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Abstract

Significant progress has been witnessed for the de-
scriptor and detector of local features, but there
still exist several challenging and intractable lim-
itations, such as insufficient localization accuracy
and non-discriminative description, especially in
repetitive- or blank-texture regions, which haven’t
be well addressed. The coarse feature representa-
tion and limited receptive field are considered as
the main issues for these limitations. To address
these issues, we propose a novel Soft Point-Wise
Transformer for Descriptor and Detector, simulta-
neously mining long-range intrinsic and cross-scale
dependencies of local features. Furthermore, our
model leverages the distinct transformers based on
the soft point-wise attention, substantially decreas-
ing the memory and computation complexity, es-
pecially for high-resolution feature maps. In ad-
dition, multi-level decoder is constructed to guar-
antee the high detection accuracy and discrimina-
tive description. Extensive experiments demon-
strate that our model outperforms the existing state-
of-the-art methods on the image matching and vi-
sual localization benchmarks.

1 Introduction

Establishing accurate correspondences among images plays a
crucial role in many Computer Vision tasks, including but not
limited to wide-baseline stereo, image retrieval, visual local-
ization, Structure-from-Motion and 3D construction. Such
correspondences are generally estimated by matching local
features, which comprise keypoints detection and description.
Keypoints detection is to predict the coordinate of the key-
point in the image, and the description is to generate a vec-
tor describing the image patch around the keypoint. How-
ever, environmental changes, including viewpoint and illumi-
nation, make the pipeline particularly challenging.

One of the key challenges in keypoints detection and de-
scription is the local representation short of identification
which is derived from limited receptive field, especially in the
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blank ground or repetitive texture such as white-black chess-
board. Many existing methods design an extra block to iden-
tify such regions and filter them when detecting [Revaud et
al., 2019]. While the paradox is that the typical repetitive
substance, i.e., chessboard is widely applied in the camera
calibration [Zhang, 2000], which requires rigorous accurate
correspondences. The critical difference is that the keypoints
description for calibration is the relative representation based
on other adjacent-to-remote keypoints and global informa-
tion.

Therefore, it is conceptually considered that the limited
local representation for description of local features is not
enough and global contextual information is as important
to descriptor. Inspired by the Transformer’s success in
NLP [Vaswani ef al., 2017], we propose an elaborate Trans-
former structure to capture long-range dependencies, enrich-
ing the representation of local features and fixing the match-
ing issues.

Another key challenge of keypoints detection and descrip-
tion is to coordinately solve two subtasks, i.e., keypoints lo-
calization and classification. The former requires the model
to capture keypoints position accurately, while the latter ex-
pects the model to extract high-level semantic information of
the keypoints. Recent joint detection and description meth-
ods extract keypoints from the deep but coarse feature maps,
leading to defective localization accuracy. Therefore a trans-
former pyramid is conducted to fix such issues. Three kinds
of attention modules are developed to mine cross-level and
intrinsic dependencies, enabling interacting features across
space. The multi-level descriptor and detector based on the
pyramid promises reliable pixel-level prediction.

Furthermore, the high-resolution feature maps in the shal-
low levels require heavy computation and memory cost, lim-
iting the potential benefit of transformer in practical applica-
tion. So most methods usually adopt the attention operation
on the deeper coarse feature maps to economize the compu-
tation sources. Beneficial from the soft point-wise selection
module, we take the detected keypoints as the Keys set in our
soft point-wise transformer, so as to decrease the dense affin-
ity matrix complexity from O(n?) to O(const xn), squeezing
the main cost in the transformer.

The main contributions of this paper are summarized as
follows. Firstly, an attention-based transformer is devel-
oped to capture long-range dependencies, which is crucial for
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generating discriminative description. Secondly, the cross-
scale attention module and multi-level decoder are conducted
to predict more accurate pixel-level scale-invariant keypoints
detection. Thirdly, we propose the novel soft point-wise
transformer, leveraging the detected keypoints to decrease the
memory and computation complexity remarkably. Lastly,
the learned network significantly outperforms prior state-of-
the-art methods.

