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Abstract

In recent years, the axiomatic approach to central-
ity measures has attracted attention in the literature.
However, most papers propose a collection of ax-
ioms dedicated to one or two considered centrality
measures. In result, it is hard to capture the differ-
ences and similarities between various measures.
In this paper, we propose an axiom system for four
classic feedback centralities: Eigenvector central-
ity, Katz centrality, Katz prestige and PageRank.
We prove that each of these four centrality mea-
sures can be uniquely characterized with a subset
of our axioms. Our system is the first one in the lit-
erature that considers all four feedback centralities.

1

The question how to assess the importance of a node in a
network has puzzled scientists for decades [Boldi and Vigna,
2014]. While the first methods, called centrality measures,
have been proposed in social science in 1950s, in the last two
decades centrality analysis has become an actively developed
field in computer science, physics and biology [Brandes and
Erlebach, 2005; Newman, 2005]. As a result, with a plethora
of measures proposed in the literature, the choice of a central-
ity measure is harder than ever.

Feedback centralities form an especially appealing class of
centrality measures. These measures assess the importance of
a node recursively by looking at the importance of its neigh-
bors or, in directed graphs, direct predecessors. Such an as-
sumption is desirable in many settings, e.g., in citation net-
works where a citation from a better journal value more [Pin-
ski and Narin, 1976] or in the World Wide Web where a link
from a popular website can significantly increase the popu-
larity of our page [Kleinberg, 1999].

Chronologically the first feedback centralities were Katz
centrality and Katz prestige, proposed by Katz [1953]. Ar-
guably, the most classic feedback centrality is Eigenvector
centrality proposed by Bonacich [1972]. In turn, the most
popular feedback centrality is PageRank designed for Google
search engine [Page et al., 1999]. These four classic centrali-
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Centrality | General axioms | ECV EM | CY V BL
Eigenvector | LOC ED NC EC CY
Katz LOC ED NC EC BL
Katz prestige | LOC ED NC EM CY
PageRank LOC ED NC EM BL

Table 1: Our characterizations based on 7 axioms: Locality (LOC),
Edge Deletion (ED), Node Combination (NC), Edge Compensation
(EC), Edge Multiplication (EM), Cycle (CY) and Baseline (BL).

ties, while based on the same principle, differ in details which
leads to diverse results and often opposite conclusions.

In recent years, the axiomatic approach has attracted at-
tention in the literature [Boldi and Vigna, 2014; Bloch er al.,
2016]. This approach serves as a method to build theoret-
ical foundations of centrality measures and to help in mak-
ing an informed choice of a measure for an application at
hand. In the axiomatic approach, the measure is character-
ized by a set of simple properties, called axioms. A number
of papers use the axiomatic approach to characterize feedback
centralities. Katz prestige was considered by Palacios-Huerta
and Volij [2004] and by Altman and Tennenholtz [2005].
Kitti [2016] proposed algebraic axiomatization of Eigenvec-
tor centrality. Dequiedt and Zenou [2014] and Was and Skib-
ski [2018] proposed joint axiomatization of Eigenvector and
Katz centralities. Recently, Was and Skibski [2020] proposed
an axiomatization of PageRank.

While these results are a step in the right direction, most
papers focus only on one or two feedback centralities. In re-
sult, each paper proposes a collection of axioms dedicated for
the considered centrality, but poorly fitted to other measures.
As a consequence, these characterizations based on different
axioms do not help much in capturing the differences and
similarities between various centrality concepts.

In this paper, we propose an axiom system for four classic
feedback centralities. Our system consists of seven axioms.
Locality, Edge Deletion, Node Combination are general ax-
ioms satisfied by all four centralities. Edge Compensation
and Edge Multiplication concern modification of one node
and its incident edges. Cycle and Baseline specify centrali-
ties in simple borderline graphs. For this set of axioms, we
show that each of four feedback centralities is uniquely char-
acterized by a set of 5 axioms: 3 general ones, one one-node-
modification axiom and one borderline axiom (see Table 1).
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2 Preliminaries

In this paper, we consider directed weighted graphs with node
weights and possible self-loops.

