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Abstract
Social decision schemes (SDSs) map the prefer-
ences of individual voters over multiple alternatives
to a probability distribution over the alternatives. In
order to study properties such as efficiency, strat-
egyproofness, and participation for SDSs, prefer-
ences over alternatives are typically lifted to prefer-
ences over lotteries using the notion of stochastic
dominance (SD). However, requiring strategyproof-
ness or strict participation with respect to this pref-
erence extension only leaves room for rather unde-
sirable SDSs such as random dictatorships. Hence,
we focus on the natural but little understood pair-
wise comparison (PC ) preference extension, which
postulates that one lottery is preferred to another if
the former is more likely to return a preferred out-
come. In particular, we settle three open questions
raised by Brandt [2017]: (i) there is no Condorcet-
consistent SDS that satisfies PC -strategyproofness;
(ii) there is no anonymous and neutral SDS that satis-
fies PC -efficiency and PC -strategyproofness; and
(iii) there is no anonymous and neutral SDS that
satisfies PC -efficiency and strict PC -participation.
All three impossibilities require m ≥ 4 alternatives
and turn into possibilities when m ≤ 3.

1 Introduction
Incentives constitute a central aspect when designing mech-
anisms for multiple agents: mechanisms should incentivize
agents to participate and to act truthfully [Nisan et al., 2007;
Shoham and Leyton-Brown, 2009; Brandt et al., 2016]. How-
ever, for many applications, guaranteeing these properties—
usually called participation and strategyproofness—is a no-
toriously difficult task. This is particularly true for collec-
tive decision making, which studies the aggregation of pref-
erences of multiple voters into a group decision, because
strong impossibility theorems show that these axioms are in
variance with other elementary properties [Gibbard, 1973;
Satterthwaite, 1975; Moulin, 1988]. For instance, the Gibbard-
Satterthwaite theorem shows that every strategyproof voting
rule is either dictatorial or imposing, and Moulin’s No-Show
paradox demonstrates that all Condorcet-consistent voting
rules violate participation. A natural escape route in light of

these negative results is to allow for randomization in the out-
put of the voting rule. Rather than returning a single winner, a
social decision scheme (SDS) selects a lottery over the alterna-
tives and the winner is eventually drawn at random according
to the given probabilities.

In order to study properties such as efficiency, strategyproof-
ness, and participation for SDSs, preferences over alterna-
tives are typically lifted to preferences over lotteries us-
ing the notion of stochastic dominance (SD), i.e., one lot-
tery is preferred to another lottery if the expected utility of
the former exceeds that of the latter for every utility rep-
resentation consistent with the voter’s preferences over al-
ternatives [Gibbard, 1977; Bogomolnaia and Moulin, 2001;
Brandl et al., 2018]. When demanding SD-efficiency, SD-
strategyproofness, and anonymity, the only SDS that does
the job is uniform random dictatorship (RD), which selects
a voter uniformly at random and then returns his favorite
alternative [Gibbard, 1977]. Moreover, RD satisfies strict SD-
participation, which means that voters are strictly better off
participating (unless their top choice already receives probabil-
ity 1). Unsurprisingly, RD has some severe shortcomings. It
is often criticized for its inability to compromise: if all voters
agree on a second best alternative but disagree on the best one,
the uniform random dictatorship will not choose the common
second best option. Furthermore, it cannot be extended to
weak preferences without giving up SD-strategyproofness or
SD-efficiency [Brandl et al., 2016b]. On top of these criti-
cisms, the representation of preferences over lotteries via ex-
pected utility functions has come under scrutiny [Allais, 1953;
Kahneman and Tversky, 1979; Anand, 2009].

As an alternative to traditional expected utility represen-
tations, some authors have proposed to postulate that one
lottery is preferred to another if the former is more likely
to return a preferred outcome [Blyth, 1972; Packard, 1982;
Blavatskyy, 2006]. The resulting preference extension is
known as pairwise comparison (PC ) and represents a special
case of Fishburn’s skew-symmetric bilinear utility functions
[Fishburn, 1982]. Brandl et al. [2019] have shown that the
No-Show paradox can be circumvented using PC preferences.
Moreover, Brandl and Brandt [2020] proved that PC prefer-
ences constitute the only domain of preferences within a rather
broad class of preferences over lotteries that allow for pref-
erence aggregation that satisfies independence of irrelevant
alternatives and efficiency, thus avoiding Arrow’s impossibility.
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In both cases, the resulting SDS is the set of maximal lotter-
ies (ML), which was proposed by Fishburn [1984b] and has
recently attracted significant attention [Brandl et al., 2016a;
Brandl et al., 2022; Hoang, 2017].

