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Abstract

Point Cloud Sampling and Recovery (PCSR) is
critical for massive real-time point cloud collection
and processing since raw data usually requires large
storage and computation. This paper addresses
a fundamental problem in PCSR: How to down-
sample the dense point cloud with arbitrary scales
while preserving the local topology of discarded
points in a case-agnostic manner (i.e., without addi-
tional storage for point relationships)? We propose
a novel Locally Invertible Embedding (PointLIE)
framework to unify the point cloud sampling and
upsampling into one single framework through bi-
directional learning. Specifically, PointLIE decou-
ples the local geometric relationships between dis-
carded points from the sampled points by progres-
sively encoding the neighboring offsets to a la-
tent variable. Once the latent variable is forced
to obey a pre-defined distribution in the forward
sampling path, the recovery can be achieved ef-
fectively through inverse operations. Taking the
recover-pleasing sampled points and a latent em-
bedding randomly drawn from the specified distri-
bution as inputs, PointLIE can theoretically guar-
antee the fidelity of reconstruction and outperform
state-of-the-arts quantitatively and qualitatively.

1 Introduction

Recently, as a fundamental representation of 3D data, point
cloud collected by various depth scanners or LiDAR sensors
has been applied to diverse domains, such as autonomous
driving [Yan e al., 2020a] and cultural heritage reconstruc-
tion [Xu et al., 2014]. However, with the increasing capabili-
ties of 3D data acquisition, gigabytes of raw point data can be
generated per second, e.g., Velodyne HDL-64E can collect up
to 2.2 million points per second. Therefore, large-scale point
clouds pose great challenges to the subsequent transmission,
storage and interconnection. Thus, the Point Cloud Sampling
and Recovery (PCSR) task becomes critical for massive real-
time point cloud collection and processing, which aims to
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Figure 1: Illustration of our PointLIE. It incorporates the sam-
pling and reconstruction processes into the same network, where the
forward path transforms a dense point cloud to a sparse sub-point
set and a case-agnostic latent variable made to follow a specific dis-
tribution. In the reverse path, a randomly drawn variable and the
adaptively sampled point cloud are reconstructed to a dense one.

sample meaningful points from dense point cloud to com-
press the scale of the original point cloud while preserving
the local topology of discarded points for reconstruction.

In point cloud research, significant progress has been made
in the single-track task for better compressing or upsampling
the input point clouds, i.e., compressing point cloud with
more pleasure surface approximations [Schwarz et al., 2018]
or upsampling sparse point cloud to dense point cloud [Yu
et al., 2018; Yifan et al., 2019]. However, bi-directional
PCSR remains challenging for several reasons: (1) Tradi-
tional methods compress point cloud through gradual sparse-
ness. The global geometric configuration is lost in the in-
termediate process, making the intermediate results useless
and invisible to downstream applications; (2) The relation-
ship between data points requires huge storage. (3) The sim-
ple upsampling methods usually produce unsatisfactory re-
covery results due to the loss of local structure information.

To deal with the above issues, we propose a novel scheme,
named Locally Invertible Embedding (PointLIE), to achieve
adaptive sampling and faithful reconstruction via an invert-
ible network for efficient storage, intermediate visibility and
effective recovery. Inspired by the invertible neural network
(INN), we design an INN-based framework to record the
inter-points relationships without extra storage. As shown
in Fig. 1, in the sampling path, PointLIE adaptively sam-
ples viewable and recovery-friendly sub-point clouds with
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arbitrary scales while preserving the local offsets to the dis-
carded points recursively. Furthermore, it explicitly embeds
the above local topology of the discarded points into a latent
variable constrained to follow a specified distribution. There-
fore, when point cloud recovery is needed, PointLIE could
reconstruct a faithful dense point cloud simply by sampling a
randomly-drawn latent variable from the above distribution
and traversing the inverse path of the network together with
the sampled sub-points. In this way, the original point cloud
can be better restored without introducing additional storage.