2.1 Graphs

A graph is a quadruple, G = (V, E, b, ¢), where V is the set
of nodes, E is the set of ordered pairs of nodes called edges
and b and c are node and edge weights: b : V' — R>( and
c: E — Rs . We assume that node weights are non-negative
and edge weights are positive. The set of all possible graphs
is denoted by G.

For a graph G, the adjacency matrix is defined as follows:
A = (Gyp)uwev, Where a, , = c(v,u) if (v,u) € E and
@y, = 0, otherwise. A real value r is an eigenvalue of a
matrix A if there exists a non-zero vector x € RY such that
Ax = rx; such vector z is called an eigenvector. The princi-
pal eigenvalue, denoted by ), is the largest eigenvalue.

An edge (u,v) is an outgoing edge for node v and an in-
coming edge for node v. For v, the set of its incoming edges is
denoted by T, (G) and outgoing edges by '} (G). The total
welght of outg01 § edges called the out-degree, is denoted
by deg; (G): deg] ( Zeel‘t(G) c¢(e). For any x, graph
G is z-out-regular 1f the out-degree of every node equals x:
degt(G) = x forevery v € V. A graph is out-regular if it is
z-out-regular for some x.

A walk is a sequence of nodes w = (w(0),...,w(k)) such
that every two consecutive nodes are connected by an edge:
(w(),w(i+1)) € Eforeveryi € {0,...,k—1}and k > 1.
The walk is said to start at w(0) and end at w(k) and the

of length & will be denoted by 2;,(G). If there exists a walk
that starts in u and ends in v, then u is called a predecessor
of v and v is called a successor of u. If the length of this
walk is one, i.e., (u,v) € E, then nodes are direct predeces-
sors/successors. For node v, the set of predecessors of v is
denoted by P(v) and the set of successors of v by S(v). The
graph is strongly connected if there exists a walk between ev-
ery two nodes, i.e., if S(v) = V for every node v € V.

A strongly connected graph such that every node has ex-
actly one outgoing edge is called a cycle graph.

Let us introduce some shorthand notation that we will use
throughout the paper. For an arbitrary function f : A — X
and a subset B C A, function f with the domain restricted to
set B will be denoted by fp and to set A\ B: by f_p. If B
contains one element, i.e., B = {a}, we will skip parenthesis
and simply write f; and f_;. Also, for a constant x, we define
x - f as follows: (z - f)(a) = x - f(a) for every a € A. Fur-
thermore, for two functions with possibly different domains,
f:A—= X, f':B— X,wedefine f+ f': AUB —- X
as follows: (f + f')(a) = f(a) + f'(a) if a € AN B,
(f+ f)a) = fla)ifa € A\ Band (f + f')(a) = f'(a) if
a € B\ Aforevery a € AU B. In particular, (b_,, +2b,) are
node weights obtained from b by doubling weight of node v.

For two graphs, G (V,E,b,c),G' = (V/,E' )V, )
with V N V' = 0, their sum G + G’ is defined as follows:
G+G@ =VUV ,EUE b+V,c+).
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2.2 Feedback Centralities

A centrality measure is a function F' that given a graph G =
(V,E,b,c) and anode v € V returns a real value, denoted by
F,(G). This value, called a centrality of a node, is assumed
to be non-negative and represents the importance of node v in
graph G.

The class of feedback centralities aims to assess the im-
portance of a node by looking at the importance of its direct
predecessors. We consider four classic feedback centralities.

Eigenvector centrality. According to Eigenvector central-
ity [Bonacich, 1972], the importance of a node is proportional
to the total importance of its direct predecessors:

! Z c(u,

EV,(G) = ~
(u,v) €T (G)

v) - EV,(G). (1)

This system of recursive equations has multiple solutions.
Hence, some additional normalization condition is usually
assumed to make a solution unique (e.g., the sum of central-
ities of all nodes is assumed to be 1 or |V|). In this paper,
we use a normalization more consistent with other feedback
centralities—we discuss it in the next section. The Eigenvec-
tor centrality is usually defined only for strongly connected
graphs. We relax this assumption by considering also sums
of strongly connected graphs with the same principal eigen-
value.! We denote the class of all such graphs by GFV.