It is known that PC -efficiency is stronger than SD-
efficiency and violated by RD . PC -strategyproofness and
strict PC -participation, on the other hand, are weaker than
their SD counterparts. ML satisfies Condorcet-consistency,
PC -efficiency, and PC -participation [Aziz et al., 2018;
Brandl et al., 2019]. Furthermore, it is PC -strategyproof
in preference profiles that admit a Condorcet winner [Hoang,
2017; Brandl et al., 2022]. These encouraging results lead to
the natural question of whether there are attractive SDSs that
satisfy PC -strategyproofness or strict PC -participation. We
address this question by proving the following theorems, all
of which settle open problems raised by Brandt [2017]:

• There is no Condorcet-consistent SDS that satisfies PC -
strategyproofness.

• There is no anonymous and neutral SDS that satisfies
PC -efficiency and PC -strategyproofness.

• There is no anonymous and neutral SDS that satisfies
PC -efficiency and strict PC -participation.

All three theorems hold for strict preferences and require
m ≥ 4 alternatives; we show that they turn into possibili-
ties when m ≤ 3 by constructing two new SDSs. The second
theorem strengthens Theorem 5 by Aziz et al. [2018], which
requires weak preferences. Our theorems demonstrate that
efficiency, strategyproofness, and strict participation—which
are satisfied by RD if we extend preferences using SD—are
not compatible for PC preferences. Hence, there is no equiv-
alent of random dictatorships for PC preferences. This also
means that—unlike with Arrow’s impossibility and the No-
Show paradox—PC preferences do not help to circumvent the
Gibbard-Satterthwaite theorem. As a consequence, we face a
tradeoff between efficiency and incentive-compatibility, which
implies that no SDS can combine the advantages of ML and
RD when using PC to compare lotteries. Hence, among the
known SDSs, RD is the most attractive one when aiming for
incentive-compatibility and ML when aiming for efficiency
(and other properties such as Condorcet-consistency).

2 The Model
Let A = {a1, . . . , am} be a finite set of m alternatives and
N = {1, 2, 3, . . . } an infinite set of voters. We denote byF(N)
the set of all finite and non-empty subsets of N. Intuitively, N is
the set of all potential voters, whereasN ∈ F(N) is a concrete
electorate. Given an electorate N ∈ F(N), every voter i ∈ N
has a preference relation �i, which is a complete, transitive,
and anti-symmetric binary relation on A. In particular, we do
not allow for ties (which only makes our results stronger). We
write preference relations as comma-separated lists and denote
the set of all preference relations byR. A preference profile
R on an electorate N ∈ F(N) contains a preference relation
�i for every voter i ∈ N , i.e., R ∈ RN . When writing
preference profiles, we use sets before preference relations to
indicate the voters who report the same preference relation.
To this end, we define [j . . . k] = {i ∈ N : j ≤ i ≤ k} and

note that [j . . . k] = ∅ if j > k. For instance, [1 . . . 3]: a, b, c
means that voters 1, 2, and 3 prefer a to b to c. We omit the
brackets for singleton sets. Given a preference profile R ∈
RN , the majority margin between two alternatives x, y ∈ A is
gR(x, y) = |{i ∈ N : x �i y}| − |{i ∈ N : y �i x}|, i.e., the
majority margin indicates how many more voters prefer x to y
than vice versa. Furthermore, we define nR(x) as the number
of voters who prefer alternative x the most in the profile R.
Next, we denote by R−i = (�1, . . . ,�i−1,�i+1, . . . ,�n)
the profile derived from R ∈ RN by removing voter i ∈ N .
Finally,RF(N) is the set of all possible preference profiles.

In this paper, we study social decision schemes (SDSs),
which map preference profiles to lotteries over the alternatives.
A lottery p is a probability distribution over the alternatives,
i.e., a function p : A→ [0, 1] such that p(x) ≥ 0 for all x ∈ A
and

∑
x∈A p(x) = 1. The set of all lotteries on A is denoted

by ∆(A). Then, an SDS f formally is a function of type
f : RF(N) → ∆(A). We define f(R, x) as the probability
assigned to x by f(R) and extend this notion to sets X ⊆ A
by f(R,X) =

∑
x∈X f(R, x).