2 Related Works

In this section, we give a brief review of local features learn-
ing based on CNNs and computer vision transformer.

Joint local features learning. Recently, the increasing at-
tention has been focused on the joint learning of feature de-
scriptor and detector. In terms of descriptor learning, the
ranking loss [Tian et al., 2017; He et al., 2018] has been pri-
marily used as a de-facto standard. However, there exist some
conflicts between descriptor and detector such as big-or-small
receptive field and deep-or-shallow features.

To break through the limitation of restricted receptive field,
D2Net [Dusmanu et al., 2019] used the deep stacked convolu-
tional network as backbone and detected-and-described upon
the last feature maps. R2D2 [Revaud et al., 2019] utilized di-
lated convolutions to improve the keypoints localization ac-
curacy and generate pixel-level description, while limited in
the mutual-vision boundary area. More recent ASLFeat [Luo
et al., 2020] used multi-level keypoints predictions to restore
spatial resolution and low-level details.

Visual transformer. Transformer [Vaswani er al., 2017]
and its variants have proven its success of unsupervised or
self-supervised pertaining frameworks in various NLP tasks.
Therefore, there are many attempts to explore the benefits
of Transformer in computer vision tasks [Li et al., 2020].
DANet [Fu er al., 2019] developed the context information
by combining spatial and channel attention in the scene seg-
mentation. Non-local Networks [Wang ez al., 2018] utilized a
self-attention mechanism, enabling a single feature from any
position to perceive features of all the other positions, thus
harvesting full-image contextual information. Recent meth-
ods also attempt to replace the convolutional neural network
with transformer pipeline, like ViT [Dosovitskiy ef al., 2020]
in image classification, DETR [Carion et al., 2020] in object
detection and SETR [Zheng et al., 2020] in semantic segmen-
tation. While there exists few related work in the descriptor
and detector of local features.

3 Methodology

Two ingredients are essential for adopting transformer on
joint local feature learning: (1) an architecture that outputs
keypoints detection and description simultaneously; (2) atten-
tion optimization for efficient contextual information capture.

3.1 Architecture

As illuminated in Figure 1, the overall architecture of soft
point-wise transformer for description and detection of local
features is designed as an encoder-decoder pipeline.
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Feature Uniformization. To exploit the inter-dependencies
between channel maps, a feature uniformization module is
built at first. Given a local feature F' € REXH*XW we first
reshape F to RE*" and then perform a matrix multiplication
between the F' and the transpose of F' to compute the channel
attention map as:
exp(F; - F.T
Xj= o) (1)
> iz exp(Fi - F}')

in which X;; measures the i‘" channel’s impact on the j"
channel. Then we perform the weighted element-wise sum
operation and 1 x 1 convolution to obtain the fixed dimension
feature map e € RC*HxW:

C
e; = conv ((72XﬁFi> + Fj> , 2)
i=1

where the 7 is a learning scale parameter. The final feature of
each channel is a weighted sum of features of all channels and
original features, which models the long-range dependencies
between feature maps, improving feature discriminability.

Cross-scale Attention. By mapping each point’s represen-
tation into a latent fixed dimensional embedding space, we
obtain a 1D sequence of point embeddings for a certain scale
of the input image /. To encode the point spatial information,
we learn a specific embedding p; for every location ¢ with a
Multi-Layer Perception, which is added to e; to form the fi-
nal sequence input £ = {e; + p1,ea + pa,....,en + DN}
Therefore, the spatial information is kept through the order-
less self-attention and residual fusion.

Following the non-local operation [Wang er al., 2018], we
define the generic attention operation as:

. Zj exp(Q; - K]T)VJ 3)

NS Qi K

Here i is the index of the output position and j is the index
that enumerates all possible positions. The {Q, K, V'} rep-
resents the query, key and value for the attention, computed
as {EWq, EW, EWy }. {Wq, Wi, Wy} € RE*? are the
learnable parameters of three linear projection layers and d is
the dimension of {Q, K, V'}.

