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Abstract

Medication recommendation is a significant health-
care application due to its promise in effectively
prescribing medications. Avoiding fatal side ef-
fects related to Drug-Drug Interaction (DDI) is
among the critical challenges. Most existing meth-
ods try to mitigate the problem by providing models
with extra DDI knowledge, making models com-
plicated. While treating all patients with differ-
ent DDI properties as a single cohort would put
forward strict requirements on models’ generaliza-
tion performance. In pursuit of a valuable model
for a safe recommendation, we propose the Self-
Supervised Adversarial Regularization Model for
Medication Recommendation (SARMR). SARMR
obtains the target distribution associated with safe
medication combinations from raw patient records
for adversarial regularization. In this way, the
model can shape distributions of patient represen-
tations to achieve DDI reduction. To obtain ac-
curate self-supervision information, SARMR mod-
els interactions between physicians and patients by
building a key-value memory neural network and
carrying out multi-hop reading to obtain contextual
information for patient representations. SARMR
outperforms all baseline methods in the experiment
on a real-world clinical dataset. This model can
achieve DDI reduction when considering the dif-
ferent number of DDI types, which demonstrates
the robustness of adversarial regularization for safe
medication recommendation.

1 Introduction

Technological innovations in deep learning have achieved
great success in various clinical applications[Yue et al.,
20201, such as disease diagnosis, onset prediction, and phys-
iological condition monitoring [Chen et al., 2018; Li erf al.,
2019; Malakouti and Hauskrecht, 2019; Wang et al., 2019;
Chen et al., 2019], which enable physicians to better diag-
nose and treat patients since the beginning of the professional
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practice of medicine. As one of the hottest research topics,
medication recommendation aims to assist physicians in mak-
ing effective prescriptions according to Electronic Health-
care Records (EHRs) that describe patients in terms of vital
signs, diagnoses, and procedures. A comprehensive analysis
of EHRs based on deep learning provides physicians with in-
sight regarding patients. It helps caregivers cope with peril
brought by the fast-paced way of working in ICUs, signifi-
cantly improving their quality of life.

Deep learning has been adopted for different medication
recommendation tasks. Many of these existing methods make
great efforts to obtain accurate patient representations to
carry out practical medication recommendations, and widely
applied approaches include instance-based and longitudinal
methods [Lipton er al., 2016; Shang er al., 2019a; Wang et
al., 2017]. However, these methods neglect the fatal side ef-
fects related to Drug-Drug Interaction (DDI) due to duplica-
tion, antagonism, and alternation [Zhang er al., 2017]. Mean-
while, limited researches on this topic apply extra knowl-
edge about DDI to mitigate the problem [Zhang et al., 2017;
Ma er al., 2018; Shang er al., 2019b], which requires specific
components for knowledge extraction or information fusion,
making models complicated and introducing bias that has ad-
verse impacts on the recommendation. Besides, these meth-
ods treat patients with different DDI rates, i.e., the fraction
of combinations that lead to DDI to the total number of vari-
eties in a set of medications, as a single cohort, which would
put strict requirements forwards on the generalization perfor-
mance of models. However, representations of these patients
could negatively affect each other when used to train models
due to the different probability distributions they follow.

To address the above problems, we propose a novel Self-
Supervised Adversarial Regularization Model for Medication
Recommendation (SARMR). Instead of introducing extra
knowledge about DDI, SARMR obtains probability distri-
butions of patient representations related to safe medication
combinations in the feature space from raw EHRs. Then
SARMR applies the knowledge as the true data to adversar-
ially regularize distributions of patient representations with
achieving DDI reduction. Patients with different DDI rates
are respectively used and regularized as different cohorts, and
the adverse impacts on generalization when they are treated
as a single cohort could be avoided.

Key challenges for building the model include obtain-
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ing probability distributions that reflect low DDI rates and
maintaining recommendation performance while shaping dis-
tributions. Discovering meaningful embeddings represent-
ing desired probability distributions over data is a signifi-
cant promise of deep learning. The continuous feature space
enables the gradient-based optimization to search for dis-
tributions that reflect desired properties [Gémez-Bombarelli
et al., 2018; Blaschke et al., 2018; Makhzani et al., 2015;
Pan et al., 2018]. However, previous methods require extra
tasks for the knowledge-based jump in the latent space, which
may introduce bias or result in inaccurate search results. In
addition, the DDI rate is not a direct output of patient rep-
resentations but calculated based on the recommended med-
ications. The lack of direct mapping between latent features
and DDI rates makes property-oriented methods unavailable.
Also, patients suffer from different diseases, and their repre-
sentations contain other conditions. Focusing on regularizing
distributions for desired DDI rates alone may ignore critical
information encoded in patients’ representations and lead to
poor performance on the recommendation.