In practice, PointLIE contains several Decomposition
Modules and Point Invertible Blocks. The former is adopted
to decompose the input point features into sampled point fea-
tures and offsets to the discarded ones. After this, the num-
ber of point features is halved, while the dimension of chan-
nels increases exponentially due to higher-order offsets (i.e.,
subtracting the sampled point features from the discarded
ones recursively). By applying an elaborately designed cross-
connection architecture, Point Invertible Blocks could further
characterize the mutual correlation between the sampled fea-
tures and their offsets in each sampling scale. Following the
aforementioned recursive process, PointLIE could encode all
the lost information in each sampling scale into a locally in-
vertible embedding. In the training phase, we force such an
invertible embedding to conform to a pre-specified distribu-
tion (e.g. isotropic Gaussian) by using a distribution fitting
loss. Due to the reversible nature of PointLIE, the recovery
process can be conducted by passing through PointLIE in-
versely as illustrated by the green arrows in Fig. 1.

The main contributions of this paper are three folds. 1) To
the best of our knowledge, this is the first work that adopts
INN for the PCSR task. A novel PointLIE scheme is pro-
posed to model the sampling and upsampling processes into
the same network through bi-directional learning. 2) We pro-
pose a Decomposition Module to decouple the input point
features into the sampled ones and offsets to their correspond-
ing local neighbors, and Point Invertible Blocks to update
them in each sampling scale. Meanwhile, a recursive invert-
ible embedding is proposed to transform the offsets of local
neighbors into a latent variable that obeys a specific distri-
bution. 3) Extensive experiments demonstrate that PointLIE
outperforms the state-of-the-art point cloud sampling and up-
sampling methods both quantitatively and qualitatively.

2 Related Work
2.1 Sampling Methods for Point Clouds

Traditional sampling methods, such as Farthest point sam-
pling (FPS), have wide applications in various point cloud
frameworks [Qi et al., 2017; Wu et al., 2019], since they can
sample relatively uniformly distributed points. However, they
do not consider the subsequent processing of the sampled
points and may result in sub-optimal performance. Recently,
there are some alternative sampling methods proposed to bet-
ter capture the information of point clouds. [Nezhadarya et
al., 2020] introduced a critical points layer, which retains the
critical points with the most active features to the next net-
work layer. [Yan et al., 2020b] adaptively shifted the sam-
pled points to objects’ surface and thus increased the robust-

ness of the network in noisy point clouds. Other methods
jointly consider sampling with downstream tasks. For ex-
ample, [Dovrat et al., 2019; Lang et al., 2020] introduced a
task-specific sampling, which can improve the results through
training with task-specific loss. However, these methods im-
prove the reconstruction mainly by joining the loss of spe-
cific tasks, while the geometric information lost in discarded
points during sampling is not considered.

2.2 Upsampling Methods for Point Clouds

Point cloud upsampling aims to improve the point distribu-
tion density and uniformity. [Yu er al., 2018] first proposed
the neural network PU-Net, which learns point-wise features
by PointNet++ [Qi er al., 2017], expanding the point set in
feature space, and reconstructs an upsampled point set from
those features. 3PU [Yifan et al., 2019] is a multi-step pro-
gressive network, which learns different levels of details in
multiple steps. However, due to its progressive nature, it re-
quires a large amount of computation and more data to super-
vise the intermediate output of the network. Recently, a Point
Cloud Generative Adversarial Network (PU-GAN) [Li et al.,
2019] is designed to learn the distribution of the upsampled
point set through adversarial learning. Upsampling is an ill-
posed problem since a downsampled point set corresponds to
multiple plausible dense point clouds. Existing deep-learning
based methods directly model this ambiguous task by learn-
ing the mapping from a sparse point set to a dense one under
the supervision of the ground truth dense point set. However,
these methods fail to yield faithful complete reconstruction
results, since the valuable information lost in the sampling
process is ignored and irreversible.

2.3 Invertible Neural Network

Obtaining the measurable quantities (sampled points) from
the given hidden parameters (sampling methods) is referred to
as the forward process (i.e., sampling). Correspondingly, the
inverse process requires to infer the hidden states of a system
from measurements (i.e., reconstruction). The inverse pro-
cess is often intractable and ill-posed because valuable infor-
mation is lost in the forward process [Ardizzone ef al., 2018].
To fully assess the diversity of possible inverse solutions for
a given measurement, invertible neural networks (INNs) are
employed to estimate the complete posterior of the parame-
ters conditioned by observation, which is widely employed
in both generative models [Dinh et al., 2014; Dinh et al.,
2016; Kingma and Dhariwal, 2018; Behrmann et al., 2019;
Chen et al., 2019] and classification tasks [Jacobsen et al.,
2018]. Unlike traditional deep neural networks, which at-
tempt to directly model the ambiguous problem of inferring
the non-unique feasible result, INNs focus on learning the
determinate forward process, using latent variables to capture
the lost information. Due to the invertibility, the inverse pro-
cess can be obtained for free by running through the network
backwards.

