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Abstract

Electing a single committee of a small size is a clas-
sical and well-understood voting situation. Being
interested in a sequence of committees, we intro-
duce two time-dependent multistage models based
on simple scoring-based voting. Therein, we are
given a sequence of voting profiles (stages) over the
same set of agents and candidates, and our task is to
find a small committee for each stage of high score.
In the conservative model we additionally require
that any two consecutive committees have a small
symmetric difference. Analogously, in the revolu-
tionary model we require large symmetric differ-
ences. We prove both models to be NP-hard even
for a constant number of agents, and, based on this,
initiate a parameterized complexity analysis for the
most natural parameters and combinations thereof.
Among other results, we prove both models to be in
XP yet W[1]-hard regarding the number of stages,
and that being revolutionary seems to be “easier”
than being conservative.

1

In well-studied classical committee election scenarios, given
a set of candidates, we aim at selecting a small committee
that is, in a certain sense, most suitable for a given collec-
tion of preferences over the candidates [Brandt et al., 2016;
Faliszewski et al., 2017; Rothe, 2016]. However, typically
these scenarios concentrate solely on electing a committee in
a single election to the neglect of a time dimension. This
neglect results in serious limitations of the model. For in-
stance, it is not possible to ensure a relationship (e.g., a small
number of changes) between any two consecutive commit-
tees. We tackle this issue by introducing a multistage [Gupta
et al., 2014] variant of the problem. In this variant, a se-
quence of voting profiles is given, and we seek a sequence
of small committees, each collecting a reasonable number of
approvals, such that the difference between consecutive com-
mittees is upper-bounded.

For instance, assume a research community to seek orga-
nizers of a series of events (say those scheduled for next year).
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The organizers must be fixed in advance to allow preparation
time. Since events may differ in location and type, not every
candidate fits equally well to every event. Thus, each mem-
ber (agent) of the community is asked to name one suitable
organizer for each event and, based on this, the goal is to de-
termine a sequence of organizing committees (one for each
event). Naturally, there are three constraints: (i) each com-
mittee is bounded in size, (ii) each committee has enough
support from the agents, and (iii) at least a certain number
of candidates in consecutive committees overlap to avoid a
lack of knowledge transfer jeopardizing effectiveness.
Initiating a study of so far overlooked multistage variant of
multiwinner elections, we aim at understanding the computa-
tional complexity of the related computational problems. In
particular we want to detect computationally tractable cases.
Notably, our multistage setting introduces two new dimen-
sions to the standard model of multiwinner elections: the re-
lation between consecutive committees and the time. Thus,
our second goal is to observe how these two dimensions af-
fect the computational complexity of the introduced model.

1.1 Model and Examples

We denote by N and Ny the natural numbers excluding and
including zero, respectively. For a function f: A — B,
let f~Y(B') = {a € A | f(a) € B'} for every B’ C B.
We use basic notation from graph theory [Diestel, 2010] and
parameterized algorithmics [Cygan er al., 2015]. The main
problem of this work is as follows.

MULTISTAGE SNTV (MSNTYV)

Input: A set of agents A = {ay,...,a,}, a set of candi-
dates C = {c1,...,¢m}, asequence U = (ug,...,ur)
of 7 voting profiles with u;: A — CU{0},¢t € {1,...,7},
and three integers k € N, ¢ € Ny, and z € N.

Question: Is there a sequence (C4,...,C;) of commit-
tees C; C C such that for all ¢t € {1,...,7} it holds true
that |C;| < k and score;(Cy) == |u; *(C;)| > z, and

|CtACiqa| <€
holds true forall t € {1,...,7 —1}?

(D

One may wonder why we chose an upper bound on £ in the
problem definition instead of specifying an exact constant
committee size. While most natural instances will have solu-
tions with committees of size exactly k, requiring them rules
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Figure 1: Overview of results for MSNTV and RMSNTV. Abbreviations p-NP-h and W([1]-h stand for, respectively, para-NP-hard
and W([1]-hard. An arrow from one parameter p to another parameter p’ indicates that p can be upper bounded by some function in p’
(e.g., ¢ < 2k, k < m,orz < n). The spiderweb diagram depicts further results being not displayed for readability (solid: conservative;
dashed: revolutionary). *(Th.2&4) ®(Th.2&5) ©(Th.3&35) T [Kellethals et al., 2021]

out odd symmetric differences, e.g., £ = 1. All but one of our
results easily translate to the setting with size k£ committees
in each stage so that this decision is mainly a technical sim-
plification. See a full version of the paper [Bredereck et al.,
2020a] for a detailed discussion.