2.1 Fairness and Decisiveness
Next, we formalize desirable properties of SDSs. Two basic
fairness notions are anonymity and neutrality, which require
that voters and alternatives are treated equally, respectively.
Formally, an SDS f is anonymous if f(π(R)) = f(R) for
all electorates N ∈ F(N), preference profiles R ∈ RN , and
permutations π : N → N . Here, R′ = π(R) is defined by
�′i = �π(i) for all i ∈ N . Analogously, neutrality requires
of an SDS f that f(π(R)) = π(f(R)) for all electorates
N ∈ F(N), preference profiles R ∈ RN , and permutations
π : A → A. This time, R′ = π(R) is the profile such that
for all i ∈ N and x, y ∈ A, π(x) �′i π(y) if and only if
x �i y. Another fairness condition is cancellation, which
demands that the outcome does not change if two voters with
inverse preferences join the electorate. Hence, an SDS f satis-
fies cancellation if f(R) = f(R′) for all preference profiles
R,R′ ∈ RF(N) such that R′ is derived from R by adding two
voters with inverse preferences.

A natural desideratum in randomized social choice is de-
cisiveness: randomization should be avoided whenever pos-
sible. For instance, Condorcet-consistency formalizes this
idea. We say an alternative x is a Condorcet winner in a pro-
file R if gR(x, y) > 0 for all y ∈ A \ {x}. Then, Condorcet-
consistency requires of an SDS f that the Condorcet winner is
chosen with probability 1 whenever it exists, i.e., f(R, x) = 1
for all preference profiles R ∈ RF(N) with Condorcet win-
ner x. A weaker decisiveness condition is the absolute win-
ner property. An absolute winner is an alternative x that is
top-ranked by more than half of the voters in R ∈ RN , i.e.,
nR(x) > |N |

2 . Then, the absolute winner property requires
that f(R, x) = 1 for all profiles R ∈ RF(N) with absolute
winner x. Since absolute winners are also Condorcet winners,
Condorcet-consistency implies the absolute winner property.

2.2 PC and SD Preferences
We assume that the voters’ preferences over alternatives are
lifted to preferences over lotteries via the pairwise comparison
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(PC ) extension (see, e.g., [Aziz et al., 2015; Aziz et al., 2018;
Brandt, 2017; Brandl and Brandt, 2020]). According to this
notion, a voter prefers lottery p to lottery q if the probability
that p returns a better outcome than q is at least as large as the
probability that q returns a better outcome than p, i.e.,

p %PC
i q ⇐⇒

∑
x,y∈A:x�iy

p(x)q(y) ≥
∑

x,y∈A:x�iy

q(x)p(y).

The relation %PC
i is known to be complete but intransitive. An

appealing interpretation of PC preferences is ex ante regret
minimization, i.e., given two lotteries, a voter prefers the one
which is less likely to result in ex post regret. Despite the
simple definition, PC preferences are quite difficult to work
with and even simple notions such as PC -efficiency are little
understood [Aziz et al., 2015].

Another well-known way to compare lotteries is stochastic
dominance (SD) (e.g., [Gibbard, 1977; Brandl et al., 2018]):

p %SD
i q ⇐⇒ ∀x ∈ A :

∑
y∈A:y�ix

p(y) ≥
∑

y∈A:y�ix

q(y).

It follows from a result by Fishburn [1984a] that p %SD
i q

implies p %PC
i q for all preference relations �i and all lot-

teries p and q (see also [Aziz et al., 2015]). In other words,
the SD relation is a subrelation of the PC relation. For both
X ∈ {PC ,SD}, we say a voter strictly X -prefers p to q,
denoted by p �Xi q, if p %Xi q and not q %Xi p. Note that
p �SD

i q implies p �PC
i q.

2.3 Efficiency and Incentives
We can now define efficiency, strategyproofness, and partic-
ipation. All of these axioms can be defined for both SD
and PC ; we thus define the concepts for X ∈ {PC ,SD}.
First, we discuss efficiency, which requires that no lottery is
unanimously preferred to the lottery chosen by the SDS. To
formalize this, we say a lottery p X -dominates another lot-
tery q in a profile R ∈ RN if p %Xi q for all voters i ∈ N
and p �Xi∗ q for some voter i∗ ∈ N . Conversely, a lottery p
is X -efficient in R if it is not X -dominated, and an SDS f is
X -efficient if f(R) is X -efficient for all preference profiles
R ∈ RF(N). Both PC -efficiency and SD-efficiency imply
ex post efficiency. For introducing this concept, we say an
alternative x Pareto-dominates another alternative y in a pro-
file R ∈ RN if x �i y for all voters i ∈ N .1 Then, ex post
efficiency requires that f(R, x) = 0 for all profilesR ∈ RF(N)

and alternatives x ∈ A that are Pareto-dominated in R.
Next, we introduce strategyproofness, which demands that

no voter can benefit by lying about his true preferences. For-
mally, an SDS f is X -strategyproof if f(R) %Xi f(R′) for
all electorates N ∈ F(N), voters i ∈ N , and preference
profiles R,R′ ∈ RN with R−i = R′−i.