3 Methods

3.1 Task Overview

Given a dense point set Q = {¢;}¥,, the goal of point cloud
sampling and recovery (PCSR) with scale factor r is to adap-
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Figure 2: The internal structure of the Decomposition Module and Point Invertible Block. (a) illustrates the Decomposition Module,
which decomposes the input point features into the sampled ones and their offsets to the k nearest neighboring features in the discarded
points. (b) shows the Point Invertible (PI) Block, which updates the feature offsets and sampled point features into their new counterparts.

tively sample it into a sparse sub-point cloud P = {}; };V:/f

without any extra preservation, and then reconstruct a dense
point cloud 0= {(ji}ﬁl from P. To achieve the above goal,
PointLIE is proposed as shown in Fig. 1. The forward path
transforms the dense point cloud into sampled points P and
a local invertible embedding 2z containing the geometric in-
formation lost during sampling. Due to the reversible nature
of PointLIE, the inverse path can reconstruct a faithful dense
point cloud for free by running through the PointLIE back-
wards. The whole process can be formulated as,

fo(Q) = (P,z2), st. 2 ~ p(2), )
fol(P2¥) = Q, 2% ~pl2). )

where fy(-) denotes the forward path of our model, and z
is the locally invertible embedding generated in the forward
path, which is made to follow a specific distribution p(z).
Note that here z ~ p(z) is case-agnostic instead of case-
specific (i.e., z ~ p(z|P)). Therefore, there is no need to
store z after sampling, and we can just randomly draw an em-

bedding z* from the distribution p(z) in the inverse path. P
and z* are used to reconstruct a faithful Q through the inverse
process f, ' (-).

3.2 Invertible Architecture

To achieve the invertible operations, we firstly construct a
Rescale Layer by stacking a Decomposition Module and M
Point Invertible Blocks (P1 Blocks) detailed in Fig. 2. When
dealing with the PCSR with the scale factor r, we stack s
Rescale Layers (s=|log, 7]) to obtain the entire framework
of PointLIE as illustrated in Fig. 3.

Decomposition Module

As shown in Fig. 2 (a), during the sampling process, the de-
composition module decouples the lost geometric informa-
tion contained in discarded points from the sampled points.
Specifically, for input point features with the shape of (V, d),
we first conduct farthest point sampling (FPS) to select N/2
points while the remaining N/2 points are regarded as dis-
carded points. To make the network preserve the informa-
tion in discarded points, for each sampled point ¢; € Q, we
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find its k nearest neighbors in the discarded points and de-
note the spatial offsets from g; to its neighbors as Q,.. Here
we use offsets rather than spatial coordinates of its neighbors
since deep neural networks are more capable of learning the
residues, and it is also easier to make the residues follow the
isotropic Gaussian distribution. The decomposition module
outputs two branches of features, i.e., offsets to k nearest fea-
tures Q¥ with shape (N/2,d x k) and sampled point features
QY with shape (N/2,d).

Point Invertible Block

To further characterize the representation of the two branches
during the forward path, we design a point invertible block
to update features, inspired by the coupling layer in gener-
ative models [Dinh et al., 2014; Dinh et al., 2016; Xiao et
al., 2020]. As shown in Fig. 2 (b), each PI block takes two
branches as input (i.e., the 1/2 sampled point features Q, and
their kNN offsets Q') and generates updated features Q'+
and offsets Q!! by Eq. (3) (4),

Ot = 9l @ exp(QL) + F(QL), 3)
ot = 9l @exp(G(QLT)) + H(QL), 4)

where [ denotes passing through the [-th PI block, and F,
G, H are three independent nonlinear transformations. We
use several stacked conv1d with the nonlinear activation for
F, G, and the dense feature extractor in [Yifan et al., 2019]
for H. PI blocks only enhance the representation of sampled
features and neighboring offsets gradually, while the shapes
of inputs and outputs of each PI block remain unchanged.

