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Abstract
Multiwinner elections have proven to be a fruitful
research topic with many real-world applications.
We contribute to this line of research by improv-
ing the state of the art regarding the computational
complexity of computing good committees. More
formally, given a set of candidates C, a set of voters
V , each ranking the candidates according to their
preferences, and an integer k; a multiwinner vot-
ing rule identifies a k-sized committee, based on
these given voter preferences. In this paper we con-
sider several utilitarian and egailitarian OWA (or-
dered weighted average) scoring rules, which are an
extensively-researched family of rules (and a sub-
family of the family of committee scoring rules).
First, we improve the result of Betzler et al. [JAIR,
2013], which gave a O(nn) algorithm for com-
puting winner under the Chamberlin Courant rule
(CC), where n is the number of voters; to a running
time of O(2n), which is optimal. Furthermore,
we study the parameterized complexity of the Pes-
simist voting rule and describe a few tractable and
intractable cases. Apart from such utilitarian voting
rules, we extend our study and consider egalitarian
median and egalitarian mean (both committee scor-
ing rules), showing some tractable and intractable
results, based on nontrivial structural observations.

1 Introduction
Given the numerous applications of multiwinner voting, the
research on multiwinner elections is quite dense by now [Fal-
iszewski et al., 2017b]. In such elections there is a set of m
candidates, a set of n voters, and an integer k, and the task
of a multiwinner voting rule is to aggregate the preferences
of the voters and identify a committee, namely a set of k can-
didates. In particular, much research has been done on de-
signing multiwinner voting rules, including offering various
general classes of such rules.

One particularly popular class of multiwinner voting rules
is the class of Committee Scoring Rules (CSRs) [Elkind et al.,
2017; Faliszewski et al., 2018; Faliszewski et al., 2019]. This
class of multiwinner voting rules is very rich and contains a
variety of voting rules; see, e.g., [Faliszewski et al., 2017a].

Much of the research is concentrated on the computational
complexity of computing winners under various multiwin-
ner voting rules (including under various CSRs), because for
many applications it is crucial to be able to efficiently com-
pute exact winners. As might be expected, computing win-
ners under some CSRs can be done in polynomial-time (e.g.,
k-Borda [Faliszewski et al., 2017b]), while for others the cor-
responding decision problem is NP-hard.

As with other NP-hard problems, it is natural to aim at
circumventing the computational intractability of those CSRs
for which winner determination is NP-hard. Such endeavors
have led to applying the framework of parameterized com-
plexity by identifying parameters that allow for exact algo-
rithms that are efficient whenever those parameters are small.
Some of the commonly studied parameters are the commit-
tee size k and the number of voters, n. Indeed, this line of
research has proven to be rather successful (see, e.g., [Bred-
ereck et al., 2017; Bredereck et al., 2020; Faliszewski et al.,
2017a; Faliszewski et al., 2019; Faliszewski et al., 2018;
Aziz et al., 2018; Betzler et al., 2013; Betzler et al., 2012;
Faliszewski et al., 2017c; Yang and Wang, 2018; Zhou et
al., 2019; Liu and Guo, 2016; Aziz et al., 2014; Misra et
al., 2015]). In this article, we further advance this line of
research.

Before we describe our specific contributions, we first
provide some preliminaries regarding multiwinner elections,
concentrating on CSRs, OWA rules, and the specific rules we
consider in this paper, and parameterized complexity.

1.1 Multiwinner Elections
An ordinal multiwinner election consists of a set of m can-
didates, a set of n voters, each providing a linear order over
the candidates, and an integer k. The goal of a multiwinner
voting rule is, given a multiwnner election, to output a set of
k candidates, referred to as a winning committee.1

An important class of multiwinner voting rules is the class
of Committee Scoring Rules (CSRs). These rules operate by
defining the satisfaction of a voter from a committee as a
function that considers only the positions of the committee
in the ranking (or preference list) of the voter. In particular,

1Indeed, there might be several co-winning committees; we ig-
nore such issues of tie-breaking here as they only clutter the techni-
cal presentation.
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for a voter v, let posv(c) denote the position of candidate c in
the ranking of v; e.g., if v : a � b � c � d then posv(b) = 2,
as b is ranked second by v. Then, given a voter v and a com-
mittee S, it implies a position vector, denoted by posv(S),
which is a sorted vector of the positions of the candidates in
the committee, in the ranking of v; e.g., if v : a � b � c � d,
then the position vector of the committee {c, b} is [2, 3], as
b is ranked second by v and c is ranked third. Now, a com-
mittee scoring function, f , is a function that takes a position
vector and outputs a score (equivalently, a satisfaction value).
Formally, f : {0, . . . ,m− 1}k → Z≥0.