2 Conversely, an
SDS is X -manipulable if it is not X -strategyproof. Since
strategyproofness does not require a variable electorate, we
usually specify the electorates for which an SDS is strate-
gyproof or manipulable. Similarly to strategyproofness, par-
ticipation requires that voters should not be able to benefit

1Recall that ties in �i are not allowed.
2Another version is to require that f(R′) 6�X

i f(R); these two
versions coincide for PC because the PC extension is complete.

by abstaining from the election. Hence, an SDS f satis-
fies X -participation if f(R) %Xi f(R−i) for all electorates
N ∈ F(N), voters i ∈ N , and preference profiles R ∈ RN .
In this paper, we are interested in strict X -participation intro-
duced by Brandl et al. [2015], which demands of an SDS f
that, for all N ∈ F(N), i ∈ N , and R ∈ RN , it holds that
f(R) %Xi f(R−i) and, moreover, f(R) �Xi f(R−i) if there
is a lottery p with p �Xi f(R−i). That is, if possible, a voter
strictly benefits from voting compared to abstaining.

Since p �SD
i q implies p �PC

i q and p %SD
i q

implies p %PC
i q, the concepts of SD-efficiency, SD-

strategyproofness, and SD-participation are related to the anal-
ogous concepts for PC : PC -efficiency entails SD-efficiency,
whereas SD-strategyproofness and strict SD-participation
are stronger than the corresponding notions for PC [Brandt,
2017]. See Figure 1 for an overview of these axioms.

2.4 Random Dictatorship and Maximal Lotteries
The following two important SDSs help to put our results
into perspective: the uniform random dictatorship (RD) and
maximal lotteries (ML). These SDSs are well-known and all
subsequent claims are taken from the survey by Brandt [2017].
The uniform random dictatorship (RD) assigns probabilities
proportional to nR(x), i.e., RD(R, x) = nR(x)∑

y∈A nR(y) for ev-

ery alternative x ∈ A and preference profile R ∈ RF(N).
RD is known to satisfy SD-strategyproofness, strict SD-
participation, and SD-efficiency. Even more, when addition-
ally imposing anonymity, it is the only SDS that satisfies
these axioms. Since SD-strategyproofness and strict SD-
participation imply the corresponding concepts for PC , RD
satisfies our incentive axioms also if we extend preferences
using PC . However, RD fails PC -efficiency and Condorcet-
consistency, as can be seen in the following profile.

R: 1: a, b, c 2: b, a, c 3: c, a, b

For this profile, RD(R, x) = 1
3 for all x ∈ A, but a is the

Condorcet winner and the lottery that puts probability 1 on a
PC -dominates RD(R).

In order to define ML, let ML(R) = {p ∈ ∆(A) :∑
x,y∈A p(x)q(y)gR(x, y) ≥ 0 for all q ∈ ∆(A)} be the set

of maximal lotteries for profile R. ML(R) is non-empty by
the minimax theorem and almost always a singleton. For all
our claims about ML, it does not matter how ties are broken
and any maximal lottery can be returned for a profile that ad-
mits multiple maximal lotteries. ML satisfies PC -efficiency,
PC -participation, and Condorcet-consistency. However, ML
fails PC -strategyproofness and strict PC -participation. The
former can be seen by considering the following profiles.

R: {1, 2}: a, b, c {3, 4}: b, c, a 5: c, a, b
R′: {1, 2}: a, b, c 3: b, c, a {4, 5}: c, a, b

The unique maximal lotteries in R and R′, respec-
tively, are p and q with p(a) = q(c) = 3

5 and
p(b) = p(c) = q(a) = q(b) = 1

5 . Since �i = �′i for
all i ∈ {1, 2, 3, 5} and q �PC

4 p, voter 4 can PC -manipulate
by deviating from R to R′. This raises the question of whether
there is an SDS that unifies the advantages of ML and RD .
As we show, this is not the case.
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3 Results
We are now ready to present our results. The results for PC -
strategyproofness are given in Section 3.1 while those for
strict PC -participation are given in Section 3.2. Due to space
restrictions, we defer most proofs to the full version of this
paper [Brandt et al., 2022] and discuss proof sketches instead.