Recursive Offset Residue Embedding

Fig. 3 illustrates the overall bi-directional pipeline of
PointLIE for the PCSR task. By stacking s rescale layers,
where each of them contains a decomposition module and M
PI blocks, we construct a hierarchical structure for PCSR with
arbitrary scales. For each rescale layer, taking point features
with shape (N, d) as input, it will generate sampled features
with shape (N/2,d) and feature offsets to k nearest neigh-
bors with shape (N/2, k x d). Then a channel-wise concate-
nation is conducted to merge the sampled features and their
neighboring offsets to generate new point features. These
‘higher-order’ point features will continue to be input to the
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Figure 3: Illustration of the overall pipeline of PointLIE. The black solid and grey dashed arrows indicate the flow of sampling and
reconstruction respectively. During the sampling path, the lost information contained in the offsets to neighboring features are encoded into
a latent variable z following the distribution p(2) by passing through s Rescale Layers. Composed of a Decomposition Module and multiple
Point Invertible Blocks, each Rescale Layer samples the point set by half. The reconstruction can be achieved through reverse operations.

next rescale layer. Therefore, the final embedding can be ex-
panded to a series of high-order offsets recursively. Q and
OM generated by the last Rescale Layer are treated as the

adaptively sampled sub-point cloud P and the embedding z.

Inverse Reconstruction Process
To reconstruct the original dense point set, we use the adap-
tively sampled point set P and a randomly-drawn embedding
* ~ p(z) as two branches of input to the reverse path of
PointLIE (i.e., rescale layer s, s — 1, ..., 1) as indicated by the
gray dashed arrows in Fig. 3. In each rescale layer, they will
also flow in a reverse direction (i.e., PI block M, M — 1, ...,
1, decomposition module).

The inverse operations of the PI Blocks and the decompo-
sition module are shown in Fig. 2 of supp. In the reverse path,
the ({4 1)-th PI block aims to recover the neighboring offsets
Q! and the sampled features Q' from Q!! and Q''. Con-
sidering the inputs Q! Q\+1 with shapes (N, k x d) and
(N, d), the reverse process of Eq. (3)(4) can be expressed as,

oL = (O — (M) @exp(—G(QLTY)), ()
QL = (O — F(QL)) ®exp(—QL). (6)

After reversely passing through M PI blocks, the output
Y. Q% will flow into the decomposition module reversely In

detall QO will be evenly split into k offset matrices {QT l 1

along the channel dimension, where Qr with shape (N, d)
represents the offsets to the i-th nearest neighbour for each
point in QY in the discarded points. Then element-wise ad-

dition will be conducted between each fo) and QY respec-
tively, obtaining features of recovered discarded points Qg
with shape (kN,d). Q4 will be concatenated with Q¥ in a
point-wise manner to form a candidate recovered point set Q.
with shape ((k + 1) x N, d), whose first three dimensions in
d record the spatial coordinates. To guarantee the uniformity
of the reconstructed points, we use FPS to select 2V point
features from (). based on their coordinates.

Analogously, these x 2 reconstructed point features will be
evenly split into (k + 1) parts, where the first part and the
remaining k parts are taken as the sampled point features QM
and the neighboring offsets O respectively. Then, they will
be fed into the next reversed rescale layer to conduct another

x 2 reconstruction. Supported by Theorem 1, a faithful dense
point cloud can be reconstructed progressively. The proof is
provided in the supp.

Theorem 1.  Suppose the generated invertible local embed-
ding z is subject to a latent distribution p(z). In the recovery
process, by randomly sampling a z* from p(z) and passing it
through the reverse path, the reconstructed dense point cloud

Q will necessarily conform to the distribution of the real point
cloud p(Q).

3.3 Training Objectives

To improve the reconstruction result, PointLIE models the bi-
directional transformation between the dense point cloud Q
and the sampled point cloud P with a latent distribution p(z).
Therefore, the total loss contains the following parts.