Katz centrality. Katz [1953] proposed an alternative to
Eigenvector centrality that adds a basic importance to each
node. This shifts the emphasis from the total importance of
its direct predecessors to their number. Formally, for a decay
factor a € R>q, Katz centrality is defined as follows:

2

(w,v)ely,

K(G)=a c(u,

(@)

v) - Ky(Q) | +b(v). @

For a fixed a, Katz centrality is uniquely defined for graphs
with A < 1/a. We denote the class of such graphs by G% (%),

Katz prestige. In Eigenvector and Katz centralities, the
whole importance of a node is “copied” to all its direct suc-
cessors. In turn, in Katz prestige [Katz, 1953], also called
Seeley index or simplified PageRank, a node splits its impor-
tance equally among its successors. Hence, the importance of
predecessors is divided by their out-degree. Formally, Katz
prestige is defined as follows:

>

(u,0) €Ty (G)

()
deg; ()" TG

Similarly to Eigenvector centrality, this system of equations
does not imply a unique solution. We will discuss our nor-
malization condition in the next section. Katz prestige is usu-
ally defined only for strongly connected graphs. In our paper,
we relax this assumption and consider sums of strongly con-
nected graphs; we denote the class of all such graphs by GX .

KP,(G) = 3)

"Note that we cannot allow for the sum of arbitrary graphs. It is
because if one of the graphs has a smaller principle eigenvalue, then
Eigenvector centralities of all its nodes would be zero.
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PageRank. Page et al. [1999] was proposed to modify Katz
prestige by adding a basic importance to each node. In this
way, for a decay factor a € [0, 1), PageRank is uniquely de-
fined for all graphs as follows:

>

(u,0)€r(G)

()

PR(G)=a 7d ozt (G)

w(G) | +0(v). (4)

2.3 Walk Interpretations of Feedback Centralities

In this section we show how PageRank’s random-walk inter-
pretation from [Was and Skibski, 2020] can be extended for
all four feedback centralities. These interpretations result in
unique definitions of Eigenvector centrality and Katz prestige
consistent with Katz centrality and PageRank.

Consider a spread of some entity (money, virus, informa-
tion, probability of visit etc.) through a network. At the be-
ginning, at time ¢ = 0, each node has some initial amount
equal to its node weight. Then, in each step the whole en-
tity is multiplied by a scalar a, which is a parameter of the
process, and then moved to direct successors. Here, we con-
sider two variants of the process: distributed and parallel. In
the distributed process, the entity is spread among the outgo-
ing edges. In the parallel process, the entity is duplicated and
moved along all edges. Specifically, when the entity is moved
along an edge (u,v) it is either

+ multiplied by c(u, v)/ deg; (G) (distributed process), or
 multiplied by ¢(u, v) (parallel process).

As an example, consider a surfer on the World Wide Web.
Node weights correspond to the probability that the surfer
starts surfing from a specific page and weights of edges rep-
resent the number of links from one page to another. A link
is chosen by the surfer uniformly at random which means the
process is distributed. Finally, parameter a is the probability
that the surfer stops surfing altogether. In result, the “entity”
is the probability that the surfer visits a specific page at some
time.

Consider the distributed process with parameter a. The
amount of entity in node v at time ¢ equals:

— w(i+1))
> e [T

WEQ (G (t)= eg.

Pyc(t) =

Now, if a < 1, PageRank is the total amount of entity in node
v through the whole process:

PRY(G) =) pia(t)
=0

We know that this sum converges, because a < 1. Now, if
a = 1, the sum does not converge, as the amount of entity in
the network does not change over time. In such a case we can
look at the average amount of entity in node v. In this way
we get the definition of Katz prestige:

&)

T 1
t
KP,(G) = lim L’;( )
—00
t=0

(6)
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Hence, Katz prestige is the stationary distribution of the pro-
cess multiplied by the sum of node weights.