Some scoring functions that we will use throughout the pa-
per are described next:

• Median scoring function: Given a value of λ ≤
k, the median scoring function is defined to be
f(p1, . . . , pk) = m − pλ. That is, it is the Borda score
of the committee member ranked λ by the correspond-
ing voter. E.g., for λ = 1, the satisfaction of a voter
v : a � b � c � d from a committee {b, c}, by the me-
dian scoring function, would be 2, as b is the committee
member ranked the highest by v among all committee
members, and it is ranked second by v. Similarly, for
λ = 2, the satisfaction of v would be 1, as c is the sec-
ond highest committee member of v.

• Best scoring function: Given a value of λ ≤ k, the
best scoring function is defined to be f(p1, . . . , pk) =∑
i∈[λ](m−pi). That is, it is the sum of the Borda scores

of the committee member ranked in first λ positions by
the corresponding voter. E.g., for λ = 2, the satisfaction
of a voter v : a � b � c � d from a committee {b, c, d},
by the best scoring function, would be 3.

We wish to mention here that these scoring functions are
referred as λ-median and λ-mean in the literature [Skowron
et al., 2016]. Note that such terminology fixes the value of
λ, however we allow λ to be even function of k, e.g., when
λ = k, k-mean is same as k-Borda and k-median is same as
Pessimist. So to avoid such inconsistencies we consider λ as
a part of the input.

Given some specific committee scoring function f , one can
define various voting rules; two natural possibilities are to
consider the voting rule that aims at finding a committee that
maximizes the sum (over the voters) of the satisfaction from
the committee [Skowron et al., 2016], and the voting rule that
aims at finding a committee that maximizes the min (over the
voters) of the satisfaction from the committee [Aziz et al.,
2018]. Formally, we have the following:

• Given a committee scoring function f , by UTILf we re-
fer to the voting rule that selects the committee that max-
imizes the sum of voter satisfaction; i.e., UTILf selects
arg maxS

∑
v∈V f(posv(S)).

• Given a committee scoring function f , by EGALf we re-
fer to the voting rule that selects the committee that maxi-
mizes the satisfaction of the least satisfied voter; i.e.,EGALf
selects arg maxS minv∈V f(posv(S)). The study of egalitar-
ian committee scoring rules was initiated by Aziz et al. [2018]
and remained unstudied for various scoring functions so far.

When f is a median scoring function and λ = 1, the vot-
ing rule UTILf is the prominent multiwinner voting rule
Chamberlin Courant (CC), which was proposed by Cham-
berlin and Courant [1983]. For λ = k under the same scoring
function, the voting rule UTILf is known as Pessimist. For
median scoring function f , we call the voting rule EGALf
as Egalitarian-Median, and for the best scoring function, we
call it as Egalitarian-Best.

Throughout the paper, we use βv(c) to denote the Borda
score of the candidate c from the voter v, and Borda(X, c)
to denote

∑
v∈X βv(c), the sum of the Borda scores of the

candidate c from the voters in X . For a set X , we use 〈X〉 to
denote an arbitrary ordering of X .

1.2 Parameterized Complexity
A central notion in parameterized complexity is fixed-
parameter tractability (FPT), which means, for a given in-
stance (x, k), decidability in time f(k) ·poly(|x|), where f(·)
is an arbitrary computable function and poly(·) is a polyno-
mial function. However, all problems are not FPT. Con-
trastingly, W[1] or W[2]-hardness captures the intractabil-
ity in parameterized complexity. We refer the reader to
books [Downey and Fellows, 2013; Cygan et al., 2015;
Niedermeier, 2006].