Sparse Point Sampling Loss

Since the generated sampled point cloud P is not the subset
of @, we adopt the Earth Mover’s distance loss (EMD) [Fan

et al., 2017] L to restrict P to approach P.
Esam - ‘Cemd(,P 7) mln Z Hpj

where P denotes the ground truth sub-point set uniformly
sampled from the original dense point set Q by FPS, and

¢ : P — P is a bijective mapping.

(B2, (D

Dense Point Reconstruction Loss

To reconstruct finer results, besides using EMD loss to restrict
the geometric details of the predicted sub-point set P, the re-
constructed point set O should also be uniformly distributed

on the surface of objects, thus repulsion loss Ly [Yu et al.,
2018] and uniform loss Ly [Li et al., 2019] are used to dis-

tribute the recovered point set o) uniformly. So the total loss
for reconstruction is formulated as,

L:rec = Aemd£emd(@7 Q) + )\rep['rep(QA) + )\uni»cuni(QA) (8)

Distribution Fitting Loss

Distribution fitting loss is used to encourage the distribution
of the generated local embedding f5(Q) to approach the la-
tent distribution p(z), which is the sufficient condition for the
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Method Sampling Network Scale factor 4 (10™2) | Scale factor 8 (10™2) | Scale factor 16 (10~%)
mode size (mean) | CD HD P2F CD HD P2F CD HD P2F
PU-Net FPS 16.5 MB 049 478 881 | 092 1021 1492 | 1.05 1222 17.38
3PU FPS 92.5 MB 041 486 272 | 054 891 368 | 1.02 1489 5.94
PU-GAN FPS 16.7 MB 024 316 197 | 0.75 9.02 457 | 0.84 1429 8.15
PU-Net SampleNet 21.2 MB 049 495 9.02 | 0.89 10.19 1450 | 1.04 12.55 18.88
PU-GAN | SampleNet 21.4 MB 023 2.89 193 | 071 8.03 457 | 0.80 1496  8.06
PointLIE - 24.6 MB 021 171 220 | 035 4.68 337 | 0.61 9.20 6.80

Table 1: Performance comparison of PointLIE with the state-of-the-art point cloud sampling and reconstruction methods. Bold denotes the

best performance.

reconstructed point set Q to follow the real distribution of
the original dense point set () as proved in the Theorem 1.
In practice, the cross-entropy loss (CE) is employed to mea-
sure the difference between the distributions of the generated
embedding f7(Q) and p(z). Here p(z) is set as an isotropic
Gaussian distribution,

Lgis = CE[f§[p(Q)], p(2)] = —Ejzp(q) [log p(2)]
= —E,q)llogp(z = f5(Q))].

Compound Loss

Overall, we train our PointLIE in an end-to-end manner by
minimizing the total loss £ as follows,

L= )\samﬁsam + /\recﬁrec + )\disﬁdis-

(€))

(10)

4 Experiments
4.1 Dataset and Metrics

To fully evaluate the proposed PointLIE, we compared our
method with the state-of-the-art methods on PU-147 [Li et
al., 2019] dataset, which follows the official split of 120/27
for our training and testing sets. We first used the Poisson
disk sampling (PDS) to uniformly sample 8192 points from
each original mesh as our ground truth dense point set (GT).
Then we used different scale factors (i.e., 4, 8 and 16), and
sampling modes (i.e., FPS and learnable sampling methods)
to sample sub-point cloud from GT, and compared the recon-
struction results with GT. To quantitatively evaluate the per-
formance of different methods, three commonly-used metrics
are adopted, i.e., Chamfer distance (CD), Hausdorff distance
(HD) and point-to-surface distance (P2F). The lower the met-
ric values are, the better the reconstruction results are.

4.2 Implementation Details

Under the premise of balancing efficiency and effectiveness,
we set PI block number M as 8 in the 4 x scale task, and M
as 4 in the rest 8 x and 16 x tasks. Furthermore, we set k£ as 3
to ensure that the information in the discarded points can be
sufficiently preserved. More details are shown in the supp.