SNTV comes from “single non-transferable vote”, to
which our model boils down for a single stage. While most of
our results transfer to the setting of general approval profiles
(see Section 5), we use Plurality” profiles, where each agent
approves exactly one candidate, for four reasons. (I) Aiming
for positive algorithmic results and for recognizing the influ-
ence of the basic model properties, it is most natural to start
with the simplest relevant scenario. Even though SNTV is
simple, (II) it is the only committee scoring rule serving find-
ing representation- and excellence-focused committees [Fal-
iszewski et al., 2019]. Hence, it forms a good basis for a
further exploration of our model for another rules reaching
these two goals. (IIT) Plurality profiles are widely accepted in
practice and form complex voting procedures (e.g., STV, the
two-vote or two-stage voting systems used for the German or
French parliament). (IV) Selecting a single candidate is only
a weak (cognitive) barrier for human agents increasing the ap-
plicability of the model. In fact, our definition can be easily
extended to more expressive scoring-based voting profiles.

Motivated by respective requirements in many applica-
tions, Boehmer and Niedermeier [2021] propose a systematic
study of (multiwinner) voting models that handle multiple
preference profiles at once (e.g., when incorporating changes
over time). Following their work, our paper provides one of
the first models opening the field for new potential applica-
tions. Indeed, MSNTV models various possible practical
scenarios, two of which we briefly sketch below.

Buffet Selection. Suppose we are asked to organize the
venue’s breakfast buffet of a multiday event (like a workshop
seminar). We offer different disjoint food bundles (candi-

dates) for breakfast and ask the participants of the event to
share their preferences of which bundle is their favorite for
which day. Due to limited space, we can offer only at most
some number of bundles in the buffet (committee) simultane-
ously. Moreover, to stay at low cost and to avoid food waste,
we want that few bundles change from one day to the next.
Clearly, given these constraints and the collected preferences
(voting profiles), we want at all days to have a high number
of participants whose voted bundle made it into the buffet.

Exhibition Composition. When planning a multiday exhi-
bition of sculptures (candidates) in a lobby of a hotel where
we are enabled neither to show at once all the sculptures that
we want to exhibit, nor to exchange arbitrarily many sculp-
tures between consecutive exhibitions days (due to, e.g., lim-
ited capacity of transporting sculptures between some depot
and the hotel). To nevertheless offer an enjoyable experience
for numerous visitors, we ask the visitors to vote for each day
they plan to visit for their favorite sculpture to be exhibited
(to keep the poll simple and robust).

Note that if we drop condition (1) (or, equivalently, set ¢ =
2k), then on the one hand, we have no control over changes
between consecutive committees, yet on the other hand, we
obtain a linear-time solvable problem. Thus, control comes
with a computational cost, bound in the value of ¢. To pro-
ceed with our second goal—in particular, better understand-
ing of condition (1), we additionally study a problem variant
of MSNTV. We obtain this variant, referred to as REVO-
LUTIONARY MULTISTAGE SNTV (RMSNTYV), by replac-
ing (1) by |C;ACi4+1] > £. In words, in RMSNTV we re-
quest a change of size at least £ between consecutive commit-
tees. By this, while we complemented the meaning of /, it
still expresses a control over the changes, and hence comes
possibly again with a computational cost. We investigate
whether the “conservative” (MSNTV) and the revolutionary
(RMSNTYV) variant differ, and if so, then how and why.
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1.2 State of the Art and Our Contributions

Our model follows the recently proposed multistage
model [Eisenstat et al., 2014; Gupta er al., 2014], that
led to several multistage problems [Bampis et al., 2018a;
Bampis et al., 2019b; Fluschnik et al., 2019; Fluschnik et
al., 2020; Chimani et al., 2021; Heeger et al., 2021; Bampis
et al., 2019a; Bampis et al., 2018b; Kellerhals et al., 2021;
Fluschnik, 2021] next to ours. Graph problems considered
in the multistage model often study classic problems on tem-
poral graphs (a sequence of graphs over the same vertices).
While all the multistage problems known from literature
cover the variant we call “conservative,” our revolutionary
variant forms a novel submodel herein.