3.1 PC -strategyproofness
In this section, we show that every Condorcet-consistent
and every anonymous, neutral, and PC -efficient SDS is
PC -manipulable when there are m ≥ 4 alternatives.
These results show that no SDS simultaneously satisfies
PC -strategyproofness and the desirable properties of max-
imal lotteries. Moreover, since PC -strategyproofness is
weaker than SD-strategyproofness, the incompatibility of PC -
strategyproofness and Condorcet-consistency is a strengthen-
ing of the well-known impossibility of Condorcet-consistent
and SD-strategyproof SDSs. Perhaps more surprising is the
impossibility involving PC -efficiency: while anonymity, neu-
trality, SD-strategyproofness, and SD-efficiency characterize
the uniform random dictatorship, the axioms become incom-
patible when moving from SD to PC . Since both impossibili-
ties require m ≥ 4 alternatives, we also show that they turn
into possibilities if m ≤ 3.

We start by discussing the impossibility of Condorcet-
consistent and strategyproof SDSs.

Theorem 1. Every Condorcet-consistent SDS is PC -
manipulable if |N | ≥ 5 is odd and m ≥ 4.

Proof. Assume for contradiction that there is a Condorcet-
consistent and PC -strategyproof SDS f for m ≥ 4 alter-
natives. Subsequently, we focus on the electorate N =
{1, . . . , 5} because we can generalize the result to any larger
electorate with an odd number of voters by adding pairs of
voters with inverse preferences. These voters do not change
the Condorcet winner and hence will not affect our analysis.

As the first step, consider the profiles R1 to R4. The ∗
symbol is a placeholder for all missing alternatives.

R1: 1: a, b, d, c, ∗ 2: d, b, a, c, ∗ 3: a, d, c, b, ∗
4: ∗, c, d, b, a 5: c, b, a, d, ∗

R2: 1: a, b, d, c, ∗ 2: d, b, a, c, ∗ 3: a, b, c, d, ∗
4: ∗, c, d, b, a 5: c, b, a, d, ∗

R3: 1: a, b, d, c, ∗ 2: d, b, a, c, ∗ 3: a, d, c, b, ∗
4: ∗, c, d, a, b 5: c, b, a, d, ∗

R4: 1: a, b, d, c, ∗ 2: d, b, a, c, ∗ 3: d, a, c, b, ∗
4: ∗, c, d, b, a 5: c, b, a, d, ∗

Note that b is the Condorcet winner in R2, a in
R3, and d in R4. Thus, Condorcet-consistency entails
that f(R2, b) = f(R3, a) = f(R4, d) = 1. In con-
trast, there is no Condorcet winner in R1 and we use
PC -strategyproofness to derive f(R1). For instance, this ax-
iom postulates that

∑
x,y∈A:x�2

3y
f(R2, x)f(R1, y) ≥∑

x,y∈A:x�2
3y
f(R1, x)f(R2, y) as voter 3 can PC -

manipulate by deviating from R2 to R1 otherwise. By

substituting f(R2, b) = 1 and f(R2, x) = 0 for x ∈ A \ {b},
we thus derive that

f(R1, a) ≤ f(R1, A \ {a, b}). (1)

Analogously, PC -strategyproofness between R1 and R3 and
between R1 and R4 entails the following inequalities because
voter 4 needs to PC -prefer f(R3) to f(R1) and voter 3 needs
to PC -prefer f(R1) to f(R4).

f(R1, A \ {a, b}) ≤ f(R1, b) (2)

f(R1, A \ {a, d}) ≤ f(R1, a) (3)

Chaining the inequalities together, we get f(R1, A \
{a, d}) ≤ f(R1, a) ≤ f(R1, A \ {a, b}) ≤ f(R1, b), so
f(R1, A \ {a, b, d}) = 0. Simplifying (1), (2), and (3) then
results in f(R1, a) ≤ f(R1, d) ≤ f(R1, b) ≤ f(R1, a), so
f(R1, a) = f(R1, b) = f(R1, d) = 1

3 .
Next, we analyze the profiles R5 to R8.

R5: 1: a, b, d, c, ∗ 2: b, d, a, c, ∗ 3: a, d, c, b, ∗
4: ∗, c, d, b, a 5: c, b, a, d, ∗

R6: 1: a, b, d, c, ∗ 2: b, d, a, c, ∗ 3: a, d, c, b, ∗
4: ∗, c, d, b, a 5: b, c, a, d, ∗

R7: 1: a, b, d, c, ∗ 2: b, d, a, c, ∗ 3: a, d, c, b, ∗
4: ∗, c, d, a, b 5: c, b, a, d, ∗

R8: 1: a, b, d, c, ∗ 2: b, c, d, a, ∗ 3: a, d, c, b, ∗
4: ∗, c, d, b, a 5: c, b, a, d, ∗

Just as for the profiles R1 to R4, there is no Condorcet winner
in R5, whereas b is the Condorcet winner in R6, a in R7,
and c in R8. Consequently, Condorcet-consistency requires
that f(R6, b) = f(R7, a) = f(R8, c) = 1. Next, we use
PC -strategyproofness to derive f(R5). In particular, we
infer the following inequalities as voter 5 needs to PC -prefer
f(R5) to f(R6), voter 4 needs to PC -prefer f(R7) to f(R5),
and voter 2 needs to PC -prefer f(R8) to f(R5).