1.3 Our Contributions
Here, we list our contributions, Table 1 summarizes our re-
sults. The notation O?(f(k)) suppresses poly(n,m) factors.
• For the voting rule CC, we give an algorithm that runs in
O?(2n) time, and this exponential dependence on n is opti-
mal (assuming Set Cover Conjecture). This is an improve-
ment over known O?(nn)-time algorithm proposed by Bet-
zler et al. [Betzler et al., 2013].
• For the voting rule Pessimist, we show that it is W[1]-hard
wrt. k and XP wrt. n (i.e., polynomial time solvable for con-
stant number of voters). The NP-hardness of Pessimist was
established in [Skowron et al., 2016], however the same re-
duction does not give W-hardness.
• For the voting rule Egalitarian-Median, we have following:

– We first show that it is NP-hard for all the values of
λ < k. Note that for λ = 1, the problem is known
as Egalitarian-CC [Aziz et al., 2018] and also referred
as MiniMax CC [Betzler et al., 2013], for which NP-
hardness, W[2]-hardness wrt. k, and an O?(nn)-time
algorithm was established by Betzler et al. [Betzler et
al., 2013]. For λ = k, the problem is known as Egali-
tarian Pessimist which is known to be polynomial time
solvable [Aziz et al., 2018].

– Next, we study the parameterized complexity wrt. the
parameter k. We show that the problem is W-hard wrt.
k when either λ or k − λ is a constant or λ = εk, where
0 < ε < 1. Despite of these intractable results, we have
an FPT wrt. k when the required satisfaction is at most
m− g(k), where g is some computable function.

– Next, we give an algorithm that runs in O?(2n log(λ+1))
time. Note that this algorithm gives O?(2n)-time al-
gorithm for Egalitarian-CC, and this exponential depen-
dence on n is optimal (assuming Set Cover Conjecture).
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PROBLEM RESULTS CONDITIONS REFERENCE

CC O?(2n) algorithm Thm. 1
Ω(2n) lower bound [Betzler et al., 2013]

PESSIMISTIC
W[1]-hard wrt. k n arbitrary Thm. 2

poly-time solvable n constant Thm. 3

EGALITARIAN-MEDIAN

NP-hard for all λ ∈ [k − 1] Thm. 4
W[2]-hard wrt. k λ constant Thm. 5
W[2]-hard wrt. k λ = εk, 0 < ε < 1 Thm. 2
W[1]-hard wrt. k k − λ, η 6= 0 constants Thm. 6

poly-time solvable λ = k [Aziz et al., 2018]
FPT wrt k η = m− g(k) Thm. 7

O?(2n log(λ+1)) algorithm Thm. 8
Ω(2n) lower bound λ = 1 [Betzler et al., 2013]
O?(2n

2

) algorithm Cor. 3
O?(2n log(k−λ+1)) algorithm Thm. 9

EGALITARIAN-BEST
NP-hard and W[2]-hard wrt. k for every constant λ Thm. 10
NP-hard and W[2]-hard wrt. k λ = εk, 0 < ε < 1 Thm. 11
NP-hard and W[1]-hard wrt. k λ = k [Aziz et al., 2018]

poly-time solvable n and λ constants Thm. 12

Table 1: Summary of our results. Here, k denotes the size of the committee, n denote the number of voters, and η denotes the committee
score. The lower bound results are due to the reduction from the HITTING SET problem assuming Set Cover Conjecture. A blue cell means
the result holds for an arbitrary instance.

Note that this is an improvement over known O?(nn)-
time algorithm proposed by Betzler et al. [Betzler et al.,
2013]. The same algorithm gives an FPT algorithms
wrt. n that runs in O?(2n2

) time for all the value of λ.
– Next, we give an algorithm that runs in
O?(2n log(k−λ+1)) time. Note that for λ = k − 1,
this gives an O?(2n)-time algorithm.

• For the voting rule Egalitarian-Best, we show that it is NP-
hard and W-hard wrt. k when either λ or k − λ is a constant
or λ = εk, where 0 < ε < 1. Note that for λ = k, it is
known as Egalitarian-k-Borda which is known to be NP-hard
and W-hard wrt. k [Aziz et al., 2018]. Moreover, it can be
solved in polynomial time when n and λ are constants.

