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Abstract
Public projects can succeed or fail for many reasons
such as the feasibility of the original goal and coor-
dination among contributors. One major reason for
failure is that insufficient work leaves the project
partially completed. For certain types of projects
anything short of full completion is a failure (e.g.,
feature request on software projects in GitHub).
Therefore, project success relies heavily on indi-
viduals allocating sufficient effort. When there are
multiple public projects, each contributor needs to
make decisions to best allocate his/her limited ef-
fort (e.g., time) to projects while considering the ef-
fort allocation decisions of other strategic contrib-
utors and his/her parameterized utilities based on
values and costs for the projects. In this paper, we
introduce a game-theoretic effort allocation model
of contributors to public projects for modeling ef-
fort allocation of strategic contributors. We study
the related Nash equilibrium (NE) computational
problems and provide NP-hardness results for the
existence of NE and polynomial-time algorithms
for finding NE in restricted settings. Finally, we
investigate the inefficiency of NE measured by the
price of anarchy and price of stability.

1 Introduction
Often, we jointly work together on public projects. This
ranges from small projects involving a few contributors
(e.g., a medium sized feature request on GitHub) to massive
projects involving several nations (e.g., International Space
Station). Each contributor can allocate his/her available ef-
fort (e.g., time) to the set of projects and determines the util-
ity trade-off between reward (e.g., satisfaction) and cost (e.g.,
how fatiguing it is to allocate effort) per project. Joint projects
can succeed or fail for many reasons: shifting requirements,
management inexperience, etc., [McConnell, 1996]. One
common pivotal point that many projects have is that there
is a minimal threshold or amount of work that must be com-
pleted before the project succeeds. This can apply to public
projects, e.g., in software development [McConnell, 1996]
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and “Get Big Fast” type businesses [Spolsky, 2004]. The
common thread is that a given project provides little to no
utility until it is completed in its entirety. Project failure is
not uncommon and contributors continue to exert effort in
projects which may not succeed [McConnell, 1996]. This be-
havior seems irrational on its face, but effort allocation behav-
ior among contributors to such projects is complex. To judge
the rationality of a contributor’s decision to allocate effort to
a particular set of projects, these questions must be explored:

(Modeling) How would strategic contributors be-
have if a project’s success depended solely on to-
tal contribution meeting a threshold? How would
strategic contributors allocate effort to a given
available set of projects with such requirements?
(Computation) What are the corresponding (Nash)
equilibrium computation questions and results?

Our goal in this paper is to address the above questions,
theoretically and computationally, through game-theoretic
models and analysis focusing on strategic interactions of
strategic and rational contributors for public project contri-
butions.
Our Contribution. To address the modeling and computa-
tional questions, we first introduce a game-theoretic Effort
Allocation model of Contributors to Public Projects (EACPP)
where a set D of contributors determines the number of dis-
crete units of effort (e.g., hours) to allocate to a set P of avail-
able projects with contribution threshold requirements. Each
contributor i ∈ D gains utility for each project j ∈ P de-
pending on i’s effort allocation for project j, aij ; i’s intrinsic
value of j, vij ; i’s skill related to j, sij ; the cost for i of each
unit of effort contributed to j, cij ; j’s contribution thresh-
old, tj ; and most importantly, the effort allocation of other
strategic contributors. Given the EACPP model, our interest
is the Nash equilibrium (NE) computational questions, and
the measurement for the efficiency of NEs. We first show–via
novel reduction from partition problems–that the following
are NP-complete, even in the restricted settings where each
contributor has a single unit of effort to allocate to projects,
skill is project-independent (i.e., sij = si), and effort is cost-
less (i.e., cij = 0): (1) determining the existence of a NE, (2)
determining the existence of a NE with at least k successful
projects, (3) determining the existence of a NE with social
welfare of at least V , and (4) determining the existence of a
NE with a fixed effort allocation of contributors.
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We then consider further restrictions on the model param-
eters. First, for the restricted settings where vij = vi or
vij = vj under certain threshold and skill configurations, we
show that a NE always exists and can be computed in polyno-
mial time using an ordered sequential response algorithm (see
Theorems 3 and 4). Second, when there are constant num-
ber of projects, we can find all NEs in pseudo-polynomial
time in terms of the number n of contributors and parameter
r := maxj∈P (1 +

∑
i∈D sij) (see Theorem 5).