Let us turn our attention to the parallel process with param-
eter a. The amount of entity in node v at time ¢ equals:

wiat)= Y bw(0): H (a-c(w(i),w(i+1))).
wEN(G):w(t)=v =0

Now, if a < 1/, Katz centrality is the total amount of entity
in node v through the whole process:

Kj(G) =) wial(t)
t=0

This sum converges, because & < 1/\. Now, if a = 1/, the
sum does not converge. In such a case, Eigenvector centrality
can be obtained as the average amount of entity in node v:

a4 (t)

wv,G

)

EV,(G) = lim
— 00

®)

It can be shown that Equations (5)—(8) indeed satisfy recur-
sive equations from Equations (1)—(4). Hence, from now on,
we will use Equations (5)—(8) as the definitions of all four
centralities.

3 Axioms

In this section, we present seven axioms used in our axiomatic
characterization.

All centrality measures except for PageRank are defined
only for a subclass of all graphs. Hence, for them we will
consider restricted versions of our axioms. Specifically, an
axiom restricted to class G* is obtained by adding an assump-
tion that all graphs appearing in the axiom statement belong
to G*. In this way, we obtain a weaker version of the axiom.

Most of our axioms are invariance axioms. They identify
simple graph operations that do not affect centralities of all or
most nodes in a graph. The last two axioms serve as a border-
line: they specify centralities in very simple graphs. We use
three axioms proposed in the axiomatization of PageRank by
Was and Skibski [2020]. Instead of the remaining three ax-
ioms, we use Locality and Node Combination which are more
meaningful for considered classes of graphs.

Before we proceed, let us introduce an operation of propor-
tional combining of two nodes used in one of the axioms. Pro-
portional combining differs from a simple merging of nodes
as it preserves the significance of outgoing edges. Take a
centrality measure F', graph G = (V, E,b, ¢) and two nodes
u,w € V. Graph C’f _,»(G) is a graph obtained in two steps:

* scaling weights of outgoing edges of v and w propor-

tionally to their centralities: multiplying weights of out-
going edges of u by F,(G)/(F.(G) + Fy,(G)) and w
by Fu(G)/(Fu(G) + Fu(C)): and

* merging node u into node w, i.e., deleting node wu, trans-
ferring its incoming and outgoing edges to node w and
adding the weight of node u to node w.

See Figure 1 for an illustration.

We are now ready to present the first three axioms satisfied
by all feedback centralities.
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@

1: Graph G (on the left) and the corresponding graph

Figure
F (@) (on the right) assuming F,(G) = 1 and F,,(G) = 2.

Cu—)’w

Locality (LOC): For every graph G = (V, E, b, ¢)
and graph G' = (V' ,E",) b ) st. VNV = {):

F,(G+G")=F,(G) forveV.

Edge Deletion (ED): For every graph G
(V,E,b,c) and edge (u,w) € E:

F,(V, E\{(u,w)},b,¢) = F,(G) forv € V\S(u).
Node Combination (NC): For every graph G
(V, E,b,c) and nodes u,w € V s.t. deg] (G)
degt (@) = deg! (G) for every s € S(u) U S(w):

Fv(Cfew(G)) = FU(G) forveV \ {u’ w}
and Fy(CE ,(G)) = Fu(G) + FulG).

Locality and Edge Deletion are standard axioms from the
literature. Locality, proposed in [Skibski et al., 2019], states
that the centrality of a node depends solely on the part of the
graph a node is connected to. In other words, removing part
of the graph not connected to a node does not affect its cen-
trality. Edge Deletion, proposed in [Was and Skibski, 2020]
for PageRank, states that removing an edge from the graph
does not affect nodes which cannot be reached from the start
of the edge. Node Combination is a new axiom. Assume
two nodes u, w € V and their successors have the same out-
degree, but possibly different centralities. Node Combination
states that in a graph obtained from proportional combining
of u into w, the centrality of w is the sum of centralities of
both nodes and centralities of other nodes do not change. This
property is characteristic for feedback centralities which as-
sociate a benefit from an incoming edge with the importance
of a node this edge comes from. We note that PageRank, Katz
prestige and Katz centrality satisfy also the axiom without the
assumption about equal out-degrees of successors. However,
it is necessary for Eigenvector centrality.

