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Abstract
In complementary-label learning (CLL), a multi-
class classifier is learned from training instances
each associated with complementary labels, which
specify the classes that the instance does not be-
long to. Previous studies focus on unbiased risk
estimator or surrogate loss while neglect the im-
portance of regularization in training phase. In
this paper, we give the first attempt to leverage
regularization techniques for CLL. By decoupling a
label vector into complementary labels and partial
unknown labels, we simultaneously inhibit the out-
puts of complementary labels with a complemen-
tary loss and penalize the sensitivity of the classifier
on the partial outputs of these unknown classes
by consistency regularization. Then we unify the
complementary loss and consistency loss together
by a specially designed dynamic weighting factor.
We conduct a series of experiments showing that
the proposed method achieves highly competitive
performance in CLL.

1 Introduction
Multi-class classification has been successfully applied in
various real-world applications such as computer vision, nat-
ural language processing, and web advertising. However,
collecting large-scale accurately labeled data is expensive
and thus a critical bottleneck in many tasks. To mitigate
this problem, various weakly supervised learning frameworks
have been studied in recent years, including semi-supervised
learning (SSL) [Miyato et al., 2018; Niu et al., 2013], noisy-
label learning [Han et al., 2018; Feng et al., 2020b], positive-
unlabeled learning [Du Plessis et al., 2014; Kiryo et al.,
2017], partial label learning [Cour et al., 2011; Zhang and
Yu, 2015; Zhang et al., 2017; Feng and An, 2019] and learn-
ing from pairwise similarity data [Bao et al., 2018; Hsu et al.,
2018].

Complementary-label learning (CLL) [Ishida et al., 2017;
Gao and Zhang, 2021] is a recently proposed weakly su-
pervised learning framework where a multi-class classifier is
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learned from training instances each associated with comple-
mentary labels, which specify the classes that the instance
does not belong to. In practice, asking a labeler for selecting
the correct class from the list of all candidate classes is
usually highly time-consuming and even impossible when the
number of classes is large. Fortunately, one may choose one
of the classes randomly and ask labelers whether a pattern
belongs to the chosen class or not, and such a yes/no ques-
tion is obviously easier to be answered. Another potential
application would be data privacy. In some scenarios, col-
lecting data requires asking extremely private questions from
users. This procedure may be difficult or return unreliable
answers because their privacy considerations. Nonetheless, it
would be less mentally demanding if we ask the respondent
to provide some incorrect answers or explain that we will
transform their provided true label to a complementary label
before the data is saved into cloud. Recently, CLL has also
been applied to online learning [Kaneko et al., 2019], semi-
supervised learning [Chen et al., 2020], and medical image
segmentation [Rezaei et al., 2020].

Previous studies of CLL usually focus on unbiased risk
estimator and surrogate loss. Ishida et al. [2017] and Feng
et al. [2020a] show that the ordinary classification risk can
be recovered by their proposed unbiased risk estimator from
only complementarily labeled samples. They also give the-
oretical results with statistical consistency guarantees. Yu et
al. [2018] propose a loss correction method with the help of
complementary label transition matrix. Ishida et al. [2019]
derive a framework with an unbiased risk estimator of the
classification risk for arbitrary losses and models, and fur-
ther improve their method by non-negative correction and a
gradient ascent trick. Chou et al. [2020] propose a surrogate
complementary loss framework, which avoids the extremely
noisy gradient problem encountered in unbiased risk esti-
mator. However, all previous studies neglect the power of
regularization in the training of neural networks. In partic-
ular, current state-of-the-art CLL method [Chou et al., 2020]
achieves the accuracy of 79.82% on CIFAR-10 with one com-
plementary label per instance. As a counterpart, current SSL
method [Xie et al., 2020] that well exploits regularization
techniques, achieves highly competitive results, in which they
use only 4000 labeled instances, compared with supervised
learning.

