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Abstract
Citizens’ assemblies need to represent subpopula-
tions according to their proportions in the general
population. These large committees are often con-
structed in an online fashion by contacting people,
asking for the demographic features of the volun-
teers, and deciding to include them or not. This
raises a trade-off between the number of people
contacted (and the incurring cost) and the represen-
tativeness of the committee. We study three meth-
ods, theoretically and experimentally: a greedy al-
gorithm that includes volunteers as long as propor-
tionality is not violated; a non-adaptive method that
includes a volunteer with a probability depending
only on their features, assuming that the joint fea-
ture distribution in the volunteer pool is known; and
a reinforcement learning based approach when this
distribution is not known a priori but learnt online.

1 Introduction
Forming a representative committee consists in selecting a
set of individuals, who agree to serve, in such a way that
every part of the population, defined by specific features, is
represented proportionally to its size. As a paradigmatic ex-
ample, the Climate Assembly in the UK and the Citizens’
Convention for Climate in France brought together 108 and
150 participants respectively, representing sociodemographic
categories such as gender, age, education level, professional
activity, residency, and location, in proportion to their im-
portance in the wider society. Beyond citizens’ deliberative
assemblies, proportional representation often has to be re-
spected when forming an evaluation committee, selecting a
diverse pool of students or employees, and so on.

Two key criteria for evaluating the committee formation
process are the representativeness of the final selection and
the number of persons contacted (each of these incurring a
cost). The trade-off is that the higher the number of people
contacted, the more proportional the resulting committee.

A first possibility is to use an offline strategy (as for the
UK assembly): invitations are sent to a large number of peo-
∗Contact Author.
†Full version available at https://arxiv.org/abs/2105.09295.

ple (30,000), and the final group is selected among the pool of
volunteers. An alternative setting which is common in hiring
is to consider an online process: the decision-maker is given
a stream of candidates and has to decide at each timestep
whether or not to admit the candidate to the final committee.
This work focuses on the latter setting.

A further difficulty is that the distribution of volunteers is
not necessarily known in advance. For example, although
the target is to represent distinct age groups proportionally to
their distribution in the wider population, it may be the case
that older people are predominant among volunteers.

Multi-attribute proportional representation in committee
selection in an off-line setting usually assumes full access to
a finite (typically large) database of candidates. This assump-
tion is impractical in a variety of real-world settings: first, the
database does not exist beforehand and constructing it would
require contacting many more people than necessary; sec-
ond, in some domains, the decision to hire someone should
be made immediately so that people don’t change their mind
in the meantime (which is typical in professional contexts).

An online strategy must achieve a good trade-off between
sample complexity, i.e. the number of timesteps needed to
construct a full committee, and the quality of the final com-
mittee, as measured by its distance to the target distribution.

We focus on the online setting. We introduce a new model
and offer three different strategies, which rely on different as-
sumptions on the input (and the process). The greedy strategy
selects volunteers as long as their inclusion does not jeop-
ardize the size and representation constraints; it does not
assume any prior distribution on the volunteer pool. The
nonadaptive strategy, based on constrained Markov decision
processes, repeatedly chooses a random person, and decides
whether to include or not a volonteer with a probability that
depends only on their features; it assumes the joint distribu-
tion in the volunteer pool is known; it can be parallelised.
Finally, the reinforcement learning strategy assumes this dis-
tribution is not known a priori but can be learnt online.

Which of these strategies are interesting depends on do-
main specificities. For each, we study bounds for expected
quality and sample complexity, and perform experiments us-
ing real data from the UK Citizens’ Assembly on Brexit.

The outline of the paper is as follows. We discuss related
work in Section 2, define the problem in Section 3, define and
study our three strategies in Sections 3.2, 4 and 5, analyse our
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experiments in Section 6 and conclude in Section 7.

2 Related Work
Diversity and representation in committee (s)election.
The problem of selecting a diverse set of candidates from
a candidate database, where each candidate is described by
a vector of attribute values, has been considered in several
places. In [Lang and Skowron, 2018], the goal is to find a
committee of a fixed size whose distribution of attribute val-
ues is as close as possible to a given target distribution. In
[Celis et al., 2018; Bredereck et al., 2018], each candidate
has a score, obtained from a set of votes, and some constraints
on the proportion of selected candidates with a given attribute
value are specified; the goal is to find a fixed-size committee
of maximal score satisfying the constraints. In the same vein,
[Aziz, 2019] considers soft constraints, and [Bei et al., 2020]
do not require the size of the committee to be fixed.1

Our online setting shifts the difficulty of the multi-attribute
representation problem from computational complexity anal-
yses, to the need for probabilistic guarantees on the tradeoffs
between sample complexity and achieved proportionality.