When the {Q, K} comes from the same feature map, we
call it as In-Scale attention. We further extend the K from the
deeper or shallower feature maps, and we call it as Up-Scale
and Down-Scale attention, respectively. The Up-Scale atten-
tion is developed to enrich the high-level feature representa-
tion of “patch” with the lower-level feature representation of
“point”. And the Down-Scale attention is developed in the
opposite direction. The Up-Scale and Down-Scale attention
jointly mine the cross-level dependencies to enrich the local
feature maps from shallow to deep layers.

Residual Fusion. The In-Scale and Cross-scale attention
generate three intensive feature maps with the same dimen-
sion, exploiting different scale information independently.
Then we fuse these separate feature maps into a comprehen-
sive feature map. Different from simply adding or concentrat-
ing them together [Lin et al., 20171, we propose the residual
fusion block to better combine features.
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Figure 1: Overall structure of our proposed SPTD2 network. The network is extended into a Siamese network with the image pair as
input during the training time. All points are taken as the Q set, while only the top-k keypoints are selected as the K set. PS and FU represents
the point-wise selection and feature uniformization. CNN and Position is the feature embedding and position embedding for local points.

To allow the network to concentrate on more discrimi-
native features, we first compute the residual between fea-
tures Fp € R¥>*HXW from down-scale attention and features
F; € ROXHXW from in-scale attention. Then we can obtain
the synthetic bottom-to-top representation F:

F; = conv(F; — Fp) + Fy. )

Intuitively, the residual feature represents the abundant shape
details like corner, edge and blob existing in shallow layer
while degraded in the deep representation.

Similar operation is also adopt between the updated fea-
tures F; and features Fy € R&H*W from up-scale atten-
tion:

P = conv(E; — Fy) + FJ. (5)

Finally we obtain the fusion feature maps P € R4*H*xW

fed into the decoder to output the keypoints detection and de-
scription. The residual block allows the network to focus on
only the distinct information among different levels, while
passing the common knowledge, enabling a more discrimina-
tive residual feature learning compared with trivial adding or
concatenating.

Multi-level Decoder. Above feature uniformization, cross-
scale attention and residual fusion modules make up the en-
coder of the transformer structure. As illuminated in the Fig-
ure 1, a dual-head decoder, i.e., descriptor and detector is
adopt on multi-level feature maps to extract multi-scale de-
scriptions and keypoints. The detector and descriptor simul-
taneously output the 3D description D € R¥*7*W and the
detection score map S € [0, 1]71*W.

Descriptor. We set the 3D tensor P as a dense set of de-
scriptor vectors D. These descriptor vectors can be readily
compared between images to establish correspondences us-
ing the Euclidian distance with the hypothesis that the same
keypoints will produce similar descriptors even in different
conditions. In practice, a channel-wise L2-Normalization is
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applied to generate more robust feature presentation prior to
comparing them.
ng = PZ )
1P 12

withi=1...Handj=1...W.

Detector. We also suppose that the 3D tensor P as a collec-
tion of 2D response maps at different channels. These detec-
tion score maps are analogous to the Difference-of-Gaussian
(DoG) response maps obtained in Scale Invariant Feature
Transform (SIFT). In practice, an element-wise square op-
eration followed by a 1 x 1 convolution and softmax function
are adopt to obtain the detection response score S of each
descriptor.

(6)

Sij =10 (conv(Pfj)) , (N

withé = 1... H and j = 1... W, where the 6(x) represents
the softmax operation. Only the locations with high confi-
dence are selected as keypoints. Similar to multi-scale object
detection, a non-maximum suppression (NMS) is applied to
remove the detection points that are spatially too close.

Note that we build the feature maps from the encoder as a
feature pyramid. The dual-head multi-level decoder extracts
the final results upon the multi-level pyramid.