We consider a planner’s problem of obtaining optimal out-
comes that maximize either (i) the social welfare (i.e., the
sum of the utilities of the contributors) or (ii) the number
of successful projects by allocating effort of contributors to
projects. We show that the corresponding optimization prob-
lems are NP-hard (see Theorem 6). We investigate the ef-
ficiency of NEs by examining the price of anarchy (PoA)
[Koutsoupias and Papadimitriou, 1999; Roughgarden, 2005],
which is defined as the ratio between the optimal solution and
the worst NE, and the price of stability (PoS) which is defined
as the ratio between the optimal solution and the best NE [An-
shelevich et al., 2008] (See Section 5.) We show that they can
be unbounded for both objectives, and identify the restricted
settings where they are bounded or even equal to one.

1.1 Related Work
Below, we compare EACPP and our contributions to related
work and highlight the key differences in several areas.
Project Games. The most related problem to EAPCC is
project games [Bilò et al., 2019] where each player selects
a single project. Any project selected by at least one player
is realized and the reward for the project is divided among
contributing players. Similar to EACPP, players have skill
(called weight) and reward is split proportionally based on
contribution. The key difference from EACPP is that there is
no threshold. One can view their model as a special case of
ours under several restrictions on the model parameters, in-
cluding zero threshold and cost for each project. Throughout
the paper, we will elaborate the implication of their results.
Contests. There is a line of research where a set of contes-
tants competes in a set of contests [DiPalantino and Vojnovic,
2009; Bernergård and Wärneryd, 2017; Morgan et al., 2017;
Azmat and Möller, 2009; Azmat and Möller, 2017; Chan et
al., 2020; Xu et al., 2019]. In such settings, each contestant
selects (a subset of) contests and/or determines the amount
of effort to compete for prizes. In these settings, each con-
test is typically modeled using single contest semantics such
as a Tullock contest, all pay-auction, and their variants (e.g.,
see [Dechenaux et al., 2015; Konrad, 2009]). However, these
models do not consider threshold requirement for each con-
test, and the contest’s success is not measured in terms of
overall contributions of the contestants.
Congestion Games. In a congestion game (see e.g., [Rosen-
thal, 1973; Fotakis, 2015; Kontogiannis and Spirakis, 2005;
Monderer and Shapley, 1996; Mavronicolas et al., 2007;
Kleinberg and Oren, 2011]), there is a set of resources and a
set of players. Each player’s action set consists of some sub-
sets of the resources. The player’s goal is to select an action
that minimizes the sum of the delay of each selected resource
in the selected action where the delay is defined to be some

increasing function of the number of players that selected the
resource. Our EACPP is different from congestion games and
their variations mainly in that there is a threshold for each
resource/project and positive utility can only be obtained if
there are sufficient contributions to the resource/project.
Networked Public Goods/Crowdfunding Games. Recent
related works (see e.g., [Yu et al., 2020; Komarovsky et al.,
2015; Kempe et al., 2020; Arieli et al., 2018]) consider net-
worked public goods games where each individual makes a
binary decision to contribute to a public good project. An in-
dividual decision depends on (a function that maps) the num-
ber of other individuals in the individual’s social network and
the cost of contribution. Different from EACPP, public goods
games and their variants consider only a single project with
no threshold requirement or/and individual project model pa-
rameters related to values and effort contributions.

2 Game-theoretic Effort Allocation Models
In this section, we present a game-theoretic Effort Allocation
model of Contributors to Public Projects (EACPP). In an
EACPP game-theoretic model, we have a set D = {1, ..., n}
of n contributors and a set P = {1, ...,m} of m projects in-
dexing using i and j, respectively.
Contributors. Each contributor i ∈ D allocates his/her (dis-
crete) units of effort hi (e.g., work hours) among the set of
public projects. Thus, the set of i’s actions is Ai = {ai ∈
{0, 1, ..., hi}m |

∑m
j=1 aij = hi} where, given an allocation

vector ai ∈ Ai, aij specifies the units of effort allocated to
project j ∈ P . We let A =