This paper gives the first attempt to leverage regularization
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techniques to learn with only complementary labels. Fo-
cusing on this general purpose, we propose a novel method
based on consistency training, namely partial-output con-
sistency regularization. By decoupling a label vector into
complementary labels and partial unknown labels, we simul-
taneously inhibit the outputs of these complementary labels
with a complementary loss and penalize the sensitivity of
the classifier on the partial outputs of these unknown classes
by consistency regularization [Tarvainen and Valpola, 2017;
Miyato et al., 2018]. Then we unify the complementary
loss and consistency loss together by a specially designed
dynamic weighting factor. Our method can be easily ex-
tended to tackle both the problems of learning from single and
multiple complementary labels [Feng et al., 2020a]. A series
of experiments demonstrate that our method achieves a new
state-of-the-art. For example, our method achieves 94.29%
accuracy on CIFAR-10 with only one complementary label
per instance, which obtains substantial gain over previous
state-of-the-art of 79.82%. Furthermore, our empirical study
shows that with the help of consistency regularization, the
proposed method obtains comparable performance with the
state-of-the-art SSL framework [Xie et al., 2020].

2 Preliminaries
In this section, we first formalize some notations for ordi-
nary multi-class classification, then introduce the preliminary
knowledge for learning from complementary labels.

2.1 Ordinary Multi-Class Classification
Let X ∈ Rd denote the feature space with d dimensions,
Y = {1, 2, ..., c} denotes the label space with c classes. The
labeled sample (x, y) ∈ X ×Y is sampled from an unknown
distribution p(x, y). The goal of ordinary multi-class classi-
fication is to learn a parameterized function f(x) : X → Rc

that minimizes the classification risk:

R(f) = Ep(x,y)L (f(x), y) (1)

where L : Rc × Y → R is a multi-class classification loss
function. In this paper, we consider a common case where
the function f is a deep neural network with the softmax
output layer. Since the distribution p(x, y) is unknown, we
use the empirical risk R̂(f) to approximateR(f). Assuming
a dataset {(xi, yi)}ni=1 is independently drawn from distribu-
tion p(x, y), then we have

R̂(f) =
1

n

n∑
i=1

L (f (xi) , yi) (2)

2.2 Complementary-Label Learning
Different from ordinary multi-class classification, in CLL, we
are given only a complementary label ȳ for each instance.
rIshida et al. [2017] assume that a complementarily labeled
dataset {(xi, ȳi)}ni=1 is sampled from the following distribu-
tion:

p̄(x, ȳ) =
1

c− 1

∑
y 6=ȳ

p(x, y) (3)

which implies that all other labels except the correct label are
chosen to be the complementary label with uniform probabil-
ities.

In this paper, we consider a more general setting where
each instance is associated with multiple complementary la-
bels, namely multiple complementary-label learning (MCLL)
[Feng et al., 2020a]. Suppose a MCLL dataset is represented
as
{(

xi, Ȳi
)}n

i=1
, where Ȳi is a set of complementary labels

for the instance xi. Let us denote the size of the complemen-
tary label set by a random variable s, which is sampled from a
distribution p(s). Then, we assume that each sample is drawn
from the following distribution:

p̄(x, Ȳ ) =
∑c−1

j=1
p̄(x, Ȳ |s = j)p(s = j), (4)

where

p̄(x, Ȳ |s = j) :=

{
1

(c−1
j )

∑
y/∈Ȳ p(x, y), if |Ȳ | = j,

0, otherwise.
(5)

It is obvious that when p(s=1)=1, the distribution expressed
by Eq.(4) reduces to the distribution in Eq.(3), hence the
MCLL problem results in the single CLL problem. Our goal
is still to learn a classifier that minimizes the classification
risk (1), but only from complementarily labeled training sam-
ples. The empirical risk becomes:

R̂comp(f) =
1

n

n∑
i=1

L̄
(
f (xi) , Ȳi

)
(6)

where L̄ is a specifically designed loss function for learning
form complementary labels.

Feng et al. [2020a] present a loss formulation which gives
unbiased risk estimator by employing any multi-class classi-
fication loss L:

L̄ure

(
f (xi) , Ȳi

)
=
∑
y/∈Ȳi

L(f(xi), y)

− c− 1− |Ȳi|
|Ȳi|

∑
y′∈Ȳi

L(f(xi), y
′)

(7)