3.2 Soft Point-wise Attention

Recent works show that the keypoints located in the uniform
and even well textured regions like tree leafages or ocean
waves, could lead to bad matching[Revaud et al., 2019]. So
some works learn to distinguish such regions and filter them
as less discriminative keypoints. While directly deleting such
keypoints will result in defective detection accuracy and dis-
continuities especially in large repetitive regions.

The attention module and position encoding will improve
the discrimination of the local features representation. While
the original attention module needs to generate enormous
affinity matrix to measure the relationships with the complex-
ity of O(N?), where N is the number of input points. High-
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Figure 2: Comparisons with other efficient attention module. From left to right: (a) Original attention module, (b) CCNet, (c) ISSA, (d)
Locality-constrained FPT, (e) Our SPT. The red grid is the query, the green grids represent the keys set and the yellow is the instance in the
image. Our soft point-wise transformer can choose the most representative keypoints as the Keys set compared to other sota methods.

resolution feature maps are essential for accurate keypoints
localization, taking heavy computation and memory cost.

To address the above mentioned issue, our motivation
is to replace the common single dense feature maps with
sparse representative features. Without loss of generality,
we propose the soft point-wise attention module which ag-
gregates contextual information with the most representative
keypoints, greatly reducing the complexity from O(N?) to
O(const x N).

The key of the soft point-wise attention is the soft key-
points selection, similar to our detector head but more effi-
cient. We require a point (, j) being selected by a hard dual-
maximum strategy, i.e., the feature value in the location (%, j)
of channel k is the local maximum both in spatial-wise and
channel-wise. To be amenable for back-propagation during
the training procedure, the above selection procedure is soft-
ened as follows.

The soft spatial detection score and soft channel score are
defined as:

“ Z(i’,j/)ej\/(i,j) eXP(Fﬁ,j/) 7Y max Fitj ’
where F is the feature map and NV (7, §) is the set of 8 neigh-
bors of the pixel (4, ). The soft selection takes both scores
into account and performs an image-level normalization:

max (ak. . k)

ij " i
Sij = 7 - C))
’ X ooy max (@ - Biy)
Only the locations with high confidence (greater than the
keypoints detection threshold) will be selected as the keys set

K = ¢(K) € RO*const where ¢() is the soft keypoint se-
lection operation. And the attention in Eq.(3) with soft point-
wise selection is computed as:

o s em(Qi O(K); Vi (10,

-
> exp(Qi- ¢(K);)

In addition, we compare our soft point-wise attention
block with the original non-local block and other optimiza-
tion methods [Huang er al., 2019b; Huang er al., 2019a;
Zhang et al., 2020] in Figure 2.

3.3 Implementation

Training. During the training time, the SPTD2 will be
extended into a Siamese Network to simultaneously gen-
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erate the keypoints detection score maps {S,S’} and de-
scriptors {D, D’} of the correspond image pair {I,I'} €
R3*HXW = Our SPTD2 is independent of the backbone
network, we use the VGG16_BN to evaluate our models
during the experiments. In practice, the first feature map
Fl' e REXH/2xW/2 and the feature maps smaller than
REXH/16xW/16 are dropped when building the transformer
pyramid. For every input image pair, we select a random
200 x 200 crop centered around one correspondence.

Testing. During the testing time, the single image is fed into
the model to generate the detection score maps and descrip-
tors with the original resolution. All detection results will be
aligned with the original image resolution and the descrip-
tions are then bilinear interpolated at the refined positions. A
non-maximum suppression is also applied on the multi-head
detection score maps to remove the overlapping keypoints.