∏n
i=1 Ai be the joint-action set

of effort allocation vectors. Contributor i’s contribution de-
pends on both the allocated effort and personal skills on the
projects. Skill can be viewed as the efficiency of converting
effort into contribution (e.g., an experienced software devel-
oper is more efficient than a novice). For each i ∈ D, let the
integer sij ≥ 0 be i’s skill for project j. Given allocation vec-
tor ai ∈ Ai, i’s contribution to j is aijsij , representing the
impact of i’s skill on the effort they allocated to j. For each
i ∈ D, there is a (per-unit effort) cost cij for each project
j ∈ P such that the total cost of j to i under ai is defined
by aijcij . Finally, there is an overall personal (satisfaction)
value vij ≥ 0 contributor i has for project j if j is successful.
Projects. Each project j ∈ P has a contribution thresh-
old tj ≥ 0 where the project is successful when the total
contribution to j by all contributors exceeds the threshold.
Given joint-action a ∈ A, the total contribution on project j
is TCj(a) =

∑n
i=1 aijsij . A project j succeeds if and only

if TCj(a) > 0 and TCj(a) ≥ tj .
Utilities. Given an action profile a ∈ A, a reward for contrib-
utor i ∈ D for project j ∈ P is defined to be

rij(a) =


−cijaij TCj(a) = 0

−cijaij TCj(a) < tj
vij

aijsij
TCj(a) − cijaij otherwise.

As motivated from existing literature (e.g., project games
[Bilò et al., 2019] and Tullock contests [Dechenaux et al.,
2015; Konrad, 2009]), we consider a simple proportional rule
to divide utility among contributors according to contribution
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made. This allows us to model many complex motivations,
such as the prestige of being listed as a top contributor to a
popular project or differential allocation of reward based on
the proportion of work done. If i contributes additional work
beyond tj then i receives a larger proportion of the project,
but the value of the project is not increased. The utility of con-
tributor i ∈ D is defined to be ui(a) =

∑m
j=1 rij(a) which is

the sum of the rewards over the projects.
Objectives. We quantify the quality of an action profile a ∈
A by considering two objectives, namely, the social welfare
(SW) objective and the projects successful (PS) objective: (1)
SW (a) =

∑
i∈D ui(a) is the total utility of all contributors,

and (2) PS(a) =
∑

j∈P 1[TCj(a) ≥ tj∧TCj(a) > 0] is the
number of successful projects, where 1[·] is an indicator func-
tion. The planner wants to find optimal solutions that maxi-
mizes the objectives. We let aoptsw ∈ argmaxa∈A SW (a)
and aoptps ∈ argmaxa∈A PS(a) be the optimal solutions that
maximize the SW and PS objectives, respectively.

Given an EACPP instance I = (D,P, {cij}, {sij},
{vij}, {hi}, {tj}) (indices omitted), our goal is to compute
a (pure-strategy) Nash equilibrium (NE).

Definition 1. A joint-effort allocation vector a ∈ A is
a (pure-strategy) Nash equilibrium (NE) if and only if
ui(ai, a−i) ≥ ui(āi, a−i) for any āi ∈ Ai and each i ∈ D.

Unfortunately, a NE might not always exist in an arbitrary
EACPP. Below we provide an example.

Example 1. Consider an instance I = (D,P, {cij}, {sij},
{vij}, {hi}, {tj}) where D = {1, 2}, P = {1, 2}, cij = 0,
vij = v, hi = 1 for all i ∈ D, j ∈ P , s1j = s1, s2j = s2,
and tj = s1 for all j ∈ D for s1 > s2. In such a setting,
contributor 1 alone is enough to make the projects successful
whereas contributor 2 cannot. Contributor 2 always prefers
to select the same project as contributor 1, and contributor 1
would always prefer to work on any one of the projects inde-
pendently. It is easy to see that there is no NE.

We note that our model can be further generalized and ex-
tended to cases where (a) the total contribution TCj can be an
arbitrarily non-decreasing function and (b) the proportional
contribution term in the reward function rij can be any con-
test success function. However, as we will see in the next
section, the computational questions related to NE are already
NP-complete for various instances of our model.

We also remark that EACPP captures simultaneous strate-
gic interactions of the contributors when they make effort al-
location decisions at the same time in the complete informa-
tion setting. It would be interesting to extend the models fur-
ther to (a) consider sequential interactions where contributors
determine effort allocation over time and/or (b) incomplete
information where the model parameters (e.g., values, skills,
and costs) are drawn from some distributions.