When |Ȳi| = 1, which means p(s = 1) = 1, the above loss
function can be directly used in single CLL. As discussed in
[Feng et al., 2020a], this loss formulation is a generalization
of [Ishida et al., 2017] and [Ishida et al., 2019]. Chou et al.
[2020] propose a surrogate complementary loss framework,
which achieves highly competitive empirical results, although
their proposed surrogate losses are biased to the ordinary clas-
sification risk. Different from commonly used losses which
are non-increasing functions of the output of the true class,
surrogate complementary losses need to be non-decreasing
functions of the output on the complementary classes. For
example, a modified log loss which minimizes the output
of the complementary class is one of the baseline surrogate
complementary losses proposed in Chou et al. [2020]:

L̄scl·log (f (xi) , ȳi) = − log(1− fȳi(xi)) (8)
where fy(x) denotes the model output of x on class y.
According to the results of our re-implementation, this sim-
ply modified log loss achieves current state-of-the-art perfor-
mance in single CLL problem.
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3 Methodology
In this section, we give the first attempt to leverage regu-
larization techniques in CLL. We present the overview of
our proposed method in Subsection 3.1, then introduce the
detailed techniques in Subsection 3.2 and 3.3. We discuss a
further extension of CLL framework in Subsection 3.4.

3.1 Partial-Output Consistency Regularization
A recent line of work in weakly supervised learning has been
proposed to utilize unlabeled samples to enforce smoothness
and consistency of the model predictions [Tarvainen and
Valpola, 2017; Miyato et al., 2018; Xie et al., 2020]. Gen-
erally speaking, their proposed methods simply regularize
model prediction outputs to be invariant to small changes
applied to the input space of samples. The core idea of this
framework is intuitive because a good model should be robust
to small perturbations in the input space of samples.

Following this idea, we propose to use consistency reg-
ularization on partial outputs to learn from complementary
labels. Firstly, we decouple the label vector of each sample
into two parts: complementary labels and partial unknown
labels. On these complementary labels, we can minimize the
corresponding conditional probabilities to inhibit the outputs
of the learned model. In recent years, several surrogate com-
plementary losses have been proposed to this end [Chou et al.,
2020; Feng et al., 2020a]. For example, the complementary
log loss (see in Eq.(8)) can be used in single CLL scenario,
and we can extend it to a more generic formulation which can
learn from both single and multiple complementary labels:

L̄log

(
f (xi) , Ȳi

)
= −

∑
y∈Ȳi

log(1− fy(xi)) (9)

Then we employ consistency regularization on the partial
unknown classes to penalize the sensitivity of the classifier
outputs among inputs with small noises. According to the
basic assumption that the outputs of a robust model should not
be significantly affected by natural and small input changes,
one can improve the robustness of the model by minimizing a
divergence metric between the outputs of the original sample
and samples with injected small noises. Xie et al. [2020] sug-
gest that data augmentation methods, which are widely used
for expanding training data size in supervised learning, can
lead to strong performance when used in consistency training
framework. These advanced data augmentation techniques
can preserve the label of the original example while are
diverse and natural. Formally, the objective of partial-output
consistency regularization can be expressed as the following
cross-entropy between the prediction of original input and
augmentations:

L̄consist

(
f(xi) , Ȳi

)
=

−
m∑
j=1

∑
y/∈Ȳi

f̃y(xi) log
(
fy(AUGj(xi))

) (10)

whereAUGj(xi) denotes the j-th augmented version of orig-
inal input xi, and m is the number of augmentations used
for consistency training. The practical implementation of this
augmentation process will be introduced in next subsection.

f̃y(xi) denotes the re-normalized output of xi on class y,
which is difined as:

f̃y(xi) =

{
f̂y(xi)∑

k/∈Ȳi
f̂k(xi)

, if y /∈ Ȳi,
0, otherwise.

(11)

The re-normalized process makes sure that the distribution of
partial outputs on unknown classes is still a valid probability
distribution. Note that we use f̂ , a fixed copy of the current
model, to detach the gradient propagation through f̃(xi),
as suggested by Miyato et al. [2018]. Then we can unify
the complementary loss and consistency regularization loss
together under a single loss function, which is defined as:

L̄total

(
f (xi) , Ȳi

)
=

L̄log

(
f (xi) , Ȳi

)
+ λL̄consist

(
f(xi) , Ȳi

) (12)

where the complementary loss L̄log can be replaced by other
losses like exponential loss or upper-bound log/exponential
loss [Feng et al., 2020a]. The weighting factor λ is used
to balance the complementary loss and the consistency loss,
which will be shown important for stable training in Subsec-
tion 3.3. Finally, we replace L̄ in Eq.(6) by the unified loss
L̄total and learn by minimizing the empirical risk with L̄total.