4.3 Quantitative Results

Point Cloud Sampling and Recovery. In Tab. 1 we com-
pared the results of PCSR with recent state-of-the-art meth-
ods: PU-Net [Yu et al., 2018], 3PU [Yifan et al., 2019] and
PU-GAN [Li ef al., 2019]. To fairly compare with previous

Scale 4 (10™3) | Scale 16 (10~2)
Method CcD HD | CD HD
PU-Net 052 737 | 246 1437
3PU 072 894 | 217 1267
PU-GAN(-) | 0.57 725 | 220 18.82
PU-GAN 028 4.64 | 207 1659
PointLIE 032 493 | 1.98 12.08

Table 2: Performance comparison of PointLIE with the state-of-the-
arts for upsampling, where PU-GAN (-) denotes the results of PU-
GAN without the discriminator. Bold denotes the best performance.

methods, we used different sampling modes to sample the
sub-point clouds (i.e., FPS and adaptive sampling [Lang et
al., 2020]). The upper and lower part of Tab. 1 show the re-
sults by using FPS and the learnable sampling respectively.
Among all, our PointLIE achieved the best results for most of
the evaluation metrics, especially for large scale PCSR tasks
(x8 and x16). Furthermore, we compared with the state-
of-the-art adaptive sampling methods (i.e., SampleNet) com-
bined with the most appealing upsampling methods. We used
the official codes of SampleNet [Lang et al., 2020] and jointly
trained it with the downstream upsampling methods (i.e., PU-
Net and PU-GAN). The results show that SampleNet cannot
effectively improve the reconstruction performance.

Point Cloud Upsampling. Our PointLIE can also be used
as a general point cloud upsampling framework by feeding
a sparse point cloud into the inverse stream of the trained
model. For a fair comparison, we followed the experiment
setting of [Li et al., 20191, feeding randomly sampled 2048
or 512 points to predict 8192 points. As shown in Tab. 2, our
PointLIE achieved comparable results in all evaluation met-
rics. Particularly, our results by far exceed all previous meth-
ods without adversarial learning (e.g., PU-GAN (-)), and even
outperforms the complete PU-GAN in x16 task. This re-
sult confirms that the performance improvement of PU-GAN
mainly comes from the discriminator rather than the model
architecture itself, while our architecture design can achieve
superior upsampling results for both dense and sparse input.

4.4 Qualitative Results

We also compared our qualitative results with PU-Net, 3PU
and PU-GAN for PCSR on different scales. Here PU-Net
and PU-GAN took the points sampled by SampleNet as in-
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Figure 4: Comparing the point cloud sampling and recovery (PCSR) and surface reconstruction results produced by different methods.

puts. Fig. 4 shows the visual results of PCSR and surface
reconstruction by [Kazhdan and Hoppe, 2013]. As shown in
Fig. 4, PointLIE can reconstruct more fine-grained details, es-
pecially for local geometric shapes (e.g., human hands, bird
claws and dragon horns), while other methods tend to pro-
duce more noisy and nonuniform point sets, resulting in more
artifacts and ambiguities on the reconstructed surfaces.

4.5 Ablation Study

To further demonstrate the effectiveness of our proposed
method, we design an ablation study for different training
modes and data feeding. In Tab. 3, we first show the result
produced without bi-directional learning (only training the
inverse process) in the first two rows. These results show
that only using the inverse process during training cannot
make the model learn the distribution of the reconstructed
point cloud. Then, we used the proposed bi-directional train-
ing strategy mentioned above, which made a remarkable im-
provement dealing with randomly or uniformly sampled point
clouds. Finally, when we used the sub-point set adaptively
sampled by our network, further improvement is achieved.

5 Conclusion

We are the first to adopt the INN for the PCSR task and pro-
pose a novel framework PointLIE, which models the sam-
pling and upsampling into the same network through bi-
directional learning. By using decomposition modules and

1350

Model Sample mode | Bi-direction | CD  HD
PointLIE-R Random X 493 16.59
PointLIE-R FPS X 232 758
PointLIE-R Random v 032 493
PointLIE-R FPS v 027 273
PointLIE-R PointLIE-S v 0.21 1.71

Table 3: Ablation study for PointLIE by using different training
modes and inputs, where R and S refer to reconstruction and sam-
pling process respectively. Bold denotes the best performance.

point invertible blocks to decouple the discarded points from
the sampled points and update the features, our PointLIE can
finely restore the original point cloud with a recursive invert-
ible embedding using the reversed operations.
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