3 Complexity of Computing a NE in EACPP
In this section, we consider the complexity questions related
to the existence of a NE in EACPP. In particular, we show
that the following questions are all NP-complete in EACPP:

1. Is there a NE?

2. Is there a NE where at least k projects are successful?
3. Is there a NE that obtains a social welfare of at least V ?
4. Is there a NE that is consistent with a fixed assignment?

All the computational questions are NP-complete even in the
case where cij = 0, sij = si, and hi = 1 for all i ∈ D
and j ∈ P (i.e., each contributor has a cost of zero for each
project with skill independent of the projects and can only
select a single project). Our reductions use the known NP-
complete Partition Problem (PP) [Garey and Johnson, 1979]:
Partition Problem (PP) Given a set X = {x1, ..., xn} of n

distinct positive integers, is there a partition of X to X1

and X2 such that
∑

x∈X1
x =

∑
x∈X2

x?
Theorem 1. It is NP-complete to determine whether there is
a NE in EACPP.

Proof. This problem is in NP, because we can verify whether
a given profile a ∈ A is a NE in polynomial time by checking
for m− 1 deviations for each of the n contributors.

To prove our claim, we reduce from PP. Consider an in-
stance of PP with X = {x1, ..., xn} of n positive (unique)
integers such that x1 > x2 > ... > xn (with the total
sum divisible by 2), we reduce it to an instance of EACPP
I = (D,P, {cij}, {sij}, {vij}, {hi}, {tj}) via the following:

• Let m = n + 2 be the number of projects;
• Let n be the number of contributors;
• Let hi = 1 for each i ∈ D;
• Let sij = xi and cij = 0 for each i ∈ D and j ∈ P ;
• For each j ∈ P \ {1, 2}, let xn−1 > tj > xn be some

threshold and t1 = t2 = T =
∑

x∈X x

2 ;
• For each i ∈ D \ {n} and j ∈ P \ {1, 2}, vij = vi > 0

and vi1 = vi2 such that vi1
sij
T > vi > vi1

sij
T+0.5 ;

• For n and j ∈ P \ {1, 2}, vnj = vn > 0 and vn1 = vn2
such that vn1

snj

2T > vn.
The next to last parameter settings ensure that contributor i ∈
D \ {n} always prefers either project 1 or project 2 when
the projects are successful with exactly T total contribution
and, otherwise, one of the other projects (3, ..., m) without
any other contributors. The last setting ensures that n prefers
either project 1 or 2 as long the projects are successful.
PP solution =⇒ NE. It is not hard to see that if there is
partition of X into X1 and X2 with the same sum T , then
we have a NE. In particular, for i with skill xi ∈ Xl for all j
for some l = 1, 2, then ail = 1 and aik = 0 for each other
project k. It is easy to check that for i ∈ D, i has no incentive
to deviate (see the last two items listed).
NE =⇒ PP solution. Suppose there is a NE. We ar-
gue that, in any NE, n must either select successful project
1 or project 2. If this is not the case, then n must select
one of the {3, ...,m} projects. If there are other contribu-
tors in {3, ...,m}, it must be the case they are all in different
projects and n will select one of them as a best response, say
the project with i because each project j requires threshold
tj > xn, which cannot be competed by n alone. However, i
will deviate to another project without any contributor (which
always exists since there are n other projects).
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If there are no other contributors in {3, ...,m}, it must be
the case that all of them are in either project 1 or project 2,
but this cannot be a NE, since the threshold of each project is
T and n is not in project 1 or 2. As a result, the projects must
have threshold greater or less than T . In either case, this can-
not be a NE as the contributors will deviate (by construction).

In order to sustain a NE where n is in project 1 or project
2, at least one of the projects has to be successful with ex-
actly T total contribution (including xn). The remaining con-
tributors are either together in project 1 or 2 or in different
projects of {3, ...,m}. It follows that one can construct a so-
lution of PP by letting X1 be the set of positive integers with
xi corresponding to ail = 1 for l(= 1 or 2) project(s) with
exactly T contribution with xn. The remaining positive in-
tegers/contributors will be in X2 which has the same sum as
X1 by construction.

Theorem 2. It is NP-complete to determine whether there is
a NE with at least k successful projects in EACPP, determine
whether there is a NE with social welfare at least V , or de-
termining the existence of a NE with a fixed effort allocation
of contributors.1

We remark that positive results can be achieved in some
more restricted settings. When hi = 1, cij = 0, sij = si,
vij = vj , tj = 0, a NE can be computed in polynomial time
[Bilò et al., 2019; Fotakis et al., 2002]. In addition, when
hi = 1, cij = 0, vij = v, tj = 0, the better response dynam-
ics always converges to a NE [Bilò et al., 2019].