All the missing and formal proofs will be presented in the
journal version.

2 Chamberlin-Courant (CC)
We give an optimal algorithm for CC that runs in O?(2n)
time, which is an improvement over the known O?(nn)-time
algorithm proposed in [Betzler et al., 2013]. Furthermore,
the exponential dependence on n is optimal, assuming the Set
Cover Conjecture (SCC), that says that we cannot have an al-
gorithm that runs in O?((2 − ε)n) time, where 0 < ε ≤ 1
and n is the size of the universe; we can infer the same about
CC. This follows due to the reduction from HITTING SET to
CC by Betzler et al., where the universe and the family of
sets is mapped to the candidates and the voters, resp. The
lower bound for HITTING SET follows from its linear size re-
ducibility from SET COVER for which we have the Set Cover
Conjecture. In that canonical reduction, the universe in the
instance of SET COVER corresponds to the set family in the

instance of HITTING SET. So unless the SCC fails, HITTING
SET cannot have an algorithm that runs in timeO?((2−ε)m),
where m is the family size. The lower bound for CC holds
due to its reduction from HITTING SET.
Theorem 1. CC is solvable in O?(2n) time.

We begin our discussion with an observation about CC:
any committee of size k, denoted by S, yields a k-partition
of the voter set, denoted by V1, . . . , Vk (i.e pairwise disjoint
sets that cover V = ∪i∈[k]Vi) such that for each i ∈ [k]
voters in district Vi are represented by a unique candidate in
S, the one they rank above all others in S. We say that this
partition is induced by S. Thus, in order to find the optimal
CC committee it is enough to find a k-partition of the voters
that yields the maximum CC score for the given instance.

In this exposition we have an instance I = (V ,C , k, η);
the goal is to decide if there exists a k-sized committee S ⊆C
such that if {Vi : i ∈ [k]} is the partition induced by S, then
η ≥

∑
i∈[k] Borda(Vi, ci). A trivial k-partition algorithm for

a voter set of size n requiresO(kn) time, but by reducing our
problem to polynomial multiplication involving polynomial-
many multiplicands, representing pairwise disjoint subsets of
V , each with degree at most O(2n) we can find the desired
partition in time 2nmO(1). The trick is that while multiplying,
the degree allows us to keep track of the combined score if
the multiplicands constitute different districts of a partition.
Before we dive into the details, we will discuss the main idea
and some terminologies used in the algorithm.
Big picture. Any subset X ⊆ V can be viewed as a sub-
set of [n]. Let χ(X) denote the characteristic vector of X ,
defined as an n-length vector whose ith bit is 1 iff i ∈ X .
We view χ(X) as an n-digit binary number. A crucial ob-
servation guiding our algorithm is that two sets X1 and X2
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are disjoint iff the number of 1s in χ(X1) + χ(X2) (binary
sum/modulo 2) is equal to |X1| + |X2|. So, for each subset
X ⊆ V of size t for which there exists a candidate c ∈ C
such that α = Borda(X, c) we make a polynomial P 1

t,α(x)

that contains the monomial xχ(X). This type of representa-
tion allows us to succinctly capture the property of disjoint-
ness between the subsets of V , as well as allowing us to test at
the end if all the k disjoint subsets taken together also “cover”
V . To see this let us consider disjoint subsets X1, X2 ⊆ V .
Then, the polynomial xχ(X1) × xχ(X2) = xχ(X1)+χ(X2) fol-
lows from normal polynomial multiplication. Due to the dis-
jointness of the sets, their characteristic vectors are as well,
i.e., none of the n positions have 1 in both χ(X1) and χ(X2).
Consequently, χ(X1) + χ(X2) is also an n-length binary
string that contains exactly |X1| + |X2| many 1s. We only
construct polynomials that result from multiplying at most k
monomials representing subsets of V . Moreover, when mul-
tiplying monomials we keep track of each one’s contribution
to the score of a potential committee for which the set corre-
sponding to the monomial will form a district. For this pur-
pose, we create a family of polynomials representing the var-
ious scores that such a district may contribute based on which
candidate is representing it.