3.2 Data Augmentation
The augmentations used in Eq.(10) need to be different from
the original input as well as preserve the semantic informa-
tion. In recent years, different augmentation strategies have
been proposed to generate diverse and natural augmentations.
Among existing data augmentation methods, AutoAugment
[Cubuk et al., 2019] is an empirically promising method
which automatically searches for augmentation policies from
PIL, a popular Python image library, by evaluating the quality
of a particular policy directly on the dataset of interest. In this
work, we use the searched policies released by Cubuk et al.
[2019] in our consistency training procedure. Following the
original literature of AutoAugment, we concatenate the best
searched policies into a policy pool, and randomly choose
a policy to produce an augmentation. We additionally use
another promising augmentation technique Cutout [DeVries
and Taylor, 2017] after applying AutoAugment. Although
we restrict our attention to the image classification tasks in
this paper, it is worth noting that for language tasks, back-
translation has been successfully used to generate augmenta-
tions which are diverse while preserving the semantics of the
original sentences [Edunov et al., 2018; Cubuk et al., 2019].

3.3 Dynamic Weighting Factor
The overall objective presented in Subsection 3.1 is a
weighted combination of the complementary loss and the
consistency loss, controlled by a hyperparameter λ. Empir-
ically, we observe that the weighting factor λ significantly
affects the performance of our method. We use an illustrative
experiment to demonstrate this point.

We adopt PreAct-ResNet-18 network [He et al., 2016] as
the base model and train on CIFAR-10 dataset with fixed λ
equal to 0.1 and 1 respectively (the implementation details
are the same with Subsection 4.1). Figure 1 (left) shows
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Figure 1: Test accuracies of PreAct-ResNet-18 network on CIFAR-
10 with different weighting factors. Left: Test accuracy curves
with λ equals to 0.1 and 1 respectively. Solid lines show the mean
accuracies of 5 trials and dashed lines show the best and worst
accuracies among 5 trials. Right: Comparison results with different
weighting schemes.

the mean, best and worst of test accuracies of 5 trials. We
can see that: (1) when using a smaller weighting factor,
which means the unified loss is dominated by complementary
loss, model always achieves better performance in the initial
training stage; (2) when using a larger weighting factor, the
discrepancy of test accuracies between different trials be-
comes significantly larger, and the mean accuracy is much
lower than that trained with smaller weighting factor; (3) the
best performance among 5 trials with λ = 1 is better than that
with λ = 0.1 in the end of training even if it is worse than all
cases with λ = 0.1 in the beginning epochs.

This phenomenon may be caused by the low quality model
outputs in early stage of training. Specifically, in the begin-
ning epochs, model may produce highly random predictions,
thus the consistency loss which involves those low quality
predictions would cause error accumulation problem during
training. This suggests us to use a small weighting factor
in the beginning of training and relatively large one in the
later stage. To this end, we propose a dynamic weighting
scheme which gradually increases this factor during training
epochs. Specifically, we use an increasing function to obtain
this dynamic factor at epoch t:

Λ(t) = min{ t
T ′
λ, λ} (13)

After substituting the fixed weighting factor λ in Eq.(12)
by above function, our method trains with weighting factor
which equals to 0 at the beginning epoch and increases it to
λ at epoch T ′. After T ′ epochs, it keeps a constant λ until
the end of training. We also use an illustrative comparison
between our dynamic weighting scheme and constant weight-
ing scheme to demonstrate the effectiveness of the dynamic
scheme. As is shown in Figure 1 (right), the dynamic weight-
ing scheme achieves high mean accuracy as well as stable
performance across all trials.