4 Algorithms for Computing NE in EACPP
In Section 3, we have shown that determining the ex-
istence of a NE is NP-complete in instances I =
(D,P, {cij}, {sij}, {vij}, {hi}, {tj}) where each i ∈ D can
only select one project (i.e., hi = 1), has zero-cost for all
projects (i.e., cij = 0 for all j), and has skill independent
of the projects (i.e., sij = si for all j). In this section, we
investigate EACPP where we can compute NE efficiently.

4.1 A Polynomial-Time Algorithm
The hardness results suggest that in order to derive an efficient
algorithm for computing a NE, one must place further restric-
tions on the value vij and tj in addition to the parameter set-
tings in the hardness proofs. Our following result shows that
if each project can be successfully completed by any player
working alone using a single effort allocation and vij are re-
stricted (i.e., vij = vi or vij = vj), then a NE always exists
and can be computed via ordered sequential response (Al-
gorithm 1). Algorithm 1 starts by ordering the contributors
subject to some parameter, and lets each contributor, under
the same ordering, sequentially select a best response. After
all contributors have selected actions, it returns a NE.

Theorem 3. Let I = (D,P, {cij}, {sij}, {vij}, {hi}, {tj})
be an EACPP instance where (1) hi = 1, (2) cij = 0, and
(3) sij = si such that s1 ≥ ... ≥ sn for all i, j. Algorithm 1
returns a NE for the following settings in polynomial time:

1Omitted proofs can be found in the supplementary material at:
https://digitalcommons.unl.edu/cseconfwork/332/

Algorithm 1: Ordered Sequential Response
Input: I = (D,P, {cij}, {sij}, {vij}, {hi}, {tj})
Output: A NE profile a ∈ A

1 Let a = 0 # Set a to be a set of zero vectors.
2 Order contributors via parameter: D = {1, ..., n}
3 for i = 1, ..., n do
4 Let BRi(a−i) = argmaxa′i∈Ai

ui(a′i, a−i)
5 Select āi ∈ BRi(a−i), set ai = āi
6 #Note: if vij = 0; ∀j ∈ P , select āi with a

project with the lowest total contribution
7 end

(a) vij = vj and tj ≤ sn for all i, j or
(b) vij = vi and tj ≤ sn for all i, j

with contributor’s ordering induced by skills s1 ≥ ... ≥ sn.

Proof. We first consider the setting of (a) where vij = vj ,
s1 ≥ s2... ≥ sn, and tj ≤ sn for all i, j. Let i be
the ith contributor in the algorithm. For simplicity, we let
a(0) = 0, ..., a(n) be the action profile of Algorithm 1 after
each iteration. We now show that, via induction, after (line 5)
setting ai = āi such that aij = 1 and aik = 0, ∀k 6= j, āi ∈
BRi(a−i), no other contributor i′ = 1, ..., i − 1 would devi-
ate. The basic case is straightforward when i = 1. Now we
assume it is true up until i − 1. There are two possible cases
we need to consider. If ai′j 6= aij , we have that

ui′(a(i−1)) = vk
si′

TCk(a(i−1))
≥ vw

si′

TCw(a(i−1)) + si′

where ai′k = 1, k 6= j, and w 6= k. The inequality continues
to hold for a(i) as the only difference is on the j project (with
the addition of i) and TCj(a(i)) is nondecreasing.

If ai′j = aij = 1, it follows that ui(a(i)) =

vj
si

TCj(a(i))
≥ vw

si
TCw(a(i)) + si

≥ vw
si

TCw(a(i)) + si′

for any w 6= j and i′. Thus, for any i′, we can show that i′
has no incentive to deviate from j by dividing si > 0 and
multiplying si′ > 0 from the above inequality. We can use a
similar argument as above for part (b).

In the above setting, we consider cases where tj ≤ sn for
each project j. The threshold effectively does not exist be-
cause every player can overcome it. A natural question is
whether we can identify instances where tj > sn for which
we can compute NE efficiently. We can answer this question
affirmatively if the contributors have the same skill level (i.e.,
sij = s) and the vij are restricted (i.e., vij = vi or vij = vj).
Theorem 4. Let I = (D,P, {cij}, {sij}, {vij}, {hi}, {tj})
be an EACPP instance where (1) hi = 1, (2) cij = 0, and (3)
sij = s for all i, j. One can compute a NE for the following
settings in polynomial time:

(a) vij = vj for all i, j or
(b) vij = vi for all i, j.