In the final step, we look for a polynomial that contains a
monomial whose degree is (1)n, the string of n ones. This
is because this monomial was generated by multiplying k
monomials that constitute a k-partition of V . The fact that
we never go beyond an n-length string as the degree ensures
that the actual degree of the monomial in terms of decimal is
at most 2n. This allows us to use the O(d log d) algorithm to
multiply two polynomials of degree d (in decimal) in no more
that O?(2n) time, [Moenck, 1976]. Thus, in this manner we
can obtain an algorithm that runs in time O?(2n).

Before we discuss our algorithm, we have to introduce
some notations and terminologies. Let V be a set of size n.
Two binary strings of length n are said to be disjoint if for
each i ∈ [n], the ith bits in the two strings are different. The
Hamming weight of a binary string S, denoted by H(S), is
defined to be the number of 1s in the string S. A monomial
xi is said to have Hamming weight h, if the binary represen-
tation of i has Hamming weight h. The following result is
used crucially in our algorithm.

Corollary 1. Subsets X1, X2 ⊆V are disjoint if and only if
Hamming weight of the string χ(X1)+χ(X2) is |X1|+ |X2|.

The Hamming projection of a polynomial P (x) to h, de-
noted byHh(P (x)), is the sum of all the monomials of P (x)
which have Hamming weight h. We define the representa-
tive polynomial of P (x), denoted byR(P (x)), as the sum of
all the monomials that have non-zero coefficient in P (x) but
have coefficient 1 inR(P (x)), i.e, it ignores the actual coeffi-
cients and only remembers whether the coefficient of is non-
zero. We say that a polynomial P (x) contains a monomial
xi if the coefficient of xi is non-zero. The zero polynomial is
one in which the coefficient of each monomial is 0.

Proof. Now we are ready to present the algorithm.

Algorithm. For the instance I = (C ,V , k, η), we will de-
fine k types of polynomials iteratively. We start with type 1.
For any s ∈ [n] and α ∈ [(m− 1)n], we define

P 1
s,α(x) =

∑
Y⊆V : |Y |=s,

∃c∈C : Borda(Y,c)=α

xχ(Y )

Thus, a polynomial of type 1 contains information about
all subsets of V of a fixed size and for whom there exists
a candidate whose Borda score from that subset is a fixed
value. All the polynomials of type 1 taken together contain
information about all possible subsets of V .

For any s ∈ [n] and α ∈ [(m − 1)n], we define the poly-
nomials of type j ∈ [k] \{1} as follows

P js,α(x) =
∑

s1,s2∈[n]: s1+s2=s,
α1,α2∈[mn]: α1+α2=α

R
(
Hs
(
P 1
s1,α1

× P j−1s2,α2

))
A j-type polynomial is defined by multiplying polynomi-

als of type j − 1 and 1. The use of the H(·) operator en-
sures that the only monomials that survive are those that are
formed by multiplying monomials with degrees that repre-
sent disjoint characteristic vectors (see Corollary 1). Thus,
a j-type polynomial contains information about all sets that
are formed by the disjoint union of j pairwise disjoint sets
that yield a certain score. Each polynomial represents a set
of voters of specific size who give a specific Borda score to a
j-sized committee. TheR(·) operator keeps coefficients to at
most 1.

After defining these polynomials, the algorithm checks
among the polynomials of type k, if for some α ≥ η, the
polynomial P kn,α(x) is non-zero. If so, then it returns “yes”,
else it returns “no”.

3 Pessimist
We resolve the complexity of PESSIMIST (find a committee
under Pessimist rule).
Theorem 2. PESSIMIST is W[1]-hard wrt. k.

The proof is via a parameterized reduction from the IN-
DEPENDENT SET problem on regular graphs. We begin by
discussing the main idea behind our reduction