SARMR overcomes these obstacles in two steps. In the
first step, SARMR uses patient records whose DDI rates are
lower than a threshold of D,... to recommend medications,
and obtains patient representations related to low DDI rates
as the true data for the adversarial regularization in the second
step. SARMR firstly encodes EHRs with GRUs, and builds
a key-value Memory Neural Network (MemNN) [Miller et
al., 2016], whose keys are representations of admissions and
values are corresponding medications, to model interactions
between physicians and patients. Then SARMR uses the rep-
resentation of the last admission as query to conduct multi-
reading on the MemNN, while Graph Convolutional Network
(GCN) [Kipf and Welling, 2016] is presented as the embed-
ding module of the read results. The updated query is used to
make the recommendation. Then in the second step, SARMR
uses records of all patients regardless of their DDI rates to
jointly conducts medication recommendation and adversar-
ial distribution regularization with the Generative Adversarial
Network (GAN) [Goodfellow et al., 2014] based on the ob-
tained representations in the first step, so that both effective
medication combinations and DDI reduction are achieved.

Our contributions could be summarized as follows:

* We propose a self-supervised strategy to shape distribu-
tions of patient representations for safe medication rec-
ommendation, which obtains prior distribution reflecting
low DDI rates from raw EHRs and conducts adversarial
distribution regularization with GAN.

¢ A key-value MemNN is constructed to learn interactions
between doctors and patients by carrying out multi-hop
reading on the MemNN, so that contexts in historical
EHRs are derived for informative patient features.

» Experimental results demonstrate that SARMR outper-
forms all the baseline methods, and it can make effective
medication recommendation with an F1 at 0.6608, while
it also achieves a DDI reduction at -2.72%.
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2 Related Work

2.1 Distribution Regularization

Discovering informative embeddings representing meaning-
ful distributions over data is a significant promise of deep
learning. The continuous latent space enables models to
search for distributions that reflect desired properties. For
example, [Lim et al., 2018] incorporate molecular properties
into latent features when using conditional variational autoen-
coder to generate molecules with desired properties. [Gomez-
Bombarelli et al., 2018] add a regression task to autoencoder
(AE) for property prediction to connect latent features with
target properties, searching for desired attribute in the feature
space. And [Blaschke et al., 2018] extend the idea by apply-
ing Bayesian optimization on the obtained latent space to find
new molecular structures with target properties. [De Cao and
Kipf, 2018] further utilize reinforcement learning to carry out
optimization towards desired chemical properties.

Distribution Regularization for desired properties has also
been discussed before. [Makhzani et al., 2015] match the ag-
gregated posterior of hidden vectors of AE with an arbitrary
prior distribution to generate meaningful samples. [Kadurin
et al., 2017] apply the strategy to drug discovery, and intro-
duce a neuron responsible for reflecting desired properties to
develop new molecules. Meanwhile, [Pan et al., 2018] use
adversarial regularization to match latent representations of
graphs to match a prior distribution, so that meaningful graph
embeddings in a continuous vector space are achieved.

SARMR differs from these methods since no extra task is
required to guide the search in the latent space. Instead, a
prior distribution directly relating to low DDI rates is obtained
from raw EHRs for adversarial regularization.

2.2 Medication Recommendation

To model relations covering multiple input views in EHRs,
[Le er al., 2018] use memory augmented neural networks to
achieve better performance in drug prescription task and dis-
ease progression task. But the method does not take relation-
ships between drugs into account, so [Shang et al., 2019b]
build a graph based on the co-occurrence of drugs in EHRs,
and uses GNN to obtain embeddings for those drugs. Mean-
while, [Zhang et al., 2017] address medication recommenda-
tion from the view of sequential decision-making, and use a
recurrent decoder to model drug dependency, while drug-to-
disease mapping is modeled by content-based attention. But
these methods concentrate on visit-level temporal informa-
tion, so [Choi er al., 2016] present a two-level neural attention
model to model both visit-level and variable-level sequential
information, which also provides a detailed interpretation of
the prediction results. Most of these proposed methods ig-
nored EHRs related to patients with a single visit, so [Shang
et al., 2019a] pre-train its transformer-based visit encoder on
EHR data from patients with a single visit, then the model is
fine-tuned on EHRSs of patients with multiple re-admissions.