3.4 Further Extension
In some particular situations, we may have ordinarily labeled
data in addition to complementarily labeled data. Practically,
asking a labeler for selecting the true label from all candidates
is usually difficult and even impossible in some domains.
Instead, the yes/no question which asks whether an instance
belongs to a specific class is easier to be answered. Based
on this query type, one can choose to iteratively ask labelers

about an instance until its true label is recovered, which re-
sults in a SSL problem. One can also query each instance with
a single time though the true labels may not be recovered.
The latter strategy gives a dataset with two parts: ordinarily
labeled subset and complementarily labeled subset. This par-
ticular learning setting, i.e. learning from both ordinary and
complementary labels, can be considered as an alternative to
SSL, and our consistency training framework can be directly
used in this problem by transiting an ordinary label to c − 1
complementary labels. We will use a particular experiment to
demonstrate the superiority of our method compared with the
SSL framework under same data labeling cost in experiment
section.

4 Experiments
4.1 Experimental Setup
Datasets
To verify the superiority of our method, we conduct ex-
periments on three commonly used image datasets: SVHN,
CIFAR-10 and CIFAR-100. SVHN contains 73,257 train-
ing samples and 26,032 test samples. Both of CIFAR-10
and CIFAR-100 contain 50,000 training samples and 10,000
test samples. SVHN and CIFAR-10 have 10 classes and
CIFAR-100 has 100 classes. We conduct experiments by
considering both the scenarios of single CLL and MCLL.
To generate single complementary label, we randomly select
one of the complementary classes per instance. To generate
multiple complementary labels, we first instantiate p(s) =(
c−1
s

)
/(2c−2), ∀s ∈ {1, ..., c−1}, which represents the ratio

of the number of label sets whose size is s to the number of
all possible label sets. Then for each instance x, we sample s
from p(s), and then sample a complementary label set Ȳ with
size s from p(Ȳ ) = 1/

(
c−1
s

)
.

Comparison Methods
For single CLL, we compare our method with PC [Ishida et
al., 2017], GA [Ishida et al., 2019], Forward [Yu et al., 2018],
SCL-EXP and SCL-LOG [Chou et al., 2020], where SCL
means surrogate complementary loss. We also compare with
two MCLL methods: UB-EXP and UB-LOG [Feng et al.,
2020a], where UB is the short form of upper bounded, since
single CLL can be considered as a special case of MCLL.
For MCLL, except these two native MCLL methods, we also
compare with SCL-EXP and SCL-LOG by extending them
to learn from multiple complementary labels (see in Eq.(9)).
Note that PC, GA, and Forward can also be used in MCLL af-
ter decomposing each sample into multiple samples each with
a single complementary label. However, the empirical results
of [Feng et al., 2020a] showed that UB-EXP and UB-LOG
consistently outperform the decomposition strategy. Thus the
decomposition-based methods are not involved in the MCLL
scenario.

Implementation
Our implementation is based on PyTorch [Paszke et al., 2019]
and experiments were carried out with NVIDIA Tesla V100
GPU. We train the commonly used LeNet-5, PreAct-ResNet-
18 and Wide-ResNet-34-10 with 200 epochs, and use SGD
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Dataset SVHN CIFAR10
Model LeNet-5 PreAct-ResNet-18 PreAct-ResNet-18 Wide-ResNet-34-10

PC [Ishida et al., 2017] 32.13±0.82% 27.16±0.34% 36.97±0.86% 35.01±0.42%
Forward [Yu et al., 2018] 84.51±0.28% 90.83±0.04% 77.22±0.84% 78.69±0.54%
GA [Ishida et al., 2019] 59.75±2.14% 57.83±0.32% 42.19±2.09% 42.32±0.04%

UB-EXP [Feng et al., 2020a] 84.02±0.07% 89.73±0.04% 75.00±1.43% 77.86±0.99%
UB-LOG [Feng et al., 2020a] 83.48±0.62% 90.10±0.10% 75.02±1.56% 77.29±1.10%
SCL-EXP [Chou et al., 2020] 83.63±0.64% 89.45±0.46% 77.51±0.33% 79.17±0.50%
SCL-LOG [Chou et al., 2020] 84.45±0.37% 90.80±0.28% 79.82±0.43% 81.55±0.28%

Ours 93.12±0.23% 96.69±0.04% 94.29±0.16% 95.72±0.15%

Table 1: Comparison of classification accuracies between different methods using different network architectures on SVHN and CIFAR-10
with one complementary label per instance. The results (mean±std) are reported over 5 random trials.