Representative and fair sortition. Finding a representa-
tive committee (typically, a panel of citizens) with respect
to a set of attributes, using sortition, is the topic of at least
two recent papers. [Benadè et al., 2019] show that strati-
fication (random selection from small subgroups defined by
attribute values, rather than from the larger group) only helps
marginally. [Flanigan et al., 2020] go further and consider
this three-stage selection process: (1) letters are sent to a large
number of random individuals (the recipients); (2) these re-
cipients answer whether they agree to participate, and if so,
give their features; those individuals constitute the pool; (3) a
sampling algorithm is used to select the final panel from the
pool. As the probability of willingness to participate is differ-
ent across demographic groups, each person is selected with a
probability that depends on their features, so as to correct this
self-selection bias. This guarantees that the whole process be
fair to all individuals of the population, with respect of going
from the initial population to the panel.2

The main differences between this work and ours are: (1)
(once again) our process is online; (2) we do not consider in-
dividual fairness, only group representativeness; (3) we care
about minimizing the number of people contacted. Moreover,
unlike off-line processes, our process can be applied in con-
texts where hiring a person just interviewed cannot be de-
layed; this may not be crucial for citizens’ assemblies (al-
though someone who volunteers at first contact may change
their mind if the delay until the final selection is long), but
this is definitely so when hiring a diverse team of employees.

1Note that diversity and proportional representation are often
used with a different meaning in multiwinner elections, namely, in
the sense that each voter should feel represented in an elected com-
mittee, regardless of attributes. A good entry to this literature is the
survey [Faliszewski et al., 2017].

2Fairness guarantees are pushed further in following (yet unpub-
lished) work by the authors: see https://youtu.be/x 1Ce1kT7vc.

Online selection problems. Generalized secretary prob-
lems [Babaioff et al., 2008] are optimal stopping problems
where the goal is to hire the best possible subset of persons,
assuming that persons arrive one at a time, their value is ob-
served at that time, and the decision to hire or not them must
be taken immediately. The problem has been generalized to
finding a set of items maximizing a submodular value func-
tion [Bateni et al., 2013; Badanidiyuru et al., 2014] While
the latter models do not deal with diversity constraints, [Stoy-
anovich et al., 2018] aims at selecting a group of people ar-
riving in a streaming fashion from a finite pool, with the goal
of optimizing their overall quality subject to diversity con-
straints. The common point with our approach is the online
nature of the selection process. The main differences are
that they consider only one attribute, the size of the pool is
known, and yet more importantly, what is optimized is the
intrinsic quality values of the candidates and not the number
of persons interviewed. Closer to our setting is [Panigrahi et
al., 2012] who consider diversity along multiple features in
online selection of search results, regardless of item quality.
They only seek to maximise diversity, and do not consider
trade-offs with the number of items observed.

The diverse hiring setting of [Schumann et al., 2019] is
very different. At each time step, the decision-maker chooses
which candidate to interview and only decides on which sub-
set to hire after multiple rounds, whereas in our setting, candi-
dates arrive one by one and decisions are made immediately.

3 Formal Setting
3.1 Problem Definition
Let X = X1 × ... × Xd be the product space of d finite do-
mains, each of sizeDi = |Xi|, and where we identify Xi with
[Di] = {1, ..., Di}. Each candidate is represented by a char-
acteristic vector x ∈ X with d features. Let xi ∈ Xi denote
the value of the i-th feature. For each i ∈ [d], we consider a
target vector ρi ∈ (0, 1)Di with

∑Di
j=1 ρ

i
j = 1.

The candidate database is infinite and the horizon as well.
At each timestep t ≥ 1, the agent observes a candidate xt
drawn i.i.d. from a stationary distribution p over X , i.e. xt ∼
p. The decision-maker must immediately decide between two
actions: accept or reject the candidate, which we respectively
denote as at = 1 and at = 0.

The goal is to select a committee C of K candidates that
matches the target vectors as closely as possible, while mini-
mizing the number of candidates screened.