Compared with previous methods, SARMR applies a self-
supervised strategy to obtain target distribution from EHRs
for the adversarial distribution regularization. And SARMR
conducts multi-hop reading on the key-value MemNN to con-
textual information for medication recommendations.
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Figure 1: The framework of SARMR. Records of patients whose DDI rates Dr(mT) < Dy are firstly used to train the encoder and
predictor for medication recommendation as shown in the upper branch. Then the corresponding patient representations ¢ are used to fit
the Gaussian distribution p(z), which would generate true data for the adversarial regularization. After that, all patient records are used for
training, while a discriminator (a multi-layer perceptron) is combined with the encoder to form a GAN model to shape ¢_ for DDI reduction.

3 Proposed Method

Details of SARMR are described in this section. SARMR
firstly selects patient records by a threshold D,... for DDI
rate, and uses the data to train the Medication Recommen-
dation (MedRec) module that consists of a encoder and a pre-
dictor. Then SARMR carries out adversarial regularization
on the distributions of all patient representations based on the
informative patterns obtained by the encoder to achieve DDI
reduction. The overview is demonstrated in Figure 1.

3.1 Notations

EHRs describe patients in terms of different views, and each
patient is recorded as a sequence of multivariate observations
X = [z1,22,...,x7], where T is the number of admissions,
and z; represents records of the tth admission. x; consists
of three sets of medical codes, including diagnoses d¢, pro-
cedures p?, and medications m’, which belong to the medical
code sets Sg, Sy, and .S, respectively, and the corresponding
numbers of distinct codes in EHRs are |S,|. These records
are transformed into multi-hot vectors s%, € RIS4|, st € RIS

and sf, € RI9! to act as inputs of SARMR.

A drug graph DG € RIS»I*ISw| i constructed based
on all medication combinations m™* to indicate whether two
drugs ¢ and j have been prescribed to the same patient, if so,
DGi’j = DG]',Z' = 1, otherwise DGZ‘,]‘ = DG]‘J‘ = 0. Simi-
larly, a DDI graph IG € RIS=1#15m1 is constructed to indicate
polypharmacy interactions with drug pairs or higher-order
drug combinations, and IG; ; = IG;; = 1 if medication %
and j would cause side effects, otherwise IG; ; = IG;; = 0.
Given IG, the DDI rate Dr(m?) € [0, 1] for m! could be cal-
culated as Eq.(1) shows.

Zi,j [(mt, m ) € myand IG; ; =1
2l

SARMR uses a threshold D,... for DDI rate to select pa-
tients Prc. with Dr(m”) < D,.., and uses their records to

Dr(m') =

ey
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train MedRec to obtain the Gaussian distribution p(z) for ad-
versarial regularization. Given the medical records of a pa-
tient 2;(t < T') as well as d” and p”, the goal of SARMR is

to predict medications m” .

3.2 Medication Recommendation

The encoder uses two GRUs to obtain temporal information
from sd and st o where t < T. SARMR firstly embeds sfi
and sp into contmuous representations with embedding ma-
trices Wy € RISalxdim and W, € RIS IXdim where dim
is the embedding size that determined with Gaussian Process
as a hyper-parameter. Then the model obtains hidden states
for each time stamp as Eq.(2) and Eq.(3) show, and combines
them with a linear embedding layer to generate the represen-
tation ¢* for the t** admission.

bl = GRU4 (R, €h) 2)

hi, = GRU, (R, " eh) 3)

After encoding patient representations, SARMR carries
out multi-hop reading on a key-value MemNN KV to obtain
contextual information from interactions between physicians
and patients, and uses GCN to transform the results into con-
tinuous embeddings.

The MemNN KV uses ¢'(t < T') as keys and correspond-
ing ground truth medications st (t < T') as Values. For each
hop k£, SARMR calculates an attention Weight a® between

uF~1and K Vkpy as Eq.(4) shows, where u*~! is the output
of last hop, ¢* € K Vkpys , and W, is a weight matrix. Then
SARMR reads weighted memories oF from KV as Eq.(5)
shows, where Z* are medication embeddings generated by
GCN in the k hop, and s}, are Values in KVI L Given o,
the query u*~! is updated to u” according to Eq.(6). The
reading process would be repeated for /K hops to get u

k— Softmaz(q*Wa(ukfl)T) “)
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of = aks:‘nZ]~C 5)

ub = kbl ok (6)

For the calculation of Z*, the drug graph DG is pro-
cessed following GCN procedures as Eq.(7) shows [Kipf
and Welling, 2016], where Disa diagonal matrix such that
Dy = > j DG and I is a identity matrix. SARMR applies
a two-layer GCN on DG to obtain embeddings for drugs as
Eq.(8) shows, where W, is the medication embeddings from
DG, and W is the hidden weight parameter matrix. Finally,
the correlation between ¢” and Z¥ is calculated according to
Eq.(9), where W, is a weight matrix for the attention.