Loss design. As illuminated in the Figure 1, the loss func-
tion integrates the detection loss L4.; and the description loss
L ges. The detection loss is formulated as:

Laer(IT) =Y wi(Le(S, ") +r(Ly(S") + Ly(5))),

Y

where the £, computes the cosine similarity of the corre-

spond detection score maps and the £,, tries to maximize the

local peak of the detection score maps [Revaud et al., 2019].
The description loss is written as:

ll

M(dl d/l) (12)
/1 el
ceC qeC SlS

Edes I I

where C'is the correspondences between I and I’, S, and S’ lp

are their detection scores, d, and d’ lc are their corresponding
descriptors, and the M (x) is the circle loss [Sun et al., 2020]
for representation learning.

The final loss function is formulated as £gc; + AL ges.

4 Experiments

In this section, we evaluate the performance of the proposed
model on the image matching and visual localization tasks.
We show that the our model can achieve state-of-the-art per-
formance on these tasks. Moreover, extensive experiments
for ablation study show that our SPTD2 is effective.
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Method Pub. | #Features #MatchesL

2px  5px  10px
SIFT 1cv 4.1K - 39.49 49.57 55.15
HesAff + RootSIFT | NIPS17 6.7K 29K |39.99 52.25 60.40
HAN + HN++ ECCV18| 39K 2.0K |42.61 56.85 65.50
LF-Net NIPS18 0.5K 0.2K |38.74 48.69 53.59
SuperPoint CVPRI18 1.7K 0.9K |44.08 59.04 68.09
DELF ICCV17| 4.6K 1.9K |44.73 49.70 58.91

SIFT + ContextDesc | CVPR19 | 4.1K 1.7K  |47.23 58.25 65.33

D2-Net MS CVPR19| 49K 1.7K  19.49 37.78 56.17
R2D2 MS NIPS19 49K 1.7K  |43.35 64.17 75.18
SIFT + LISRD ECCV20| 4.1K - 48.12 57.80 62.50
DISK NIPS20 7.7K 39K - 6980 -

Key.Net ICCV19 - - 40.87 56.04 65.30
D2-Net + Ref ECCV20 - - 54.24 67.62 75.57
ASLFeat MS CVPR20| 4.8K 2.1K [50.10 66.93 76.90
Ours - 5.0K 19K [56.20 72.17 79.80

Table 1: Comparisons on HPatches with the area under the over-
all curve (AUC) up to 2, 5 and 10 pixels error threshold. Our
SPTD2 reaches the state-of-the-art on all thresholds benefiting by
multi-level detection and feature fusion description. Most results are
provided by the authors, which explains why some data are missing.

4.1 Training Details

Datasets. The acquisition of sufficient ground-truth super-
vision to train keypoints detector and descriptor has been a
bottleneck over years due to the ill-defined interest points.
So we treat the keypoints detection and description as a self-
supervised task, to make the detector discover better and eas-
ier keypoints by defining local maxima in the detection score
maps as the target. A similar pipeline as [Revaud et al., 2019]
is developed to obtain dense ground-truth matching data.

The image pairs are composed by two aspects: 1) using the
existing image pairs extracted from the Aachen Day-Night
dataset [Sattler et al., 2018] about the same sceneries and 2)
applying a manual transformation such as homography trans-
form or random rotation on pascal voc and the web images
[Radenovié et al., 2018] to obtain image pairs.

Parameters. A NVIDIA RTX 3090 card is used to train our
model using Adam optimizer with 81 = 0.9, 85 = 0.999 for
30 epochs on the datasets. The initial learning rate is set to
le—* and decayed to 5¢~® in 30 epoch with 8 batch size. The
testing is conducted on the same machine. The r and A in
loss function are set to 0.5 and 1, respectively. The multi-
level balance parameters w; in Equ.(11) and Equ.(12) are all
setto 1.

4.2 Image Matching
We first evaluate our SPTD2 on the image matching task.

Datasets. To compare with other methods fairly, our
method is evaluated on the HPatches dataset [Balntas et al.,
2017] including 116 different sequences of 6 images with ac-
curate homography. To compare with other methods fairly, 8
high-resolution sequences are also excluded, leaving 52 and
56 sequences with illumination or viewpoint variations re-
spectively.