For some set C, let λ(C) ∈
∏d
i=1[0, 1]Di be the rep-

resentation profile of C, where λij(C) = |{x∈C:xi=j}|
|C| .

We define the representation loss as ‖λ(C) − ρ‖∞ =
maxi∈[d],j∈[Di] |λij(C) − ρij |. We evaluate how much C
matches the target ρ by the `∞ metric, because it is harsher
than `1, `2 on committees that are unacceptable in our appli-
cations (e.g. committees with no women that achieve perfect
representation on all other categories than gender).

Let Ct = {xt′ : t′ ≤ t, at′ = 1} denote the set of all
accepted candidates at the end of step t. The agent stops
at τ , where τ is the first time when K candidates have
been accepted, i.e. the total number of candidates screened.
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gender \ age S J
M 1/2− ε′ 1/4
F 1/4 ε′

Table 1: Example candidate distribution p with 2 binary features.

The agent following a (possibly randomized) algorithmALG
must minimize the sample complexity Ep,ALG[τ ].

Importantly, we consider two settings: whether the candi-
date distribution p is known or unknown.
Remark. In this model, we simply ignore non-volunteers,
since the agent only needs to make decisions for volunteers,
which from now on we call candidates. The joint distribution
of characteristic vectors in the population of candidates is p.

3.2 Greedy Strategy
We describe a first simple strategy. In Greedy, the agent
greedily accepts any candidate as long as the number of peo-
ple in the committee with xi = j does not exceed the quota
dρijKe + εK

(Di−1) for any i, j, where ε > 0 is some tolerance
parameter for the representation quality.
Proposition 1. The representation loss incurred by Greedy
is bounded as follows:

‖λ(Cτ )− ρ‖∞ ≤
a.s.

(maxi∈[d]Di − 1

K
+ ε).

This method is simple to interpret and implement, and can
even be used when the candidate distribution p is unknown.
However, in the following example, we see that Greedy may
be inefficient because it requires interacting with an arbitrar-
ily large number of candidates to recruit a full committee.
Example 1. Let ε′ > 0,� 1. There are 2 binary features,
gender and age, with domains Xgender = {M,F} and Xage =
{S, J}. The candidates are distributed as p given in Table 1.
We want a committee of size K = 4 (e.g., a thesis committee)
and the target is ρgender = (1/2, 1/2) and ρage = (3/4, 1/4).

Let A be the event that in the first 3 timesteps,
the agent observes candidates with characteristic vectors
{FS,MS,MS} in any order. Then Greedy accepts all of
them, i.e. A = {C3 = {FS,MS,MS}}. We have: P [A] =
1/4(1/2− ε′)2 × 3! = 3/2(1/2− ε′)2 ≥ 3/2

(
1/3
)2

= 1/6.
Under event A, Greedy can only stop upon finding FJ

in order to satisfy the representation constraints. Therefore,
τ |A follows a geometric distribution with success probability
ε′, hence its expectation is 1/ε′, and Ep,Greedy[τ ] ≥ E [τ |A]×
P [A] = 1/6ε′. Therefore, the sample complexity of Greedy in
this example is arbitrarily large.

This example shows the limits of directly applying a naive
strategy to our online selection problem, where the diffi-
culty arises from considering multiple features simultane-
ously, even when there are only 2 binary features. We fur-
ther discuss the strengths and weaknesses of Greedy, and its
sensitivity to the tolerance ε in our experiments in Section 6.

The greedy strategy is adaptive, in the sense that decisions
are made based on the current candidate and candidates ac-
cepted in the past. In the following section, we present, with
theoretical guarantees, an efficient yet non-adaptive algorithm

based on constrained MDPs for the setting in which the candi-
date distribution is known. We then adapt this approach to the
case when this distribution is unknown, using techniques for
efficient exploration / exploitation in constrained MDPs rely-
ing on the principle of optimism in the face of uncertainty.

4 p Is Known: Constrained MDP Strategy
In this section, we assume the distribution p is known, and
we place ourselves in the limit where we would select a com-
mittee of infinite size, and aim to maximize the rate at which
candidates are selected, under the constraint that the propor-
tion of accepted candidates per feature value is controlled
by ρ. One advantage of this approximation is that the op-
timal policy is stationary, thus simple to represent. More-
over, as stationary policies can be very well parallelized, in
the case where multiple candidates can be interviewed simul-
taneously. To apply this approach to the finite-size committee
selection problem, one needs to interrupt the agent when K
candidates have been selected. We showcase a high proba-
bility bound of O(

√
1/K) on the representation loss, which

guarantees that for large enough values of K, the resulting
committee is representative.