Proof (Sketch). Assume w.l.o.g. t1 ≤ ... ≤ tm. If every
project requires at least two contributors (i.e, tj > s for each
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j), then setting the action of each contributor to a project (say
j) is a NE as no contributor can unilaterally deviate to obtain
a better utility. As such, we assume that there is a project,
say k from the threshold ordering, that can be achieved by a
single contributor (this can be verified in polynomial time). It
follows that each project 1, ..., k can be achieved by a single
contributor. Applying Algorithm 1 to current settings for set-
ting (a) or (b), we obtain a NE by ordering the contributors
arbitrarily, which can be proved using Theorem 3.

4.2 A Pseudo-Polynomial Algorithm
In general, we can use a standard enumeration approach to
determine the existence of a NE, which would result in a
running time of O(nmn+1) that is exponential in the num-
ber of contributors. It turns out that we can derive an im-
proved enumeration algorithm with a polynomial running-
time in the number of contributors and a natural model pa-
rameter r := maxj∈P (1 +

∑
i∈D sij), when the number of

projects is bounded (and recall that sij is an integer). The
assumption that m is bounded is natural, because in reality
the planner often faces a small number of projects but a large
number of contributors. We now give the pseudo-polynomial
time algorithm when hi = 1 and m is a constant.

Theorem 5. When hi = 1 and the number of projects m is
a constant, there exists a pseudo-polynomial algorithm that
returns all NE in O(rm(nmrm + nm2)).

Proof. We say vector q = (q1, ..., qm) is a potential-sum con-
figuration, if qj ∈ {0, 1, . . . , r − 1} for any j ∈ P . Let Q be
the set of all of such configurations. Clearly, |Q| = rm. The
entry of a configuration corresponds to the total contribution
on a project (i.e., qj = c means that project j receives a total
contribution of c.). Note that for every a ∈ A there exists a
q ∈ Q such that TCj(a) = qj . Therefore by checking every
q ∈ Q for the existence of a NE, every possible strategy pro-
file is checked.2 We note that, to check if a solution is a NE, it
suffices to rely on the information of the corresponding con-
figuration. Our algorithm consists of the following two steps:
for every configuration q = (q1, ..., qm) ∈ Q,

Step 1: Compute the set of best-response strate-
gies/projects bi ⊆ P for the given q and each contributor
i ∈ D. More specifically, we define and compute

r∗ij(x) =

{
−cij x = 0 or x < tj
vij

sij
x − cij otherwise.

bi = {j ∈ P | r∗ij(qj) ≥ r∗ik(qk + sik), ∀k ∈ P \ {j}}.

Let b = (b1, . . . , bn) be the profile of best-response projects.
Step 2: Given the profile b, we check if b can induce the

potential-sum configuration q, that is, there exist an action
profile a, such that for any i ∈ D, j ∈ P , (1) aij = 1 if and
only if j ∈ bi, and (2) TCj(a) = qj .

The correctness is clear: if the answer in Step 2 is “yes”,
then configuration q gives a NE; if the answer is “no” for
all q ∈ Q, then there is no NE. Next, we analyze the time
complexity. For each of the rm = |Q| configurations, the

2The mapping of a to q is neither one-to-one nor onto.

time for Step 1 is at most O(nm2) as we need to compare
each project with m− 1 other projects for each contributor.

Step 2 can be done efficiently using dynamic programming
where (1) one can first order the contributor 1, ..., n and (2)
create a binary table Ti(q) ∈ {0, 1} for each q ∈ Q of size
rm for each contributor i. Defining T0(0) = 1 (with entry of
zero otherwise), Ti(q) = 1 if only if there exists Ti−1(q̄) = 1
such that q = q̄ + ek ∗ sik for some project k ∈ bi where ek
is a binary vector of size m of all zero except the kth entry.
Table Ti can simply be constructed by looking at all the 1’s q̄
entries of Ti−1 and add sik to each entry for each k ∈ bi. Be-
cause there are at most rm configurations, and each of the n
contributors have at most m choices/projects for contribut-
ing to the configurations, the time for this step is at most
O(nmrm). To verify whether a given q can be achieved,
one can check if Tn(q) = 1 and the corresponding NE can be
constructed via a standard backtracking procedure in dynamic
programming.3 The total time to check a given potential-sum
q is O(nmrm + nm2). Yielding O(rm(nmrm + nm2)) to
check all q ∈ Q, which is polynomial in n and r, when m is
a constant for each configuration.