Evaluation metrics. For fair comparison, we utilize three
metrics, mean matching accuracy (MMA), keypoint repeata-
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Figure 3: The curves of mean matching accuracy (MMA) evalu-
ated at multiple error thresholds on HPatches dataset. “MS” denotes
that the multi-scale inference is enabled. Note that several meth-
ods in Table 1 are not plotted here because of no code or cache file
released.

baseline FU IA UA DA RF | MMA(%) MS(%) REP(%)
v 62.26 25.57 63.11
v v 74.00 28.37 67.38
v v v 76.66 39.37 71.16
v v v v 71.71 43.13 73.89
v v v v v 71.77 44.32 75.86
v v v v v v 78.33 44.76 78.28

Table 2: Ablation study on different attention modules. The
FU and RF represents the feature uniformization and residual fu-
sion, respectively. The IA, UA and DA is the in-scale, up-scale and
down-scale attention modules. The results are all with the 3px error
threshold.

bility (Rep) and matching score (MS) as evaluation metrics
following [DeTone et al., 2018]. The correct match is re-
quired to be a mutual nearest neighbor during brute-force
searching. To evaluate the metrics fairly and accurately, the
public code from [Dusmanu et al., 2019] and [Luo et al.,
2020] is used to compute the corresponding metric.

Comparisons with other methods. We compare the mean
matching accuracy with the state-of-the-art methods, namely
DELF [Noh et al., 20171, SuperPoint [DeTone et al., 20181,
multi-scale D2-Net [Dusmanu et al., 2019], R2D2 [Revaud
et al., 2019], ASLFeat[Luo et al., 2020], LISRD descriptors
with SIFT detector [Pautrat ef al., 2020], DISK [Tyszkiewicz
et al., 2020], Key.Net[Barroso-Laguna et al., 2019], D2-Net
and Refinement[Dusmanu et al., 2020], HardNet++ descrip-
tors with HesAFFNet regions and [Mishkin et al., 2018]
(HAN + HN++), etc. Unless otherwise specified, we report
either results reported in original papers, or derived from au-
thors’ public implementations with default parameters. We
limit the maximum number of features of our method to 5K.

As shown in the Table 1 and Figure 3, SPTD2 achieves
overall the best results regarding both illumination and view-
point variations at different thresholds. Specifically, SPTD2
delivers remarkable improvements upon other methods es-
pecially for low range error thresholds, which in particular
demonstrates that the keypoints localization error has been
largely reduced. Besides, our method notably outperforms
the more recent ASLFeat (78.33 vs 72.64 for MMA @3 over-
all), which also applied multi-level detection.
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Method Resolution Memory(MB)  GFLOPs
SA 2168 619
DANet 2339 1110
RCCA  2048x128x128 427 804
ISSA 252 386
Ours 364 359

Table 3: Efficiency comparison given input feature map of size
2048 x 128 x 128 in inference stage.

Ablations on Attention module. We further conduct di-
agnostic analysis to verify the effectiveness of the essential
modules in our approach. We use the VGG-structure as the
default backbone for all the studies. The performance of our
baseline model with default parameters is given in the first
row of the Table 2. The effect of each essential component of
our SPTD2 on image matching task is shown as follows.

Ablations on soft point-wise transformer. As shown in
Table 3, applying the soft point-wise attention module re-
duces the computation complexity and GPU memory com-
pared to original attention module [Wang er al, 2018],
RCCA [Huang et al., 2019b], DANet [Fu et al., 2019],
ISSA [Huang er al., 2019al. We further verify the impact
of the detection threshold in the soft point-wise transformer.
The detection threshold determines the number of keypoints
which will be kept in the Keys set. The computation complex-
ity will be higher with lower threshold. While derisory key-
points will influence the performance of the attention mod-
ule to capture enough information. It’s interesting that the
soft point-wise attention module will degrade into the origi-
nal attention module when the threshold is set to 0. We then
choose the keypoints with the top-2K scores when the thresh-
old is lower than 0.8 because of “CUDA out of memory”. We
set the threshold to {0.6,0.8,0.9,0.95} and get correspond-
ing MMA @3 at {78.33,78.31,74.56,72.37}. So we set the
threshold at 0.8 to reach the best balance of performance and
computation load.