Proof Sketch. In our reduction, we associate the vertex set of
the ∆-regular graph G = (V,E) of the instance of INDE-
PENDENT SET with both the set of voters and the set of can-
didates of the instance of PESSIMIST. Additionally, we have
a large set of dummy candidates, whose role and number is
strategically chosen to identify “no”-instances. For each voter
v ∈ V , we create a large separation between the set of candi-
dates that represent his neighbors in G, N(v), and those that
are not his neighbors, N(v). This is done by placing a block
of dummy candidates in between these two sets in that voter’s
preference list. The preference list of voter v is

cv � 〈N(v)〉 � 〈Dv〉 � 〈N(v)〉 � . . . other dummies . . .
where cv denotes the “clone” of v, the candidate correspond-
ing to the vertex v, Dv denotes the set of dummies corre-
sponding to voter v, and the suffix denoted by . . . contains
the sets of dummies corresponding to other voters.
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The affect of this arrangement is that an independent set of
size k, say S, when viewed as a k-sized committee of can-
didates, call it Ŝ, induces a partition of the voter set: voters
whose clone is in the committee, those whose one neighbor
is in the committee, and those whose neighbors are not in
the committee. Since the committee defines an independent
set in G, we know that if vertex v ∈ S, then its neighbors
cannot be in Ŝ, thus voter v’s score for Ŝ is due to a can-
didate in N(v). If v /∈ S, then its neighbor(s) may or may
not be in S. All those vertices whose neighbors are not in
S contribute a similarly high score towards Ŝ. Those whose
neighbor belongs to S contribute a lower score towards Ŝ.
These precise contributions lead us to set the target score to
be η = (2n3 + ∆)n − (2n2 + ∆) ·min{n − k, k∆}, where
the term min{n− k, k∆} comes into play because that is the
upper bound on the number of neighbors a k-sized subset of
vertices can have outside the set. Specifically, it upper bounds
|N(S)|. Additionally, we remark that |Dv| = 2n2, and so the
total number of dummies is exactly 2n3. The choice of these
numbers is driven by our calculation in the reverse direction.

In the reverse direction, suppose that we have a k-sized
committee, call it Ŝ, whose score is at least η. First, we note
that Ŝ does not contain any dummy candidate, because it ap-
pears in the suffix of n − 1 voters and thus the contribution
from them will be so low that Ŝ cannot achieve η. Next we
argue that if there is even a pair of candidates in Ŝ that share
an edge in G, then the score of Ŝ is strictly less than η. This
calculation dictates the size of Dv , described above.

Next, we show that the problem can be solved in polyno-
mial time when the number of voters is a constant. The idea
is that for each voter, we can guess the last candidate (rep-
resentative) who is in the committee. Then, we know that
any candidate who is ranked lower than the representative is
not part of the committee, and so delete all those candidates.
Next, we choose any k-sized set of candidates from the re-
maining set to obtain the desired committee.

Theorem 3. PESSIMIST is solvable in polynomial time, when
n is constant.

4 Egalitarian-Median
In this section, we study the computational and parameter-
ized complexity of EGAL-MED (finding a winning commit-
tee under the Egalitarian-Median rule). We first define some
terminologies that will be used throughout the section. Let
(C ,V , λ, k, η) be an instance of EGAL-MED. For a voter
v and integer `, prefixv(`) denote the set of top ` candi-
dates in the preference list of v, i.e., prefixv(`) = {c ∈
C : βv(c) ≥ m− `}. Similarly, suffixv(`) denote the set of
last ` candidates or the set of candidates whose Borda score
is less than ` in the preference list of v, i.e., suffixv(`) =
{c ∈ C : βv(c) < `}.

We begin with the intractability results. To prove NP-
hardness, we give a polynomial-time reduction from E-
HITTING SET, in which given a universe U , integers s, k̃, and
a family, F , of subsets of U such that the size of every set in
F is s; we shall find a k̃-sized set S ⊆ U such that for any

set F ∈ F , F ∩ S 6= ∅. This is a variant of the well-known
HITTING SET problem, where the size of every set in the fam-
ily is same. E-HITTING SET is known to be NP-hard for all
s ≥ 2 [Garey and Johnson, 1979]. Towards giving reduction,
we first note that in a winning committee, for every voter, we
can have at most k − λ candidates whose score is less than
the required score. So, we create a voter corresponding to
every set in the family F and a candidate corresponding to
elements of the universe U . Then, we encode that the win-
ning committee has the candidates corresponding to elements
that are not in the hitting set. So, a voter vF corresponding to
the set F ranks all the candidates corresponding to elements
in F at the end. Clearly, we do not want all these candidates
in the committee, otherwise we will not get a hitting set. So,
we set the required satisfaction as s and λ as k − (s − 1),
so that s candidates from the suffixv(s) cannot be in the
winning committee. Below, we prove it formally.