Our next two axioms concern a modification of one node:
its weight and weights of its incident edges.

Edge Multiplication (EM): For every graph G =
(V, E,b,c), node uw € V, constant x > 0:

Fy(VE,b,c_pr gy ta-cri ) = Fo(G) forveV.
Edge Compensation (EC): For every graph G

(V,E,b,c), node u € V, constant © > 0,

b = b_y + by/x and ¢ = C_rEEN\{(uu)} T

cr @\ /Tt i@y %
F,(V,EV,d)=F,(G) forveV\{u}

and F,(V,E\V, ) = F,(G) /.
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Figure 2: Graphs considered in Edge Multiplication (on the left) and
Edge Compensation (on the right) obtained from G from Figure 1.

Edge Multiplication, proposed in [Was and Skibski, 20201,
states that multiplying weights of all outgoing edges of node
u by some constant does not affect centralities. This means
that the absolute weight of edges does not matter, as long as
the proportion to other outgoing edges of a node is the same.
This property is satisfied by both PageRank and Katz pres-
tige. However, it is not satisfied by Eigenvector and Katz
centralities, as it increase the importance of modified edges x
times. For them, we propose a similar axiom: Edge Compen-
sation. In this axiom, not only weights of outgoing edges of
u are multiplied by a constant, but at the same time weights
of incoming edges and the node itself are divided by the same
constant. Edge Compensation states that this operation de-
creases the importance of u x times, but at the same time
does not affect the importance of other nodes. See Figure 2
for an illustration.

Finally, the last two axioms concern simple borderline
cases.

Baseline (BL): For every graph G = (V,E,b,¢)
and an isolated node v € V it holds F,,(G) = b(v).

Cycle (CY): For every out-regular cycle graph G =
(V,E,b,c) it holds F,(G) = ),y b(u)/|V]| for
everyv € V.

Baseline, proposed in [Was and Skibski, 2020], states that
the centrality of a node with no incident edges is equal to
its baseline importance: its node weight. Baseline is satis-
fied by PageRank and Katz centrality. However, it does not
make sense for strongly connected graphs. Cycle, proposed
as the borderline case for Eigenvector centrality and Katz
prestige, considers the simplest strongly connected graph: a
cycle. Specifically, if weight of all edges in a cycle graph are
equal, then centralities of all nodes are also equal. Moreover,
Cycle normalizes the sum of centralities to be equal to the
sum of node weights. See Figure 3 for an illustration.

As we will show, these seven axioms are enough to obtain
the axiomatizations of all four feedback centralities.

Figure 3: Graphs considered in Baseline (on the left) and Cycle (on
the right).
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Figure 4: The construction of a cycle graph G* from which G can be obtained using proportional combining.

4 Main Results

In this section, we present our main results: We show that
if a centrality satisfies three general axioms (LOC, ED and
NC), one of the one-node-modification axioms (EM or EC)
and one of the borderline axioms (BL or CY) then it must be
one of the four feedback centralities.

The full proofs can be found in the extended version of the
paper.2 Here, we present the main ideas behind them.

First, consider Katz prestige and Eigenvector centrality.

Theorem 1. A centrality measure defined on GX* satisfies
LOC, ED, NC, EM and CY if and only if it is Katz prestige
(Equation (6)).

Theorem 2. A centrality measure defined on GFV satisfies
LOC, ED, NC, EC and CY if and only if it is Eigenvector
centrality (Equation (8)).

We begin by showing that Katz prestige and Eigenvector
centrality are equal for strongly connected out-regular graphs.
Then, we prove that both centralities satisfy the correspond-
ing axioms. Hence, it remains to prove the uniqueness of both
axiomatizations.

Let F be a centrality measure defined on G¥V or GEF that
satisfied LOC, ED, NC and CY. First, we show that F' is equal
to both centralities for strongly connected out-regular graphs.
We divide it into two steps:

* First, we consider strongly connected out-regular graphs
with rational proportion of weights of every two edges.

e Then, we consider arbitrary strongly connected out-
regular graphs.