A=D"Y*(DG+1D™Y/? 7
Z = Atanh(AW,)W; (8)
e = Softmazx(¢"W.(Z25)T)ZX )

SARMR predicts the final result as Eq.(10) shows. The
equation takes the concatenation of patient representation ¢’
multi-hop reading result u*, and weighted embeddings of
medication e as inputs, where S(.) is a sigmoid function and
f(.) is a fully connected layer.

§=2S(f(lq",u"e])) (10)

3.3 Self-Supervised Adversarial Regularization

The key idea of SARMR is to adversarially match latent fea-
tures of patients to a prior distribution reflecting low DDI
rates, which is obtained in a self-supervised way that requires
no extra knowledge, so that patients would be prescribed
safe medication combinations. To to so, given the thresh-
old D,., patients whose DDI rates Dr(m”) < D,.. are
used to train the MedRec module formed by the encoder and
predictor described previously, and SARMR uses the Gaus-
sian distribution p(z) that ¢ follows [Kadurin et al., 2017;
Pan et al., 2018], which represents the distribution over low
DDI rates, as the source of real data in the adversarial regu-
larization. Specifically, the mean and covariance matrix of all
qF are calculated to get the fitted Gaussian distribution p(z).
Then all patients regardless of their DDI rates are used to train
the model, and their representations g contains two parts:
q? related to patients whose Dr(m?) € (Dyec, 1], which

follows ps(z), and ¢, T that follows 9’ (z), which comes from
q; but has been affected by ¢7 .

Patient representations ¢! obtained by the encoder are ad-
versarially shaped to match p(z) to p(z), while p’(z) is also
corrected back to p(z), so that they would all follow the same
distribution and present the desired low DDI rates. To achieve
the goal, a discriminator is attached on top of encoder to form
a GAN model, and ¢! will act as fake data while samples
from p(z) would act as real data. Meanwhile, patients suffer
from different diseases and their representations contain in-
formation of various conditions as well as medications. It is
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critical to guarantee that the information is mapped to accu-
rate medication combinations when representations are regu-
larized. Thus, SARMR jointly train the GAN model and the
MedRec within each mini-batch in two phases: the prediction
phase and the regularization phase.

In the prediction phase, the MedRec module is updated to
minimize the loss between predicted medications and ground
truth medications, so that the prediction performance is im-
proved. In the regularization phrase, SARMR updates the
discriminator to distinguish real data generated by the target
distribution from features generated by the encoder. Once the
training procedure is done, patient representations g are reg-
ularized to follow p(z), and these representations could still
be mapped to corresponding medications to finish the recom-
mendation by the predictor. Thus, both the expected low DDI
rate and prediction performance are guaranteed.

3.4 Training and Inference

Following the joint training strategy, there are two loss func-
tions for SARMR. The GAN regularization process makes
use of the typical loss function for GAN model [Goodfellow
et al., 2014]. The MedRec module is updated to minimize
the weighted loss for medication recommendation shown in
Eq.(11) [Shang er al., 2019b], which consists of the binary
cross entropy loss £ and multi-label margin loss £,,. L, is
used to make the predicated probability of ground truth medi-
cations have at least 1 margin larger than others, which would
benefit the predictive performance of SARMR.

Here, y € R!S=lis sT i.e., the ground truth of medications
for the final admission, g) € RI9n| is the predict result in the
form of probability, and Y is the predict medication set, so ¥;
and y[ ;] are the probabilities that the i*" and Y;h medication
would be prescribed to the patient. The constraints for the
weights op and a are that oy > 0, ap > 0 and a3 + g = 1.