Dataset SVHN CIFAR10 CIFAR100
SCL-EXP 90.46±0.11 91.99±0.17 45.36±1.12

SCL-LOG 90.27±0.12 92.86±0.08 46.82±0.64

UB-EXP 90.27±0.24 91.27±0.10 28.03±1.42

UB-LOG 89.90±0.25 92.51±0.11 47.92±2.62

UB-LOG with A&C 94.42±0.01 93.57±0.16 21.94±0.93

Ours w/o Re-norm 95.03±0.07 96.07±0.20 50.49±0.18

Ours 95.01±0.09 96.09±0.15 54.17±0.89

Table 2: Comparison of classification accuracies (%) between dif-
ferent methods on SVHN, CIFAR-10 and CIFAR-100 with multiple
complementary labels associated with each instance. A&C means
AutoAugment and Cutout.

as the opimizer with a momentum of 0.9, a weight decay
of 1e-4, and a batch size 64 in our experiments. We set the
initial learning rate as 0.1 across all datasets and divide it by
a factor of 10 after 100 epochs and 150 epochs respectively.
The hyperparameters used in Eq.(13) are set as T ′ = 100
and λ = 1. The number m of augmented instances used for
consistency training is set to 2 and these augmentations are
generated using the techniques discussed in Subsection 3.2.
For CIFAR-10 and CIFAR-100 we further use three standard
image pre-processing techniques, normalization, horizontal
flipping and random cropping, to all training samples. In
single CLL experiments, we use SCL-LOG as the comple-
mentary loss as is shown in Eq.(12). In MCLL experiments,
we replace the complementary loss SCL-LOG in Eq.(12) by
UB-LOG, which is specifically designed for MCLL.

We re-implement all the comparison methods using the
same baseline image pre-processing techniques, network ar-
chitecture, optimizer and learning policies with our method
except PC and GA, in which we failed to achieve comparable
results using our policies. Hence we maintain the learning
policies reported in their original literatures.

4.2 Experimental Results
Comparison Results
Table 1 presents the comparison results on SVHN and
CIFAR-10 in single CLL scenario. We use different network
architectures according to the complexity of each dataset.
In our experiments, the baseline image pre-processing tech-
niques are adopted in all methods for fair comparison, thus

our re-implementation results are better than the original
results reported in their literatures. Nevertheless, our method
achieves new state-of-the-art results across all cases. On
SVHN, which is a relatively simple and easy dataset, existing
methods can already achieve considerably high accuracies.
With the help of consistency training, we push the state-of-
the-art one step forward. The improvements of performance
are more significant on CIFAR-10, which is a more com-
plex dataset than SVHN. In particular, when using PreAct-
ResNet-18, our method achieves the accuracy of 94.29%,
which is significantly better than the previous state-of-the-art
accuracy of 79.82% by SCL-LOG. Additionally, by learning
with a single complementary label per instance, our method
obtains surprisingly comparable results with ordinary super-
vised learning (see in Table 3).

Table 2 presents the comparison results on SVHN, CIFAR-
10 and CIFAR-100 in MCLL scenario. Here we use LeNet-5
on SVHN and PreAct-ResNet-18 on CIFAR datasets. UB-
LOG with A&C means we additionally apply AutoAugment
and Cutout after the baseline image pre-processing when
learning with UB-LOG. We also compare with a degenerate
version of our method, in which the re-normalization process
(i.e. Eq.(11)) is abandoned. In MCLL experiments, we use
the complementary label generation strategy introduced in
Subsection 4.1, thus the expected number of complementary
labels per instance is c/2. As shown in Table 2, our method
still outperforms all baselines in MCLL scenario. In addition,
the results of UB-LOG with A&C show that simply using
these augmentations in CLL can not give improvements in
all cases.

Parameter Sensitivity Analysis
In Figure 2, we show the learning curves of dynamic weight-
ing scheme and constant weighting scheme with different
factor values. The results are very similar with the illustrative
experiment presented in Subsection 3.3. The model tends to
have unstable performance when adopting larger weighting
factors in the initial stage. This issue is especially serious on
SVHN, on which the mean result with λ = 1 is significantly
incomparable. When using constant weighting scheme, the
preferable values of λ on SVHN and CIFAR-10 vary widely,
which means this value needs to be manually searched from a
validation set in practice. Fortunately, the proposed dynamic
weighting scheme can effectively alleviate this issue. When
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(a) SVHN (b) CIFAR-10

Figure 2: Test accuracy curves with fixed λ as well as dynamic weighting strategy, and comparison results between fixed and dynamic
weighting strategies with different λ. Solid curves show the mean accuracies of 5 trials and light colors show the standard deviation. The
experiments are conducted with LeNet-5 and PreAct-ResNet-18 on SVHN and CIFAR-10 in single CLL scenario.