5 Inefficiency of Nash Equilibria in EACPP
In this section, we consider the inefficiency, measured with
respect to the planner’s objective, induced by the strategic
behavior of contributors. To measure such an inefficiency,
we invoke the notion of the price of anarchy (PoA) [Kout-
soupias and Papadimitriou, 1999] which is the ratio between
the optimal “centralized” efficiency and the worst-case NE’s
efficiency. Also, we consider the price of stability (PoS) [An-
shelevich et al., 2008], which is the ratio between the optimal
efficiency and the best NE’s efficiency.

The following result shows that computing optimal solu-
tions is NP-hard for either maximizing the social welfare, or
maximizing the successful projects.

Theorem 6. It is NP-hard to find an optimal solution that
maximizes social welfare, or to find an optimal solution that
maximizes the number of successful projects, even if hi =
1, cij = 0, vij = v.

Proof (Sketch). For the social welfare objective, we can re-
duce from the PP problem where we are given a set of n in-
tegers and a target T . The constructed EACPP instance con-
sists of two projects with threshold T , where each of the n
contributors can only select one project with value of T , and
has skill si (corresponding to the integer) and zero cost for
each project. One can obtain a social welfare no less than 2T
if and only if there is a solution to the PP problem.

For the project successful objective, we can reduce from
the 3-Partition Problem (3PP), which given a set of 3n pos-
itive integers, seeks a partition into n subsets of size 3 such
that their sums are equal. It is easy to show that there is a so-
lution to the 3-PP instance if and only if there is a solution of a
constructed EACPP instance where all projects succeed.

3If multiple NE correspond to the same q, then there is one path
from Tn(q) to T0(0) for each NE.
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In contrast, we remark that, for a more constrained setting
where hi = 1, cij = 0, vij = vj , tj = 0, maximizing social
welfare can be done in polynomial time [Bilò et al., 2019].

Next, we consider PoA and PoS which is defined to be
PoAsw = max

a∈NE
SW (aoptsw )

SW (a) , PoSsw = min
a∈NE

SW (aoptsw )
SW (a) , and

similarly for PoAps and PoSps, where NE ⊆ A is the set of
all NEs. Clearly, PoS ≤ PoA. Notice that we focus only
on the instances in which NE exists.4 The following results
show that the PoS can be unbounded for either objective.

Theorem 7. PoSps is unbounded, even if hi = 1 and sij =
s. PoSsw is also unbounded, even if hi = 1, sij = s, cij = 0.

Proof. We first consider PoSps. Consider the instance
I = (D,P, {sij}, {cij}, {vij}, {tj}) where |D| = 2, |P | =
2, sij = 1, vi1 = 0, ci1 = 0, ci2 = 1 for i ∈ D, j ∈ P . The
values for project 2 are v12 = 0, v22 = 3. The thresholds are
t1 = 3, t2 = 2. Note that project 1 can never be completed
and project 2 can only be completed when a12 = a22 = 1.
Agent 1 will never choose project 2 because it has a cost
c12 = 1 and a value v12 = 0, while the cost of project 1 is
c11 = 0. Agent 2 will choose project 2 only if the threshold
is reached. Therefore, the only NE is a11 = a21 = 1 where
0 projects are completed. However, the optimal solution is
a12 = a22 = 1 where 1 project is completed.

Next, we consider PoSsw. Consider an instance I =
(D,P, {sij}, {vij}, {tj}) where |D| = |P | = 2, t1 = 0, t2 =
2, hi = 1, sij = 1 and cij = 0 for any i ∈ D, j ∈ P .
For contributor 1, v11 = 1, v12 = 0, and for contributor 2,
v21 = 1, v22 = L, where L is a sufficiently large number. We
show that, there is a NE with a11 = a21 = 1, which has a
social welfare 2. Clearly contributor 1 has no incentive to de-
viate because it has positive value only for project 1. For con-
tributor 2, the utility is 1, and if it deviates to project 2, then
the utility decreases to 0. Moreover, noting that the only way
for both contributors having positive utility is a11 = a21 = 1,
this is the unique NE. However, the optimal solution is that
both contributors select project 2 (i.e., a12 = a22 = 1), and
the optimal social welfare is L. The ratio between the optimal
social welfare and the social welfare in the NE is L

2 , which
tends to∞ when L→∞. Thus, PoSsw is unbounded.