From now on, we assume that any feature vector can be
observed, i.e., p(x) > 0 for all x, so that proportional repre-
sentation constraints can be satisfied.

4.1 Our Model
Fundamentally, our problem could be seen as a contextual
bandit with stochastic contexts xt ∼ p and two actions at = 0
or 1. However, the type of constraints incurred by propor-
tional representation are well studied in constrained MDPs
(CMDPs) [Altman, 1999], whereas the contextual bandits
literature focused on other constraints (e.g., knapsack con-
straints [Agrawal and Devanur, 2016]). We show how we
can efficiently leverage the CMDP framework for our online
committee selection problem.

Formally, we introduce an MDP M = (X ,A, P, r), where
the set of states is the d-dimensional candidate space X , the
set of actions isA = {0, 1}, and the (deterministic) reward is
r(x, a) = 1{a=1}. The transition kernel P , which defines the
probability to be in state x′ given that the previous state was
x and the agent took action a, is very simple in our case: we
simply have P (x′|x, a) = p(x′) since candidates are drawn
i.i.d regardless of the previous actions and candidates.

We consider the average reward setting in which the per-
formance of a policy π : X × A → [0, 1] is measured by its
gain gp,π , defined as:

gp,π(x) = lim
T→∞

1

T
Ep,π

[
T∑
t=1

r(xt, at)

∣∣∣∣x1 = x

]
.

We simply write gp,π := gπ when the underlying transition
is p without ambiguity.

We include proportional representation constraints follow-
ing the framework of CMDPs, where the set of allowed poli-
cies is restricted by a set of additional constraints specified by
reward functions. In our case, for i ∈ [d], j ∈ [Di], we in-
troduce rij(x, a) = 1{xi=j,a=1}, and let ξij = rij − ρijr be the
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reward function for the constraint indexed by i, j. Similarly to
the gain, we define hij

π
= limT→∞

1
T E

π
[∑T

t=1 ξ
i
j(xt, at)

]
.

The CMDP is defined by:

max
π
{gπ | ∀i ∈ [d], ∀j ∈ [Di], h

i
j

π
= 0}. (1)

Given the simplicity of the transition kernel, and since the
MDP is ergodic by the assumption p > 0, the gain is constant,
i.e. ∀x ∈ X , gπ(x) = gπ , and problem (1) is well defined.
From now on, we only write gπ and ξij

π . Moreover, the opti-
mal policy for the CMDP (1) is denoted π∗ and is stationary
[Altman, 1999].
Lemma 1. gπ is the selection rate under policy π:

gπ =
∑
x

p(x)π(x, 1) = Pp,π[a = 1]

Moreover, if π is feasible for CMDP (1), then:

∀i ∈ [d], ∀j ∈ [Di],Pp,π[xi = j|a = 1] = ρij .

Lemma 1 implies that (a) π∗ maximises the selection rate
of candidates, and (b) the constraints of (1) force candidates
x with xi = j to be accepted in proportions given by ρij .

The CMDP can be expressed as the linear program:

max
π∈RX×A+

∑
x,a

π(x, a)p(x)r(x, a)

u.c. ∀x ∈ X ,
∑
a

π(x, a) = 1

∀i, j,
∑
x,a

π(x, a)p(x)ξij(x, a) = 0.

(2)

Notice that problem (2) is feasible by the assumption that
∀x ∈ X , p(x) > 0. Next we study how well the proportional
selection along features is respected when we shift from infi-
nite to finite-sized committee selection.

4.2 Theoretical Guarantees
We analyze the CMDP-based strategy where at each timestep,
the agent observes candidates xt ∼ p, decides to accept xt
by playing at ∼ π∗(.|xt) and stops when K candidates have
been accepted. We later refer to it as CMDP for brevity.

First, we formally relate the gain gπ that we optimize for
in (1) to the quantity of interest Ep,π[τ ].

Lemma 2. For any stationary policy π, Ep,π[τ ] = K
gπ .