Method PreAct-ResNet-18 Wide-ResNet-34-10
[Yu et al., 2018] 77.22% 78.69%

[Feng et al., 2020a] 75.02% 77.29%
[Chou et al., 2020] 79.82% 81.55%

Ours 94.29% 95.72%
SSL with 4k Labels 93.77% 95.09%

Full Supervision 96.16% 97.17%

Table 3: Classification accuracy of different methods on CIFAR-10.
Complementary-label learning methods (top) are learned with one
complementary label per instance.

adopting dynamic weighting scheme with λ = 1, we can see
that the mean accuracy is very close to the best one of con-
stant weighting factors on both datasets. For reliable usage,
the hyperparameter λ in our dynamic weighting scheme can
be chosen around 1. We also show the comparison results
between the constant and dynamic weighting schemes with λ
ranging form 0.2 to 1.4, the comparison results demonstrate
that the dynamic weighting scheme is more robust to λ.

Comparison with the SSL Framework
As we discussed in Subsection 3.4, in some particular do-
mains, CLL can be considered as an alternative to SSL. To
empirically verify this point, we re-implement the consis-
tency training-based SSL framework [Xie et al., 2020] with
the same network, learning policies, and data augmentations
of our method. Figure 3 presents the results of our method
trained in single CLL (gray line) and the SSL framework
with controlled number of labels (red line). In addition,
we consider a practical scenario where we can only query
instance-label pairs and obtain the corresponding yes/no an-
swers. Suppose the total query times q = m, where m
denotes the size of dataset. By randomly choosing one la-
bel per instance to ask the labeler, we can obtain a dataset
with m/c ordinarily labeled samples and m(c− 1)/c com-
plementarily labeled samples. Besides, we can iteratively
query the labels for each instance until its true label is re-
covered, which results in 2m/(c+ 1) labeled samples and
m(c− 1)/(c+ 1) unlabeled samples. From this perspective,
we conduct experiments to compare our CLL method with the
SSL framework under same data labeling cost. For SVHN,
we use our method with 7,325 ordinarily labeled samples in
addition to 65,932 complementarily labeled samples, and use
the SSL framework using 13,320 labeled samples in addition
to 59,937 unlabeled samples. For CIFAR-10, we use our

(a) SVHN (b) CIFAR-10

Figure 3: Comparison results between our method and the SSL
framework. We use LeNet-5 and PreAct-ResNet-18 on SVHN and
CIFAR010 respectively.

method with 5,000 ordinarily labeled samples as well as
45,000 complementarily labeled ones, and use 9,090 labeled
samples in addition to 40,910 unlabeled ones in the SSL
framework. As shown in Figure 3, in this special case, our
method (black line) obtains highly competitive performance
compared with the SSL framework.

5 Conclusion
In this paper ,we give the first attempt to leverage the consis-
tency training framework in CLL. We present a unified loss
which simultaneously inhibits the outputs of complementary
classes and penalizes the output sensitivity on the partial un-
known classes. Based on the empirical observation of the im-
portance of weighting factor, we propose a dynamic weight-
ing scheme which helps our consistency training framework
obtain stable and accurate results. We conduct a series of
experiments showing that the proposed method achieves a
new state-of-the-art in CLL. Furthermore, we compare our
method with state-of-the-art SSL framework under same la-
beling cost, which demonstrates that our method is highly
competitive compared with SLL framework.

Acknowledgements
The authors wish to thank the anonymous reviewers for
their helpful comments and suggestions. This work was
supported by the National Key R&D Program of China
(2018YFB1004300), the Postgraduate Research & Practice
Innovation Program of Jiangsu Province (KYCX21 0151),
and the China University S&T Innovation Plan Guided by
the Ministry of Education. We thank the Big Data Center of
Southeast University for providing the facility support on the
numerical calculations in this paper.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3080



References
Han Bao, Gang Niu, and Masashi Sugiyama. Classification

from pairwise similarity and unlabeled data. In ICML,
pages 452–461, 2018.