Despite the negative results above, we are able to iden-
tify instances in which the PoA is bounded for both objec-
tives. For the social welfare objective, [Bilò et al., 2019]
proved that, when hi = 1, tj = 0, cij = 0, vij = v,
it always has PoSsw = PoAsw = 1; and if the condi-
tion vij = v is relaxed to vij = vj , then it always has
PoAsw(n,m) ≤ 1 + min{n,m}−1

n . Further, for the successful
project objective, we have the following results.

Theorem 8. When hi = 1 and cij = 0 for all i ∈ D, j ∈ P ,
we have PoSps = n.

4We note that PoAsw or PoSsw typically assume both of the
quantities in the fraction to be non-negative. If both quantities are
negative, then we can flip the fraction. If the numerator and denom-
inator are positive and negative, respectively, then we say that the
PoA is unbounded. When the denominator is zero, we say that the
value is one if the numerator is zero, otherwise it is unbounded.

Proof. We first prove PoSps ≤ n. The optimal solution has
at most min{m,n} successful projects. Note that we focus on
instances in which NE exists. It suffices to prove the existence
of a NE with at least one successful project.

If there is a project j ∈ P and contributor i satisfying
sij ≥ tj and vij > 0, then every NE must have at least one
successful project, otherwise contributor i can deviate to j
and obtain a positive utility. So we only need to consider the
case where that does not hold. We construct a NE a with at
least one successful project as follows. Let j∗ ∈ P be an
arbitrary project that has potential to be successful. For any
i ∈ D, set aij∗ = 1, and set aij = 0 for all j 6= j∗. Clearly,
project j∗ is successful. No contributor has incentive to devi-
ate, because no project can be satisfied by a single contributor
who has positive value to this project. Hence, action profile a
is a NE with at least one successful project.

Now we prove PoSps ≥ n. Consider an instance I =
(D,P, {sij}, {vij}, {tj}) where |D| = |P | = n, tj =
0, sij = 1 for i ∈ D, j ∈ P . For i ∈ D, set vij∗ = 1 and
vij = 0 for all project j 6= j∗. Clearly, the optimal solution
that maximizes the number of successful projects is that every
project is contributed by a unique contributor, and the num-
ber of successful projects is n. However, the unique NE is
that all contributors contribute to project j∗, where every one
has a positive utility, and the number of successful projects is
1. Hence, the PoS is at least n.

6 Conclusion
In this paper, we consider a game-theoretic model of how
contributors allocate effort (e.g., time) to contribute to a set
of public projects where each project is successful if the total
contribution meets or exceeds a predetermined project thresh-
old. We study several computational and efficiency questions
associated with pure-strategy Nash equilibria (NE). In partic-
ular, we show that the computational problems (i.e., existence
of NE with/without required properties) are generally hard,
and NE can be very inefficient (i.e., PoS). We note that the
major obstacle for obtaining positive results is the existence
of minimum threshold, which ensures that no project receiv-
ing a total contribution below the threshold can be completed.
Compared with Project Games studied in [Bilò et al., 2019],
the threshold version studied in our paper becomes a bit in-
tractable in the sense of both NP-hardness and PoA. However,
we show that when we further restrict the model parameters,
various computational and efficiency NE questions become
tractable and positive, respectively.

Regarding the future directions, many variants of EACPP
could be investigated. Non-binary project outcomes could be
modeled, and most notably, additional contributions beyond
the minimum threshold could increase the quality or probabil-
ity of success for a project. Other variants, such as public re-
ward in addition to contributors’ reward, and individuals’ dif-
ferent skills (e.g., programming, project management, mar-
keting) for projects, are also possible. Such variations could
be useful in a variety of applications, such as software engi-
neering research [Stevens et al., 2021]. Finally, with some
modifications this model would be interesting to study as a
cooperative game [Bachrach and Rosenschein, 2008].
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[Bilò et al., 2019] Vittorio Bilò, Laurent Gourvès, and
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