These proofs are based on the following observation: for ev-
ery strongly connected out-regular graph G with rational pro-
portion of weights of its edges it is possible to construct a
cycle graph G*, from which G can be obtained using pro-
portional combining. As a result, if some centrality measure
satisfies CY and NC, then it is uniquely defined on graph G.

We will present this construction on the graph G from Fig-
ure 4. Node weights are arbitrary, but we assume they sum
up to 1. This graph is z-out-regular. In such graphs, it can be
shown that Katz prestige of any node is rational; in this graph
we have: KP,,(G) = &, KP,,(G) = KP,(G) = 3.
KP,,(G)= 5 and KP,,(G) = 5.

Now, let us define an impact of an edge (u,v), de-
noted by I(u,v), as Katz prestige of node v multiplied by
c(u,v)/ deg; (G). Impacts of edges are depicted in graph G’
in Figure 4. For example, I(vg,v1) = K,,(G) -1/2 =2/13.

Zhttps://arxiv.org/pdf/2105.03146.pdf
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Clearly, the total impact of outgoing edges of every node is
equal to its Katz prestige. Also, from the Katz prestige recur-
sive equation (Equation (3)), we see that the total impact of
incoming edges of every node is also equal to its Katz pres-
tige. We will use this fact later on. What is also important im-
pacts are rational; let N be the least common multiple of all
denominators of edge impacts. For graph G we have N = 13.

Based on the notion of impact we create a multigraph G (a
graph in which multiple edges exist between a pair of nodes).
This multigraph is obtained by replacing edge (u, v) from the
original graph by N - I(u,v) edges. For example, in our sam-
ple graph edge (v4, v1) with impact I(vy,v1) = 2/13 is re-
placed by two edges from v,4 to v;. Now, the key observation
is that every node in the multigraph G’ has the same number
of incoming and outgoing edges (as the total impact of its in-
coming edges equals the total impact of its outgoing edges).
Hence, from Euler’s theorem, we know that in G’ there ex-
ists an Euler cycle—a walk that visits every edge exactly once
and is a cycle: starts and ends in the same node.

Graph G* in Figure 4 is a cycle graph corresponding to
some Euler cycle in graph G”’. Here, nodes v;, v}, ... corre-
spond to node v; in G”. We define node weights in a way
that nodes corresponding to node v; sum up to b(v;). The
construction of the cycle graph is complete.

Let us determine the number of nodes in G*. In graph G
node v; has N - K P,, (G) outgoing edges. Hence, in G* there
are N - K P,,(G) nodes corresponding to node v;. Since the
sum of Katz prestige of all nodes in G is equal to the sum of
node weights, i.e., 1, we get that there are N nodes in graph
G*. In our example, there are indeed 13 nodes in G* and 4
nodes correspond to node v.

Now, from CY, we know that according to F' every node
in G* has the same centrality equal to 1/N. It is easy to ver-
ify that if we merge using proportional combining for every
node v; all nodes corresponding to v; we will obtain graph
G. Based on NC this implies that node v; has centrality in G
equalto N - KP,,(G) - 1/N = KP,,(G) which concludes
the proof.

So far, we considered out-regular graphs and four axioms:
LOC, ED, NC and CY. Here is where the proof splits:

» If I satisfies EM, then it is equal to Katz prestige for
every graph; it is easy to see that every graph can be
made out-regular if we divide weights of outgoing edges
of every node by its outdegree.

If F satisfies EC, then it is equal to Eigenvector cen-
trality for every graph; here, more detail analysis is re-
quired, as the EC operation changes weights of both out-
going and incoming edges.
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Now, let us turn our attention to PageRank and Katz cen-
trality. We have the following results:

Theorem 3. A centrality measure defined on G satisfies LOC,
ED, NC, EM and BL if and only if it is PageRank for some
decay factor a (Equation (5)).

Theorem 4. A centrality measure defined on G¥(%) satisfies
LOC, ED, NC, EC and BL if and only if it is Katz centrality
for some decay factor a (Equation (7)).

It is easy to check that both centralities satisfy their corre-
sponding axioms. Let us focus on the proof of uniqueness.