4.3 Visual Localization

To further verify the effectiveness of the novel SPTD2, we
evaluate it on the task of visual localization, which aims to
estimate the camera pose within a given scene using images
sequence. The task was proposed in [Sattler ez al., 2018] to
evaluate the performance of local features in the context of lo-
calization. To evaluate our method fairly, we also produce the
public format of keypoints and compare with other methods
on the official evaluation server.

Datasets. We resort the Aachen Day-Night dataset [Sat-
tler et al., 2018] to demonstrate the effect on visual localiza-
tion tasks, which contains images from the old inner city of
Aachen, Germany. The key challenge in the dataset lies on
matching images with extreme day-night changes.

Evaluation metrics. The evaluation is done using The Vi-
sual Localization Benchmark, which takes a pre-defined vi-
sual localization pipeline based on COMLAP [Schonberger
and Frahm, 2016]. The successfully localized images are
counted within three error tolerances (0.25m, 2°) / (0.5m, 5°)
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Method | #Features | Dim | 0.25m, 2°|0.5m, 5° | 5m, 10°

D2-Net | 19.3K | 512 83.7 91.6 96.5

Day R2D2 10K 128 86.9 94.3 97.2
ASLFeat 10K 128 85.2 93.2 96.1

Ours 10K 128 87.1 954 98.8

D2-Net 19.3K | 512 80.6 87.8 96.9

Night V1.0 R2D2 10K 128 79.6 87.8 95.9
ASLFeat 10K 128 82.7 87.8 95.9

Ours 10K 128 78.8 89.3 99.0

D2-Net | 19.3K | 512 68.1 85.9 97.9

Night V1.1 R2D2 10K 128 69.6 84.3 97.9
ASLFeat 10K 128 72.8 85.3 96.9

Ours 10K 128 72.5 87.3 97.9

Table 4: Performance on Aachen Day-Night dataset for visual lo-
calization. The benchmark website updates the evaluation metrics
this year. The results are derived from authors’ public implementa-
tions with default parameters.

/ (5m, 10°), representing the maximum position error in me-
ters and degrees, respectively.

Results. Our SPTD2 is compared with the typical joint de-
tector and descriptor methods D2-Net, R2D2 and ASLFeat.
Note that there exist some greater scores in the benchmark
website, while they use greater matching strategy, which
is unfair to evaluate. Here all methods are evaluated with
the default matching strategy to compare fairly. As shown
in Table 4, our SPTD2 performs surprisingly well under
challenging illumination changes especially for strict accu-
racy metrics for the estimated pose. While in the night en-
vironment setting, the cross-scale attention modules bring
some noises from the non-discriminative dark background,
which hinders our performance. On the other hand, meth-
ods in Table 4, build image pyramid (MS) in inference to
improve the localization performance, while making low run-
ning speed. We employ the multi-scale detection and descrip-
tion with the multi-level detector and descriptor in decoder,
which is over 2 times quicker than MS operation. With 2!/4
scaling-factor MS, we improve the localization accuracy with
{+1.7%,4+2.3%,+1.8%} for (0.25m, 2°).

5 Conclusions

In this paper, we propose a novel transformer-based archi-
tecture to jointly learn the local features descriptor and de-
tector. The novel soft point-wise transformer simultaneously
mines the long-range intrinsic and cross-scale dependencies
of local features. The cross-scale attention module and multi-
level decoder can guarantee the keypoints localization accu-
racy and discriminative descriptions especially in repetitive
regions. Compared to other attention optimization methods,
the soft point-wise attention remarkably decreases the com-
putation and memory complexity. Experiments show SPTD2
significantly outperforms prior state-of-the-art methods.
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