f(R5, A \ {b, c}) ≤ f(R5, c) (4)

f(R5, A \ {a, b}) ≤ f(R5, b) (5)

f(R5, b) ≤ f(R5, A \ {b, c}) (6)

Analogous computations as for R1 now show that
f(R5, a) = f(R5, b) = f(R5, c) = 1

3 . Finally, note that R1

and R5 only differ in the preferences of voter 2. This means
that voter 2 can PC -manipulate by deviating from R5 to R1

since he PC -prefers f(R1) to f(R5). Hence, f fails PC -
strategyproofness, which contradicts our assumptions.

It is open whether Theorem 1 also holds if |N | is even.
Next, we turn the focus to our second impossibility result:

every anonymous and neutral SDS that satisfies PC -efficiency
is PC -manipulable. For proving this theorem, we first show
that every SDS that satisfies the absolute winner property and
PC -efficiency is PC -manipulable.
Lemma 1. Every PC -efficient SDS that satisfies the absolute
winner property is PC -manipulable if |N | ≥ 3, |N | 6∈ {4, 6},
and m ≥ 4.
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PC -efficiencyML

SD-efficiency RD

ex post efficiency

SD-strategyproofness RD

PC -strategyproofness

strict SD-participation RD

strict PC -participation

PC -participationML

Condorcet-
consistencyML

Absolute winner
property

Thm. 1 Thm. 2 Thm. 3

Figure 1: Overview of results. An arrow from an axiom X to another axiom Y indicates that X implies Y . The red lines between axioms
represent impossibility theorems. Note that Theorems 2 and 3 additionally require anonymity and neutrality. Axioms labeled with ML are
satisfied by maximal lotteries, and axioms labelled with RD are satisfied by the uniform random dictatorship.

Proof sketch. Assume for contradiction that there are an SDS f
and an electorate N ∈ F(N) that satisfy the requirements of
the lemma. In this sketch, we focus on m = 4 alternatives as
we can extend the construction to more alternatives by adding
Pareto-dominated ones. Moreover, we suppose that n = |N |
is odd; the argument for even n is similar but more involved.
Now, consider the profiles R and R′ shown below.
R: [1 . . . n−12 ]: a, d, b, c n+1

2 : b, c, d, a
[n+3

2 . . . n]: c, a, d, b

R′: [1 . . . n−12 ]: a, d, b, c n+1
2 : b, d, c, a

[n+3
2 . . . n]: c, a, d, b

The goal is to show that f(R, a) = f(R, b) = f(R, c) = 1
3

and f(R′, a) = f(R′, c) = f(R′, d) = 1
3 . Then, voter n+1

2
can PC -manipulate by deviating from R′ to R because he
PC -prefers f(R) to f(R′). We proceed in three steps to
derive the lottery f(R): first, we use the absolute winner
property and PC -strategyproofness to show that f(R, c) > 0.
Next, we infer from PC -efficiency that f(R, d) = 0. Finally,
we repeatedly apply PC -strategyproofness and the absolute
winner property to prove that f(R, a) ≥ f(R, c) ≥ f(R, b) ≥
f(R, a), which implies that f(R, x) = 1

3 for x ∈ {a, b, c}.
An analogous argument can be used to derive f(R′).

Note that Lemma 1 is a rather strong impossibility itself.
Next, we use it to prove that every anonymous, neutral, and
PC -efficient SDS is PC -manipulable.
Theorem 2. Every anonymous and neutral SDS that satisfies
PC -efficiency is PC -manipulable if |N | ≥ 3, |N | 6∈ {4, 6},
and m ≥ 4.
Proof sketch. We prove this theorem by showing that the given
axioms imply the absolute winner property; then, Lemma 1
implies the impossibility. Consider an arbitrary SDS f that
satisfies all given axioms and an electorate N ∈ F(N) with
n = |N | ≥ 3. Moreover, we focus on three alternatives
because, as in Lemma 1, we can extend the argument to more
alternatives by assuming that these are Pareto-dominated. We
proceed with a case distinction with respect to the parity of n
and, in this sketch, restrict attention to even n. Consider the
following profile R.
R: 1: a, b, c 2: a, c, b

[3 . . . n2 +1]: b, a, c [n2 +2 . . . n]: c, a, b
Anonymity and neutrality require that f(R, b) = f(R, c).