Theorem 4. EGAL-MED is NP-hard for all λ ∈ [k − 1].

Proof Sketch. Let (U,F , s, k̃) be an instance of E-HITTING
SET. Let |U | = ñ and |F| = m̃. Without loss of gener-
ality, we assume that ñ ≥ k̃ + s. We construct an instance
(C ,V , λ, k, η) of EGAL-MED as follows. For every element
u ∈ U , we add a candidate cu in C . For every F ∈ F , we
add a voter vF in F . For a subset X ⊆ U , let CX denote
the set of all the candidates corresponding to the elements in
the set X . Next, we define the preference list of every voter,
vF , as follows: vF : 〈C \ CF 〉 � 〈CF 〉. Let k = ñ − k̃,
λ = k− (s− 1), and η = s. This completes the construction.
Intuitively, we capture that if S is a solution to (U,F , s, k̃),
then the set of candidates corresponding to the elements in
U \S form a desired committee, and vice-versa. Since η = s
and λ = k − (s − 1), we ensure that for every voter vF at
most k − λ =s− 1 candidates from suffixvF (s) are in the
committee. Thus, we ensure that for any voter vF , CF is not
a subset of the committee as |CF | = s. Hence, if S has score
η, then the subset of elements of U whose corresponding can-
didates are not in the committee is a hitting set.

Next, we prove that EGAL-MED is W[2]-hard wrt. k, when
either λ is a constant or λ = εk, where 0 < ε < 1. To-
wards that we again give a polynomial-time reduction from
E-HITTING SET, which is known to be W[2]-hard wrt. solu-
tion size [Downey and Fellows, 1995]. Note that the above
reduction (Theorem 4) is not parameter preserving. To prove
the following theorem, in the reduction, we capture that for
every voter, we shall choose at least λ candidates from top
m − η candidates, in the winning committee. Note that in
the above reduction, we captured the opposite of this, i.e., the
winning committee can have at most k − λ candidates from
the last η candidates in the preference list of a voter.

Theorem 5. EGAL-MED is W[2]-hard wrt. k for constant λ.

Next, we show that the problem is even hard when λ = εk,
where 0 < ε < 1.

Corollary 2. EGAL-MED is W[2]-hard wrt. k, when λ = εk,
where 0 < ε < 1.
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Next, we prove that EGAL-MED is W[1]-hard wrt. k when
k − λ is a non-zero constant. Towards that we give a poly-
nomial time reduction from the s-RED/BLUE NONBLOCKER
problem, in which given a graphG = (V,E), where V is par-
titioned into two color classes Vred and Vblue and every vertex
in Vblue has s neighbors in Vred, and an integer k; we have to
decide the existence of a k-sized set S ⊆ Vred such that every
vertex in Vblue has at least one neighbor that is not in S. This
problem is known to be W[1]-hard wrt. k for s ≥ 2 [Downey
and Fellows, 2013]. We view this problem as hitting neigh-
borhood of every vertex of Vblue in the set Vred at most s− 1
times. So, for every vertex in Vred, we create a candidate,
and for every vertex in Vblue, we create a voter. Now, for
every voter vx, where x is a vertex in Vblue, the candidates
corresponding to the neighbors of x in Vred are lowest ranked
candidates. We set λ and η so that any winning committee
takes at most s− 1 of these lower ranked candidates.
Theorem 6. EGAL-MED is W[1]-hard wrt. k, even when k−
λ and η are non-zero constants.

Next, we identify a tractable case wrt. the parameter k. The
idea of the following algorithm is also based on the fact that
for every voter, we shall choose at least λ candidates from
the top m − η candidates, which we view as hitting the sets
prefixv(m − η) for every voter v at least λ times. Thus, if
prefixv(m − η) = g(k), then we can use known algorithm
in [Mellor et al., 2010] for this variant of the HITTING SET
problem to obtain an algorithm for our problem. There the
algorithm is for d-sized sets, but it gives us FPT wrt. k as in
our case the size of these sets is g(k).
Theorem 7. EGAL-MED is FPT wrt. k when η = m− g(k),
where g(k) is any computable function of k.