John Chen, Vatsal Shah, and Anastasios Kyrillidis. Negative
sampling in semi-supervised learning. In ICML, pages
1704–1714, 2020.

Yu-Ting Chou, Gang Niu, Hsuan-Tien Lin, and Masashi
Sugiyama. Unbiased risk estimators can mislead: A case
study of learning with complementary labels. In ICML,
pages 1929–1938, 2020.

Timothee Cour, Ben Sapp, and Ben Taskar. Learning from
partial labels. The Journal of Machine Learning Research,
12:1501–1536, 2011.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmenta-
tion strategies from data. In CVPR, pages 113–123, 2019.

Terrance DeVries and Graham W Taylor. Improved regu-
larization of convolutional neural networks with cutout.
arXiv:1708.04552, 2017.

Marthinus C Du Plessis, Gang Niu, and Masashi Sugiyama.
Analysis of learning from positive and unlabeled data.
NeurIPS, pages 703–711, 2014.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier.
Understanding back-translation at scale. In EMNLP, pages
489–500, 2018.

Lei Feng and Bo An. Partial label learning with self-guided
retraining. In AAAI, pages 3542–3549, 2019.

Lei Feng, Takuo Kaneko, Bo Han, Gang Niu, Bo An, and
Masashi Sugiyama. Learning with multiple complemen-
tary labels. In ICML, pages 3072–3081, 2020.

Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, and
Bo An. Can cross entropy loss be robust to label noise? In
IJCAI, pages 2206–2212, 2020.

Yi Gao and Min-Ling Zhang. Discriminative complementary-
label learning with weighted loss. In ICML, 2021. in press.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu,
Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-
teaching: Robust training of deep neural networks with
extremely noisy labels. NeurIPS, pages 8527–8537, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In ECCV,
pages 630–645, 2016.

Yen-Chang Hsu, Zhaoyang Lv, Joel Schlosser, Phillip Odom,
and Zsolt Kira. Multi-class classification without multi-
class labels. In ICLR, 2018.

Takashi Ishida, Gang Niu, Weihua Hu, and Masashi
Sugiyama. Learning from complementary labels. In
NeurIPS, pages 5639–5649, 2017.

Takashi Ishida, Gang Niu, Aditya Menon, and Masashi
Sugiyama. Complementary-label learning for arbitrary
losses and models. In ICML, pages 2971–2980, 2019.

Takuo Kaneko, Issei Sato, and Masashi Sugiyama. Online
multiclass classification based on prediction margin for
partial feedback. arXiv:1902.01056, 2019.

Ryuichi Kiryo, Gang Niu, Marthinus C Du Plessis, and
Masashi Sugiyama. Positive-unlabeled learning with non-
negative risk estimator. In NeurIPS, pages 1675–1685,
2017.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 41(8):1979–1993, 2018.

Gang Niu, Wittawat Jitkrittum, Bo Dai, Hirotaka Hachiya,
and Masashi Sugiyama. Squared-loss mutual information
regularization: A novel information-theoretic approach to
semi-supervised learning. In ICML, pages 10–18, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library.
In NeurIPS, pages 8026–8037, 2019.

Mina Rezaei, Haojin Yang, and Christoph Meinel. Recurrent
generative adversarial network for learning imbalanced
medical image semantic segmentation. Multimedia Tools
and Applications, 79(21):15329–15348, 2020.

Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In NeurIPS, pages
1195–1204, 2017.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. Unsupervised data augmentation for consistency
training. NeurIPS, pages 6256–6268, 2020.

Xiyu Yu, Tongliang Liu, Mingming Gong, and Dacheng Tao.
Learning with biased complementary labels. In ECCV,
pages 68–83, 2018.

Min-Ling Zhang and Fei Yu. Solving the partial label learning
problem: an instance-based approach. In IJCAI, pages
4048–4054, 2015.

Min-Ling Zhang, Fei Yu, and Cai-Zhi Tang. Disambiguation-
free partial label learning. IEEE Transactions on Knowl-
edge and Data Engineering, 29(10):2155–2167, 2017.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3081