Next, PC -efficiency implies that f(R, b) = f(R, c) = 0 and

hence f(R, a) = 1. Based on this insight, one can prove
that a is chosen with probability 1 whenever the voters i ∈
[1 . . . n2 +1] report it as their best alternative. Due to anonymity
and neutrality, this statement is equivalent to the absolute
winner property.

Since both Theorems 1 and 2 require m ≥ 4 alternatives,
we can still hope for a possibility if m ≤ 3. Indeed, for
m = 2, ML satisfies Condorcet-consistency, PC -efficiency,
PC -strategyproofness, anonymity, and neutrality. However,
as shown in Section 2.4, ML fails PC -strategyproofness if
m = 3. Thus, we construct another SDS that satisfies all
given axioms. To this end, let CW(R) be the set of Condorcet
winners in R, and let WCW(R) = {x ∈ A : gR(x, y) ≥
0 for all y ∈ A \ {x}} be the set of weak Condorcet winners
if CW(R) = ∅, and WCW(R) = ∅ otherwise. Then, define
the SDS f1 as follows.

f1(R) =


[x : 1] if CW(R) = {x}
[x : 1

2 ; y : 1
2 ] if WCW(R) = {x, y}

[x : 3
5 ; y : 1

5 ; z : 1
5 ] if WCW(R) = {x}

[x : 1
3 ; y : 1

3 ; z : 1
3 ] otherwise

It is easy to see that f1 is Condorcet-consistent. The next
proposition characterizes f1 as the only SDS that satisfies
cancellation and the axioms of Theorem 2.
Proposition 1. For m = 3, f1 is the only SDS that satisfies
PC -efficiency, PC -strategyproofness, neutrality, anonymity,
and cancellation.
Proof sketch. The definition of f1 immediately implies that
this SDS satisfies anonymity, neutrality, and cancellation.
Moreover, tedious case distinctions establish that f1 satis-
fies PC -strategyproofness and PC -efficiency. For the reverse
direction, we show first that every SDS that satisfies all given
axioms is Condorcet-consistent. Building on this insight, we
use the given axioms to infer the outcomes for all profiles.

Remark 1. Of all the axioms in this section besides cancella-
tion, ML only fails PC -strategyproofness, dictatorships only
fail anonymity and Condorcet-consistency, and the uniform
random dictatorship only fails PC -efficiency and Condorcet-
consistency. This shows that all axioms of Theorem 2 but
neutrality are required for the result, and that both axioms
are required for Theorem 1. We conjecture that Theorem 2
holds even without neutrality. Proposition 1 shows that m ≥ 4
alternatives are required for both Theorems 1 and 2.
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3.2 Strict PC -participation
In this section, we investigate strict PC -participation and
prove that this axiom is incompatible with PC -efficiency. This
result is rather surprising given that multiple SDSs are known
to satisfy SD-efficiency and strict SD-participation [Brandl et
al., 2015]. Moreover, our impossibility can be seen as a com-
plement to the work of Brandl et al. [2019] which shows that
ML satisfies both PC -participation and PC -efficiency. In par-
ticular, our result demonstrates that maximal lotteries satisfy
a maximal degree of participation subject to PC -efficiency.
Finally, since Theorem 3 requires m ≥ 4 alternatives, we con-
struct an SDS that satisfies all our requirements when m ≤ 3.

We first discuss the impossibility theorem.
Theorem 3. No neutral and anonymous SDS satisfies both
PC -efficiency and strict PC -participation if m ≥ 4.

Proof. Assume for contradiction that there is a neutral and
anonymous SDS f that satisfies both PC -efficiency and strict
PC -participation. In what follows, we focus on the case
m = 4 because we can generalize our construction to m > 4
by adding m− 4 alternatives at the bottom of all voters’ pref-
erence rankings. Since these dummy alternatives are Pareto-
dominated by the original alternatives, PC -efficiency requires
these alternatives to be assigned probability 0, and thus they
will not affect our subsequent analysis.

First, consider the following profile with ten voters.

R1: 1: a, b, c, d 2: a, b, d, c 3: a, c, b, d
4: a, c, d, b 5: a, d, b, c 6: a, d, c, b
7: b, a, c, d 8: b, a, d, c
9: c, a, b, d 10: c, a, d, b

Observe that d is Pareto-dominated by a, so by PC -efficiency,
f(R1, d) = 0. Moreover, since b and c are symmet-
ric in this profile, neutrality and anonymity imply that
f(R1, b) = f(R1, c). If f(R1, b) = f(R1, c) > 0, then f is
not PC -efficient because all voters weakly prefer the degener-
ate lottery that puts probability 1 on a, with voters 1–6 strictly
preferring this lottery. Hence, f(R1, b) = f(R1, c) = 0
which means that f(R1, a) = 1.