Lemma 2 is a direct consequence of the fact that τ+K fol-
lows a negative binomial distribution with parameters K and
1 − gπ , which are respectively the number of successes and
the probability of failure, i.e. of rejecting a candidate under
π. Note that this is only true because in our case the transition
structure of the MDP ensures constant gain. A quick sanity
check shows that if the agent systematically accepts all can-
didates, i.e. gπ = 1, then Ep,π[τ ] = K, and that maximizing
gπ is equivalent to minimizing Ep,π[τ ].

We exhibit a bound on the representation loss of CMDP
which follows the optimal stationary policy π∗ of CMDP (1).
Let d̃ =

∑d
i=1(Di− 1). (d̃ = d when all features are binary.)

Algorithm 1: RL-CMDP algorithm.
input : confidence δ, committee size K, targets ρ
output: committee Cτ

1 t← 0, C0 ← ∅;
2 while |Ct| < K do
3 for episode l = 1, 2, ... do
4 τl = t+ 1;
5 πl ← sol. of (4) via the extended LP (5);
6 while nt(xt) < 2nτl−1(xt) do
7 t← t+ 1, Execute πl;
8 end
9 end

10 end
11 return Ct

Proposition 2. Let π∗ be an optimal stationary policy for
CMDP (1). Let δ > 0. Then,

Pp,π
∗

‖λ(Cτ )− ρ‖∞ ≤

√
log( 2d̃

δ )

2K

 ≥ 1− δ.

All proofs of this section are available in Appendix ??.
The upper bound on the representation loss of CMDP de-

creases with the committee size in
√

1/K. This shows that
the stationary policy π∗ works well for larger committees,
although it acts independently from previously accepted can-
didates. The intuition is that for larger committees, adding a
candidate has less impact on the current representation vector.
Example 2. We take the same attributes and same distribu-
tion as in Table 1, with ε′ = 1/6. Here, the target vectors are
ρgender = (1/2, 1/2) and ρage = (1/2, 1/2): an ideal committee
contains as many women as men, as many senior as junior.

With the optimal policy for LP (2), each time the current
volunteer is a senior male, we select him with probability 1/2;
all other volunteers are selected with probability 1. The ex-
pected final composition of the pool is 30% of junior male,
30% of senior female, 20% of junior female and 20% of se-
nior male. As the policy selects in average 5/6 of the vol-
unteers, the expected time until we select K candidates is
Ep,π∗ [τ ] = (6/5)K.

5 p Is Unknown: Optimistic CMDP Strategy
We now tackle the committee selection problem when the
candidate distribution p is unknown and must be learned on-
line. Let g∗ = gπ

∗
be the value of (1), which is the optimal

gain of the CMDP when the distribution p is known. We eval-
uate a learning algorithm by:

1. the performance regret: R(T ) =
∑T
t=1(g∗ − r(xt, at)),

2. the cost of constraint violations:
Rc(T ) = maxi,j

∣∣∑T
t=1 ξ

i
j(xt, at)

∣∣.
We propose an algorithm that we call RL-CMDP (Reinforce-

ment Learning in CMDP, Alg. 1). It is an adaptation of the
optimistic algorithm UCRL2 [Jaksch et al., 2010], and it also
builds on the algorithm OptCMDP proposed by [Efroni et al.,
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2020] for finite-horizon CMDPs. Learning in average-reward
CMDPs involves different challenges, because there is no
guarantee that the policy at each episode has constant gain.
It does not matter in our case, since as we noted in Sec. 4,
the simple structure of the transition kernel ensures constant
gain, and does not require to use the Bellman equation. The
few works on learning in average-reward CMDPs make un-
suitable assumptions for our setting [Zheng and Ratliff, 2020;
Singh et al., 2020].
RL-CMDP proceeds in episodes, which end each time the

number of observations for some candidate x doubles. Dur-
ing each episode l, observed candidates xt are accepted on
the basis of a single stationary policy πl.

Let τl denote the start time of episode l andEl = [τl, τl+1].
Let nt(x) =

∑t
t′=1 1{xt′=x} and N(t) = |Ct−1| =∑t−1

t′=1 1{at′=1}. Let N i
j(t) =

∑t−1
t′=1 1{xit′=j,at′=1} be the

number of accepted candidates x such that xi = j before t.
At each episode l, the algorithm estimates the true can-

didate distribution by the empirical distribution p̂l(x) =
nτl−1(x)

τl−1 and maintains confidence sets Bl on p. As in
UCRL2, these are built using the inequality on the `1-
deviation of p and p̂l from [Weissman et al., 2003]:

Lemma 3. With probability ≥ 1− δ
3 ,

‖p̂l − p‖1 ≤

√
2|X | log

(
6|X |τl(τl − 1)/δ

)
τl − 1

:= βl (3)

Let Bl = {p̃ ∈ ∆(X ) : ‖p̂l − p̃‖1 ≤ βl} be the confi-
dence set for p at episode l. The associated set of compatible
CMDPs is then {M̃ = (X ,A, p̃, r, ξ) : p̃ ∈ Bl}. At the
beginning of each episode, RL-CMDP finds the optimum of:

max
π∈Π,p̃∈Bl

{gp̃,π | ∀i, j, hij
p̃,π

= 0}. (4)

Extended LP. In order to optimize this problem, we re-
write (4) as an extended LP. Following [Rosenberg and Man-
sour, 2019] and the CMDP literature, we introduce the state-
action occupation measure µ(x, a) = π(x, a)p(x) and vari-
ables β(x) to linearize the `1 constraint induced by the confi-
dence set:

max
µ∈RX×A
β∈RX

∑
x,a

µ(x, a)r(x, a)

u.c. µ ≥ 0,
∑
x,a

µ(x, a) = 1

∀x,
∑
a

µ(x, a) ≤ p̂l(x) + β(x)

∀x,
∑
a

µ(x, a) ≥ p̂l(x)− β(x)

∀x, a,
∑
y

β(y) ≤ µ(x, a)βl

∀i, j,
∑
x,a

µ(x, a)ξij(x, a) = 0.

(5)

The last constraint is the proportional representation con-
straint. The second to fourth constraints enforce the com-
patibility of µ with the `1 confidence set. We retrieve the
distribution as p̃l(x) =

∑
a µ(x, a), and the policy as:

πl(x, a) =

{
µ(x,a)
p̃l(x) if p̃l 6= 0

1
2 otherwise .

Precisely, if some p̃l(x) = 0, we may set the policy πl(a|x)
arbitrarily. Since the MDP induced by p̃ is still weakly com-
municating, and in particular any policy is unichain, the opti-
mal gain in this CMDP is not affected.

We now provide regret and representativeness guarantees.

Theorem 1. With probability ≥ 1− δ, the regret of RL-CMDP
satisfies:

R(T ) = O
(√
|X |T log(|X |T/δ)

)
Rc(T ) = O

(√
|X |T log(|X |T/δ)

)
.

Moreover, with probability 1 − δ, the representation loss of
RL-CMDP at horizon T satisfies:

‖λ(CT )− ρ‖∞ = O

 1

g∗

√
|X | log

(
|X |T/δ

)
T

 .

It relies on decomposing regret over episodes, bounding
the error on p which decreases over episodes as the confi-
dence sets are refined, and leveraging martingale inequalities
on the cumulative rewards.

Since R(T )
T = g∗ − N(T )

T , it means that with high prob-
ability, the difference between the optimal selection rate and
the selection rate of RL-CMDP decreases in

√
log(T )/T w.r.t.

the horizon T . The representation loss decreases at the same
speed, meaning that the agent should see enough candidates
to accurately estimate p, and accept candidates at little cost
for representativeness.

Compared to the bound from Proposition 2, the cost of not
knowing p on representativeness is a

√
|X | log(|X |) factor.

This is due to the estimation of p in the worst case, which
is controlled by Lemma 3. As we show in our experiments
(Sec. 6), the impact of |X | on performance regret (and in
turn on sample complexity) is not problematic in our typical
citizens’ assembly scenario: since there are only a handful
of features, our algorithm selects candidates quickly in prac-
tice (though representativeness is weakened by not knowing
p). For specific structures of p, we obtain bounds with better
scaling in |X |, by controlling each entry of p with Bernstein
bounds [Maurer and Pontil, 2009], instead the `1-norm.

Interestingly, the representation loss is also inversely pro-
portional to g∗, the optimal selection rate in the true CMDP.
The reason is that the CMDP constraints do not control the
ratios λij(CT ) =

Nij (T )

N(T ) , but N i
j(T ) instead (by definition of

Rc(T ) and ξij). If N(T ) is small, i.e. due to a small selection
rate g, then Rij(T ) = |N i

j(T ) − ρijN(T )| is small, but not

necessarily |N
i
j (T )

N(T ) − ρij |: the committee is too small to be
representative.
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6 Experiments
The goal of these experiments is to answer the following:
(Q1) In practice, for which range of committee sizes do our
strategies achieve satisfying sample complexity and represen-
tation loss? (Q2) What is the cost of not knowing the distri-
bution p for the sample complexity and representation loss?