L=o1Lp+ asly, an

[Sm |

> [yilogo(§:) +

i=1

Ly=— (1 —yi)log(1 — o ()] (12)

1Sm| Y]

Z Z L@[Y] gli])) (13)

=1 j=1

4 Experiment

In this section, SARMR is compared with different baseline
methods on the real-world clinical dataset MIMIC-III v1.4
[Johnson et al., 2016]. The model is implemented with Py-
Torch and trained on a NVIDIA TITAN Xp GPU, and more
information about source code could be found at Github .

4.1 Dataset

Patients with at least two admissions to hospitals are selected
for experiments, and all their diagnoses and procedures are

'https://github.com/yanda-wang/SARMR



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

mapped to fixed vocabularies to act as inputs, while medica-
tions prescribed during the first 24-hour in hospitals are used
as ground truth for the recommendation [Shang et al., 2019b].
Totally 6350 patients are selected, and numbers of diagnoses,
procedures and medications contained in their records are
1960, 1432, and 153. The top-100 severe DDI types are used
to build /G, and Kernel Density Estimate on DDI rates indi-
cates a Gaussian distribution whose mean is 0.4, so D,...=0.4.

4.2 Baselines
The following methods are compared with SARMR.

* Leap [Zhang et al., 2017]: Leap addresses medication
recommendation as a sequential decision-making task,
and uses reinforcement learning to improve accuracy.

* RETAIN [Choi et al., 2016]: RETAIN uses a two-level
attention model to detects influential past visits for se-
quential prediction.

* DMNC [Le et al., 2018]: DMNC models multi-view in-
teractions and long-term dependencies via memory aug-
mented neural network to recommend medications.

* GAMNet [Shang et al., 2019b]: GAMENet uses a dy-
namic memory network to model historical EHRs, and
applies GCN on DDI graph to achieve DDI reduction.

e MedRec: MedRec contains the encoder and predictor
of SARMR, but without adversarial regularization.

4.3 Maetrics

The performance of SARMR is evaluated using Jaccard Sim-
ilarity (Jaccard), Precision Recall AUC (PRAUC), Average
F1 (F1), and changes of average DDI rate (ADDI). Among
these metrics, AD DI, as shown in Eq.(14), indicates the dif-
ference between DDI rates of predicted results and ground
truth, which shows whether DDI is reduced.

N AN %
ADDI — 1 Z DDI rate(Y*) — DDI rate(Y")

N DDI rate(Y?)

(14)
i=1

4.4 Evaluation

As shown in Table 1, SARMR achieves the best ADDI at
-2.72% and succeeds in attaining DDI reduction. Meanwhile,
the figure for MedRec is 3.04%, showing that the GAN model
has successfully regularized the distribution of patient rep-
resentations to reduce the DDI rate. GAMENet uses extra
DDI knowledge as a memory component to reduce DDI, and
the ADDI is 3.06%. The comparison proves that regular-
izing distributions of representations could be a more effec-
tive strategy for DDI reduction. The remaining methods have
much higher DDI rates and fail to predict safe medications.
Besides, SARMR outperforms all the baselines with the
highest Jaccard, PRAUC, and F1 at 0.5039, 0.7688, and
0.6608 respectively. Among those baselines, DMNC uses
an encoder similar to SARMR, and its sub-optimal perfor-
mance indicates that key-value MemNN plays an important
role in modeling EHRs. GAMENet uses a similar key-value
MemNN without multi-hop reading, and its lower figures on
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Methods ADDI Jaccard PRAUC F1

Leap 7.80%  0.4484 0.6457 0.6109
DMNC 593% 0.4933  0.7269 0.6511
RETAIN 10.43% 0.4897 0.7499 0.6494
GAMENet 3.06% 0.4970 0.7589 0.6544
MedRec 3.04%  0.4945 0.7635 0.6519
SARMR 2.72% 0.5039 0.7688 0.6608

Table 1: Performance Comparisons of Different Methods
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Figure 2: Comparisons between SARMR and Baselines in terms of
Kernel Density Estimate on DDI Rates.

metrics show that reasoning over interactions between pa-
tients and doctors are essential.