Next, consider profile R2, which is obtained by adding
voter 11 with the preference d, a, b, c to R1. We infer from
strict PC -participation that f(R2, d) > f(R2, b) + f(R2, c).

Finally, consider profile R3, which is obtained by adding
voter 12 with the preference d, a, c, b to R2. Observe that b, c,
and d are symmetric in R3, so by neutrality and anonymity,
f(R3, b) = f(R3, c) = f(R3, d). If f(R3, b) = f(R3, c) =
f(R3, d) > 0, then f is not PC -efficient because all voters
strictly prefer the degenerate lottery that puts probability 1
on a. Hence, f(R3, b) = f(R3, c) = f(R3, d) = 0, which
means that f(R3, a) = 1. Since f(R2, d) > f(R2, b) +
f(R2, c), voter 12 has a disincentive to participate in R3,
thereby contradicting the strict PC -participation of f .

Since Theorem 3 requires m ≥ 4, a natural question is
whether the impossibility also holds form ≤ 3. As we demon-
strate, the impossibility ceases to hold. If m = 2, it is easy to
see that the uniform random dictatorship satisfies all axioms
of Theorem 3. For m = 3, however, the uniform random
dictatorship fails PC -efficiency (see Section 2.4). In light of

this, we construct a new SDS that satisfies all axioms used in
Theorem 3. To this end, letB denote the set of alternatives that
are never bottom-ranked. Then, the SDS f2 is defined as fol-
lows: return the uniform random dictatorship if |B| ∈ {0, 2};
otherwise, we delete the alternatives x ∈ A \B that minimize
nR(x) (if there is a tie, delete both alternatives) and return the
outcome of the uniform random dictatorship for the reduced
profile. As the following proposition demonstrates, f2 indeed
satisfies all axioms of Theorem 3 if m = 3.

Proposition 2. For m = 3, f2 satisfies anonymity, neutrality,
PC -efficiency, and strict PC -participation.

Proof sketch. The definition of f2 immediately implies that
this SDS is anonymous and neutral. Next, for proving that f2
is PC -efficient, we consider the case distinction used in the
definition of this SDS: if |B| ∈ {0, 2}, randomizing over the
top-ranked alternatives is PC -efficient. On the other hand, if
|B| = 1, f2 is PC -efficient as it ignores one of the top-ranked
alternatives. Finally, the strict PC -participation of f2 follows
from a tedious case distinction with respect to B.

Remark 2. Each of PC -efficiency and strict PC -
participation is by itself compatible with anonymity and neu-
trality, as witnessed by maximal lotteries and the uniform
random dictatorship, respectively. Hence, these two axioms
are required for Theorem 3. In contrast, we do not know
whether anonymity and neutrality are needed for this result.
Proposition 2 shows that m ≥ 4 is required.

Remark 3. Strict PC -participation is also incompatible
with Condorcet-consistency, i.e., a statement analogous to
Theorem 1 holds. This follows from the fact that a single voter
cannot always change the Condorcet winner by joining the
electorate, even if it is his least preferred outcome. In such
cases, Condorcet-consistency implies that the outcome does
not change while strict PC -participation requires the opposite.

4 Conclusion
We have studied incentive properties of social decision
schemes (SDSs) based on the pairwise comparison (PC )
lottery extension, and answered open questions raised by
Brandt [2017] by proving three strong impossibilities. In
particular, we showed that PC -strategyproofness and strict
PC -participation are incompatible with PC -efficiency and
Condorcet-consistency (see also Figure 1). We highlight three
important aspects and consequences of our results. Firstly,
when moving from the standard approach of stochastic dom-
inance (SD) to PC , previously compatible axioms become
incompatible. Secondly, our results show that—unlike with
other classical impossibilities—PC does not help to circum-
vent the Gibbard-Satterthwaite theorem. Finally, our impossi-
bilities identify a tradeoff between incentive-compatibility and
efficiency. In light of this tradeoff, two SDSs seem particularly
appealing: the uniform random dictatorship because it satisfies
PC -strategyproofness and strict PC -participation, and maxi-
mal lotteries because it satisfies PC -strategyproofness in all
profiles that admit a Condorcet winner, Condorcet-consistency,
PC -efficiency, and PC -participation.
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[Hoang, 2017] Lê Nguyên Hoang. Strategy-proofness of the
randomized Condorcet voting system. Social Choice and
Welfare, 48(3):679–701, 2017.

[Kahneman and Tversky, 1979] Daniel Kahneman and
Amos Tversky. Prospect theory: An analysis of decision
under risk. Econometrica, 47(2):263–292, 1979.
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