The key role in our proof will be played by semi-out-
regular graphs which is a class of graphs in which all nodes
except for sinks (nodes with no outgoing edges) have equal
out-degrees. Most lemmas described below applies only to
semi-out-regular graphs.

Let F be a centrality measure defined on G or G¥(®) that
satisfies LOC, ED, NC, BL and EM or EC. First, we show
several technical properties of F' that we use later in the
proof: Node Combination generalized to all semi-out-regular
graphs, minimal centrality equal to the node weight, linearity
with respect to node weights and existence of a constant ap
such that F,({u, v}, {(u,v)},b,¢) = ap - b(u) if b(v) = 0
and c(u,v) = 1.

Next, we show that the profit from edge (u,v) for node v
depends only on its weight and the centrality and out-degree
of node u; moreover, if F' satisfies EM or EC, then this profit
is equal to the profit in PageRank or Katz centrality.

To this end, for z,y,z > 0, y < z, we define a profit
Sunction pp(z,y, z) as follows:

pF(fU, Y, Z) Fv({uv v, U)}, {(uv 'U)a (u> w)}v bxa Cy,z)’
where b*(u) = z, b®(v) = b*(w) = 0, ¥*(u,v) = y and
¥ *(u,w) = z — y (if z = y, then we remove edge (u,w)
from the graph). To put in words, value pr(x,y, z) is the
profit from an incoming edge with weight y that starts in node
with centrality « and out-degree z in the smallest such graph
possible: with three nodes and two edges. It is easy to check
that if F' satisfies EM, then pp(z,y,2) = ap - x - y/z as
PageRank and if F satisfies EC, then pp(z,y,2) = ap -2 -y
as Katz centrality.

Now, it remains to prove that the profit from any edge
(u,v) equals pr(Fy, c(u,v),deg, (G)). More precisely, we
prove that:

>

Fy(G) =b(v) +
(u,w)eTE (@)

pF(Fu (G), c(u, v), degi (G))

First, we consider nodes without a self-loop only. We prove
the thesis by induction over the number of incoming edges.
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Let us illustrate the scheme of this proof on graph G from
Figure 5. Consider node v and pick one incoming edge, say
(u,v). First, we create graph G’ in which we extract from
node w all its outgoing edges and attach them to a new node v’
with weight F,(G). To keep the out-degree of u unchanged,
we add a new node w with an edge from u. Using NC, it can
be shown that F,,(G') = F,(G) and F,, (G') = F,(G).

In the second step, we split v into two nodes with the same
outgoing edges, but disjoint incoming edges: v’ has one edge
(u’,v"), and v has the remaining edges. From NC we know
that F,,(G) = F,(G") + Fy(G"). Since v has less incoming
edges in G” than in GG, we can use the inductive assumption.
Hence, it remains to determine the centrality of v in G”.

To this end, observe that only v’ is the predecessor of v’.
Hence, from ED, removing all outgoing edges of other nodes
does not affect the centrality of v. Also, from LOC, remov-
ing nodes other than v’ and its direct predecessors does not
change the centrality of v. Hence, we can focus on graph G*.
Using NC we can merge all of the nodes in G* except for u’
and v’. In this way, we get a graph with three nodes and two
edges, so we have F,/ (G") = pp(F.(G), c(u,v),deg) (G))
what we needed to prove.

Next, we relax the assumption that the node does not have
a self-loop. Finally, using EM or EC we get uniqueness for
PageRank and Katz centrality.

5 Conclusions

We proposed the first joint axiomatization of four classic
feedback centralities: Eigenvector centrality, Katz central-
ity, Katz prestige and PageRank. We used seven axioms and
proved that each centrality measure is uniquely characterized
by a set of five axioms. Our axiomatization highlights the
similarities and differences between these measures which
help in making an informed choice of a centrality measure
for a specific application at hand.

There are many possible directions of further research. It
would be interesting to extend our axiomatization to Degree
centrality and Beta measure which constitute the borderline
cases of feedback centralities. Another direction is consider-
ing centrality measures based on random walks, such as Ran-
dom Walk Closeness or Decay. Also, several axioms consid-
ered in our paper can form a basis for the first axiomatization
of distance-based centrality measures for directed graphs.
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