To further illustrate the effectiveness of adversarial regu-
larization, the kernel density estimate is conducted on DDI
rates of predict results and ground truth, which are illustrated
in Figure 2. As shown in Figure 2.(a) and Figure 2.(b), den-
sity curves of DDI rates related to Leap and DMNC shift to
the right compared with that of ground truth, which explains
why these two methods lead to high DDI rates in the pre-
dict results. Similarly, the curve for RETAIN in Figure 2.(c)
also shifts to the right, but the density has much higher val-
ues at high DDI rates with small variance, and that is why
RETAIN has the highest ADDI. The results of RETAIN,
GAMENet, and MedRec show similar trends, and the densi-
ties of DDI rates in their predict results have small variance
while the means are more extensive than that of the ground
truth. Meanwhile, the density of SARMR has the highest val-
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#DDI type DDI rate Leap RETAIN DMNC GAMENet MedRec SARMR
40 0.0857 -17.80%  8.13% 3.50% -1.08% 5.43% -4.15%
60 0.1941 -1.19% 6.91% 11.61% 3.35% 6.12% -0.60%
80 0.2932 5.69% 1.97% 8.23% 2.62% 3.10% -3.27%
100 0.3923 7.80% 5.93% 10.43% 3.06% 3.04% -2.72%

Table 2: Comparisons of A D DI of Different Methods in Terms of Different DDI types

ues in low DDI rates, indicating that the regularization has
successfully matched distributions of patient representations
to the desired Gaussian distribution to achieve DDI reduction.
Besides, how the number of DDI types affects different
methods is explained to show the robustness of adversarial
regularization on DDI reduction. In addition to the top-100
DDI types, the top-40, top-60, and top-80 types are consid-
ered. The results are shown in Table 2. SARMR can achieve
DDI reduction regardless of the number of DDI types. Mean-
while, when using the top-40 DDI types, GAMENet suc-
ceeds in reducing DDI rates and achieves a AD DI at-1.08%,
but the method fails to do so when more types are consid-
ered. The figure for Leap drops dramatically from 7.80% to
-17.80% as the number of DDI types decreases from 100 to
40, while DMNC and RETAIN cannot achieve DDI reduc-
tion in any case. The results demonstrate the robustness of
SARMR since it is the only method that leads to a DDI re-
duction when a different number of DDI types are used.

Ablation Study

To evaluate the effectiveness and necessity of each compo-
nent of SARMR, the model is deconstructed by replacing or
removing these components to build variants as follows:

¢ S-GRU: The variant replaces the two GRUs in SARMR
with a Single GRU to model patient representations.

* S-Encoder: The variant removes the MemNN and uses
the encoder’s output to recommend medications directly.

* No-GCN: The GCN that embeds medications in
SARMR is replaced with an embedding matrix.

e MedRec: MedRec removes the discriminator in
SARMR and it is not adversarially regularized.

The results in Table 3 and Figure 3 shows that SARMR
achieves the best performance. AD DI for MedRec is 3.04%,
showing that the GAN model is essential to reduce the DDI
rate. Otherwise, the density curve would shift to the right as
shown in Figure 3.(d). No-GCN has the second-best perfor-
mance on Jaccard and F1 as well as the most similar density
curve with SARMR, indicating that the clinically meaning-
ful embeddings of medications obtained by GCN could as-
sist SARMR in achieving better performance. Meanwhile,
S-Encoder has a dramatically high AD DI at 5.34%, and the
density has higher values in high DDI rate, which proves that
without an appropriate decoder to interpret information from
the encoder, the regularization on patient representations may
even lead to an adverse impact on the performance. S-GRU
has the lowest Jaccard and F1. The results show that tempo-
ral patterns in diagnoses and procedures should be modeled
separately and then combined to obtain a comprehensive rep-
resentation rather than directly treated as a whole.

Methods ADDI Jaccard PRAUC F1

S-GRU 0.75%  0.4923 0.7670  0.6499
S-Encoder 5.34%  0.4961 0.7646  0.6534
No-GCN -0.15% 0.5026 0.7613  0.6559
MedRec 3.04%  0.4945 0.7635 0.6519
SARMR 272% 0.5039 0.7688 0.6608

Table 3: Comparisons of Different Variants of SARMR
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Figure 3: Comparisons of Different Variants of SARMR in terms of
Kernel Density Estimate.

5 Conclusion

In this paper, we propose a novel self-supervised adversar-
ial distribution regularization strategy SARMR for safe med-
ication recommendation. Existing methods treat distributions
related to different DDI rates as a single cohort, and requires
extra tasks to apply knowledge for DDI reduction. SARMR
conducts multi-hop reading on MemNN to derive contextual
information from EHRs, and adversarially regularizes patient
representations based on desired distributions obtained from
raw EHRs to achieve DDI reduction. For now, SARMR ap-
plies a fixed number of hops for all patients, while their EHRs
contain different amounts of information. Given the poten-
tial for facilitating accurate information extraction, we expect
adaptively determining the number of hops in future work.
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