Next, we show that the problem is tractable wrt. n, the
number of voters. Towards that we first give an algorithm
that runs in O?(2n log(λ+1)) time. Note that this algorithm
gives an O?(2n)-time algorithm for Egalitarian CC (λ =
1 in EGAL-MED), which is an improvement over known
O?(2n logn) algorithm in [Betzler et al., 2013]. Furthermore,
this running time is tight under Set Cover Conjecture due to
the reduction from the HITTING SET problem in [Betzler et
al., 2013].

So far, we view the problem as hitting the prefix of a voter
λ times. Next, we visualise this problem as covering a voter
λ times using the candidates in the prefix. Using this idea,
we reduce the problem to SET MULTICOVER, where given a
universe U , a family of subsets, F , of U , and integers k, `,
we shall decide the existence of a subset F ′ ⊆ F , where
|F ′| ≤ k, such that for every element u ∈ U , there are at
least ` sets in F ′ that contains u; and then use the known
exact algorithm in [Hua et al., 2010] for SET MULTICOVER
to obtain the desired result.
Theorem 8. EGAL-MED is solvable inO?(2n log(λ+1)) time.

Proof Sketch. Given an instance (C ,V , λ, k, η) of EGAL-
MED, we create an instance (U,F , `, k′) of the SET MUL-
TICOVER problem as follows. For every voter v ∈ V , we add
an element ev inU . Let C ′ ⊆ C be a subset of candidates that
belongs to top |C | − η candidates for any voter v ∈ V , that
is C ′ = ∪v∈V prefixv(|C | − η). For every c ∈ C ′, we add

a set Fc = {ev ∈ U : βv(c) ≥ η} to the set F . We set ` = λ
and k′ = k. Next, we use the exact algorithm for SET MUL-
TICOVER in [Hua et al., 2010] that runs in O?(2|U | log(`+1))
time. Note that λ = ` and |U | = |V |. Thus, we obtain an
algorithm for EGAL-MED that runs in O(2n log(λ+1)).

Note that in the instance (U,F , `, k′) of SET MULTI-
COVER, ` ≤ 2|U |. Thus, we have the following result.

Corollary 3. EGAL-MED is solvable in O?(2n2

) time.

Next, we give an algorithm for EGAL-MED that runs in
O(2n log(k−λ+1)) time. Note that if k − λ is constant, we
have an algorithm with running time 2O(n). Here, we again
use the idea that from the suffix part of every voter, we shall
pick at most k − λ candidates in the winning committee,
and devise a dynamic programming algorithm. The intu-
itive idea is as follows. Given an instance (C ,V , λ, k, η)
of EGAL-MED, we partition C into two parts C1 and C2

such that C1 = ∪v∈V suffixv(η) and C2 = C \ C1. We
guess the number of candidates, say k1 ≤ k, in the winning
committee from the set C1, i.e., for a winning committee S,
|S ∩C1| = k1. Next, using DP, we find a k1-sized committee
which is a subset of C that has the following property: for ev-
ery voter v, the committee contains at most k − λ candidates
from suffixv(η). Then, we add any k − k1 candidates from
the candidate set C2 to obtain a winning committee.

Theorem 9. EGAL-MED is solvable in O?(2n log(k−λ+1)).

5 Egalitarian-Best
Here, we study the computational and parameterized com-
plexities of EGAL-BEST (finding a winning committee un-
der the Egalitarian-Best rule). The idea behind the follow-
ing reduction is same as in Theorem 5. By setting η =

ñ + λñ + sλ + (λ−1)(λ−2)
2 in the proof of Theorem 5, we

obtain the following:
Theorem 10. EGAL-BEST is NP-hard and W[2]-hard wrt.
k, when λ is a constant.

As argued for Corollary 2, we have the following:
Theorem 11. EGAL-BEST is NP-hard and W[2]-hard wrt. k
even when λ = εk, where 0 < ε < 1.

Fortunately, we have the following tractable case. The idea
is that for every voter we can guess the set of λ candidates
whose Borda score will be counted in the score.
Theorem 12. EGAL-BEST can be solved in polynomial time
for constant n and λ.
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