem that needs immediate addressing.

The diagnosis of PD and dementia is usually based on
multi-source data, including laboratory, clinical and behav-
ioral data, and requires the knowledge and opinions from
multiple healthcare professionals, such as physio-therapist,

psychologist, and memory disorder specialist. Due to its in-
tricate nature, the diagnosis process is highly subjective with
different healthcare professionals having different views on
the severity of symptoms. As a result, machine learning
methods have been used to provide a more objective assess-
ment, to aid the doctor in reaching a diagnosis. Models are
trained using a variety of biomarkers from clinical records
to neuroimaging scans. For PD assessment, research has
mainly focused on detecting psychomotor symptoms using
body worn sensors. Analysis is carried out on the sensor
signals to identify discriminative patterns related to slowness
in movement [Iakovakis et al., 2018], tremor [Joundi et al.,
2011] and abnormal gait [Aung et al., 2013]. As for demen-
tia assessment, researchers have explored various cognitive-
related biomarkers, such as measuring brain atrophy from
neuroimaging scans [Zhang et al., 2011] and test results of
computerized test batteries [Zeng et al., 2018].

The pervasiveness of smartphone devices in the last decade
has provided a cost-effective diagnostic tool accessible by ev-
eryone. Most smartphones come equipped with sensors like
accelerometers and gyroscopes to record physiological sig-
nals when carrying out various assessments related to motor
and cognitive well-being. There have been a few successful
work that showed the potential of using smartphones as an
accessible and longitudinal monitoring tool for self-diagnosis
of PD [Stamate et al., 2017; Schwab and Karlen, 2019;
Zhang et al., 2019a]. Most of the current smartphone-based
assessments are focused on either PD or dementia individu-
ally, with a lack of studies on monitoring and predicting DPD
co-morbidity.

2 Gamified Assessment Platform
This paper presents a prototype for detecting early signs of
DPD co-morbidity through a mobile assessment platform
(video link1). It consists of six gamified assessments which
assess the patient on both motor and cognitive impairments
(see Figure 1). They are specially designed to capture sever-
ity of symptoms related to DPD co-morbidity. Since current
medical literature indicates a high probability of PD patients
developing dementia [Hely et al., 2008], most of our assess-
ments are PD related (Fig. 1 (a) - (e)). The mini-games

1https://youtu.be/-AJvGDgwYrg
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(a) (b) (c) (d) (e) (f)

Figure 1: Screenshots of the mini-test in the DPD assessment App:
(a) main page, (b) finger tapping, (c) tremor (rest, postural), (d) mi-
crographia, (e) coordination, and (f) clock drawing

Figure 2: AI engine for analyzing data collected from the DPD co-
morbidity mobile assessment platform

are designed in collaboration with doctors and researchers
from Pacific Parkinson’s Research Centre. Each of them is
designed for assessing one characterizing symptom of PD,
such as tremor, micrographia, and left-right hand coordina-
tion. The clock drawing test is a widely used clinical test for
screening cognitive impairments [Shulman, 2000]. A digi-
talized version with automatic scoring system is designed for
assessing dementia symptoms (Fig. 1(f)).

3 AI Engine
Data collected from the various tasks can then be used for
1) daily symptoms monitoring, 2) early warning of potential
progression from PD to dementia, and 3) discovering disease
phenotypes which could complement medical research into
DPD progression and pathology. An overview of the AI en-
gine is shown in Figure 2.

Monitoring Symptoms
As the assessments are self-administered without any form of
clinical supervision, the data collected are likely to be noisy.
Filtering of data is crucial, as using noisy data for training
will affect model performance. We train a binary classifier to
filter out data points that do not follow assessment protocol
(e.g., large segments of stationary signals).

The data collected from each test comes in the form of
1D signals. We make use of a combination of both clini-
cally driven and data driven features. For the clinical features,
we used feature engineering to extract specific traits found in
each disease, refer to Figure 3. In PD, resting tremor occurs
in the range of 4-6 Hz [Thenganatt and Louis, 2012]. We
first apply Fast Fourier Transformation (FFT) [Heideman et

(a) Rest tremor frequency distri-
bution after FFT.

(b) Postural tremor frequency
distribution after FFT.

(c) Clock contour and hands fit-
ted using least squares method.

(d) Clock digits segmented based
on temporal proximity of strokes.
Each digit will be classified by a
CNN pre-trained on MNIST.

Figure 3: Clinical features extracted for PD (a,b) and dementia (c,d)

al., 1984] and filter out signals not in this range. Patients
with dementia are known to suffer from spatial and recall
deficits. As such, clinical features for the clock drawing test
involve assessing how well the clock is drawn. We first seg-
ment the handwritten digits based on the temporal proximity
of strokes. A Convolutional Neural Network (CNN) [LeCun
et al., 1995] pre-trained on the MNIST dataset [LeCun et al.,
2010] is then used to recognise each digit. The hands and
contour of the clock are fitted using a least squares method.
Scoring will be done based on the digits being at the correct
position with respect to the hour and minute hands. For the
data driven features, we use a CNN to extract local invariant
patterns from the raw sensor signals. The clinical features
from each test are then concatenated with the data driven fea-
tures to train a deep learning model in an end-to-end manner.
An overall disease state can be calculated by combining the
performance scores from all tests.

Early Warning
Based on the longitudinal signals collected, we compare how
a patient’s symptoms differ on a monthly or daily basis. Rel-
ative intra-patient comparison is more reliable than a direct
inter-patient comparison. It is normal for different individu-
als to have varying level of performance on the various tests.
This could be due to familiarity with the task or naturally
slower reflexes. Large decrease in relative performance will
be a bigger source of concern and prompt intervention is re-
quired. We detect significant drops in performance using a
window averaging approach, where a pre-defined threshold
is set and any score difference across windows that exceed
this value will trigger a warning to the patient.

Discovering Phenotypes
The longitudinal data collected from each patient can also be
used as a way to cluster the patients. The user’s historical per-
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formance across tasks are combined to form a feature vector
at each time point. The history is encoded using a Long-short
term memory network (LSTM) [Hochreiter and Schmidhu-
ber, 1997] which is trained in an unsupervised manner like
in [Zhang et al., 2019b]. As each patient joins the study at
different time points, it is likely that intra-patient temporal
sequences are out of sync. We used Dynamic Time Warping
[Berndt and Clifford, 1994] to align the different representa-
tions temporally before obtaining a similarity score based on
Euclidean distance. This allows us to discover different types
of DPD progression patterns that can occur.

4 Conclusion
In conclusion, our gamified assessment platform provides a
new paradigm for monitoring and managing neurodegenera-
tive diseases. In the future, we will collaborate with health-
care professionals to test the platform with both healthy se-
niors and DPD co-morbidity patients to collect longitudinal
datasets that can be used by AI researchers for exploring di-
agnosis and progression prediction of PD and dementia, and
by medical researchers for studying DPD co-morbidity.
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