Experimental setting. To answer these questions, we use
summary data from the 2017 Citizens’ Assembly on Brexit.
The participants were recruited in an offline manner: volun-
teers could express interest in a survey, and then 53 citizens
were drawn from the pool of volunteers using stratified sam-
pling, in order to construct an assembly that reflects the di-
versity of the UK electorate. We use summary statistics pub-
lished in the report [Renwick et al., 2017] to simulate an on-
line recruitment process.

There are d = 6 features: the organisers expressed target
quotas for 2 ethnicity groups, 2 social classes, 3 age groups,
8 regions, 2 gender groups and 2 Brexit vote groups (remain,
leave). The report also includes the number of people con-
tacted per feature group (e.g., women, or people who voted
to remain) and the volunteering rate for each feature group,
which we use as probability of volunteering given a feature
group. We use Bayes’ rule to compute the probabilities of fea-
ture groups among volunteers, and use them as the marginal
distributions Pr[xi = j|volunteers] (since we only consider
the population of volunteers). Since we only have access to
the marginals, we compute the joint distribution as if the fea-
tures were independent, although our model is agnostic to the
dependence structure of the joint distribution.

We study Greedy with tolerance ε = 0.02, 0.05. We run
experiments for K = 50, 100, 150, 250, 500, 1000, averaged
over 50 simulations.

(A1). We compare Greedy and CMDP, when the distribution
p is known. Figure 1 shows that the greedy strategy with
ε = 0.05 requires 10 times more samples than CMDP, and
its representation loss is higher as soon as K ≥ 250. Greedy
with lower tolerance ε = 0.02 achieves better representation
than CMDP for smaller committees (K ≤ 100), but the margin
quickly decreases with K. However, even for small com-
mittees, it requires about 100 times more samples, which is
prohibitively expensive. Figure 1 shows that for CMDP, the
sample complexity grows linearly in the committee size, with
a reasonable slope (we need to find τ ≈ 500 volunteers for a
committee of size K ≈ 200).

(A2). To corroborate the previously discussed effect of |X |
when p is unknown, we evaluate RL-CMDP on different con-
figurations: (1) using only the features ethnicity, social class,
and gender (d = 3, |X | = 8), (2) using all features except
regions (d = 5, |X | = 48). Fig. 2 shows that unlike CMDP
which has full knowledge of p, it is for large committee sizes
that RL-CMDP reaches low representation loss (below 0.05 for
K ≥ 1500 in the configuration(1)). This is because RL-CMDP
needs to collect more samples to estimate p, as discussed in
Th. 1. For known p, the CMDP approach achieves the same
representativeness for middle-sized committees (repr. loss
≤ 0.05 for K ≈ 250). Hence, comparing the cases of known
(Fig. 1) and unknown distribution p (Fig. 2), the ignorance

Figure 1: Effect of committee size K on sample complexity and rep-
resentation loss for different strategies, in the UK Brexit Assembly
experiment, using all features. p is known.

Figure 2: Effect of committee size K on sample complexity and rep-
resentation loss for RL-CMDP, on data simulated from the UK Brexit
Assembly, using 3 and 5 features. p is unknown.

of p is not costly for sample complexity, but rather for the
representation loss which decreases more slowly.

Consistently with Th. 1, we observe that the representation
loss is higher whenX is larger (d = 5). For small and middle-
sized committees, the loss of RL-CMDP is much worse than
Greedy’s which also works for unknown p. For large com-
mittees though, the margin is only 0.05 when K & 2000 and
τ ≈ 3500 for RL-CMDP (which is ×3 more sample efficient
than Greedy). In absolute terms, the theoretical regret bounds
have a large constant

√
|X |. This constant is likely un-

avoidable asymptotically because it comes from Lem. 3, but
our experiments suggest that in the non-asymptotic regime,
RL-CMDP performs better than the bound suggests.

7 Conclusion
We formalised the problem of selecting a diverse committee
with multi-attribute proportional representation in an online
setting. We addressed the case of known candidate distri-
butions with constrained MDPs, and leveraged exploration-
exploitation techniques to address unknown distributions.
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[Benadè et al., 2019] Gerdus Benadè, Paul Gölz, and
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