Although, to the best of our knowledge our model is
novel, other aspects of selecting multiple (sub)committees
have been studied in (computational) social choice theory.
The closest is a recent work of Bredereck et al. [2020b], who
augment classic multiwinner elections with a time dimension.
Accordingly, they consider selecting a sequence of commit-
tees. However, the major differences with our work are, first,
that they do not allow agents (voters) to change their ballots
over time and, second, that there are no explicit constraints
on the differences between two successive committees. Free-
man et al. [2017], Lackner [2020], and Parkes and Procac-
cia [2013] allow this but they consider an online scenario (in
contrary to our problem that is offline). Finally, Aziz and
Lee [2018] study a so-called subcommittee voting, where a fi-
nal committee is a collection of several subcommittees. Their
model, however, does not take time into account and requires
that all subcommittees are mutually disjoint.

Our Contributions. We present the first work in the mul-
tistage model that studies a problem from computational so-
cial choice and that compares the two cases that we call con-
servative and revolutionary. We prove MSNTV and RM-
SNTYV to be NP-complete, even for two agents. We present
a full parameterized complexity analysis of the two problems
(see Figure 1 for an overview of our results; refer to a full ver-
sion [Bredereck et al., 2020a] for a more detailed overview).
Herein, the central tractability concept is fixed-parameter
tractability: Given some parameter p, a problem is called
fixed-parameter tractable (FPT) when it can be solved in
f(p)|I|¢ time, where f is a computable function only depend-
ing on p, |I| is the instance size, and ¢ is some constant. Less
positively, we can sometimes only show XP-membership pa-
rameterized by p, which means that the problem can be solved
in polynomial time when p is constant (but the degree of the
polynomial may depend on p). Fixed-parameter tractability
can often be excluded (under standard parameterized com-
plexity assumptions) showing W[1]- or W|[2]-hardness (us-
ing parameterized reductions which are similar to standard
polynomial-time many-one reductions). MSNTV and RM-
SNTYV are almost indistinguishable regarding their parame-
terized complexity, but when parameterized by ¢, MSNTV
is NP-hard and RMSNTYV is contained in XP. Moreover,
both problems are contained in XP and W{1]-hard regard-
ing the parameter number 7 of stages; Note that for many
natural multistage problems (and even temporal graph prob-
lems), such a classification is unknown—r7 usually leads to
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para-NP-hardness. Our results further indicate that efficient
data reductions (see Section 4 for the definition) in terms of
polynomial-size problem kernelizations require a combina-
tion with 7: While combining the number of agents with the
number of candidates allows for no polynomial-size problem
kernel (unless NP C coNP /poly), combining any of the
two with 7 yields kernels of polynomial size.

Due to the space constraints, many details, marked by %,
can be found in a full version [Bredereck et al., 2020al

2 Limits of Efficient Computation

To prepare the ground for our algorithmic investigations of
the introduced problems, we first settle the computational
complexity lower bounds of MSNTV and RMSNTV. We
begin with NP-hardness for quite restricted cases.

Theorem 1 (). (i) MSNTV is NP-hard even for two
agents, { = 0, x = 1, and k = |C|/2. (ii) RMSNTV is
NP-hard even for two agents, £ = 2k, x = 1, and k = |C|/2.

Herein, Theorem 1(ii) follows from Theorem 1(i) due to the
following result (which we also use later in this section).

Lemma 1 (). There is an algorithm that, on every instance
(A,C,U,k, ¢, x) with{ = 0 and k = |C|/2 of MSNTYV,
computes an equivalent instance (A, C' U’ k', V', x) of RM-
SNTV with k' = |C'|/2, ¢/ = 2K/, and |U'| = 2|U| + 1 in
polynomial time.

We point out that { = 0 (MSNTV) and ¢ = 2k (RMSNTYV)
are not the only intractable cases ().

Theorem 1 shows that MSNTV and RMSNTV remain
NP-hard even for very specific scenarios. However, the re-
strictions in Theorem 1 do not deal with the size k& of commit-
tee and the number 7 of stages. This gives hope that instances
in which these numbers are small could be solved more ef-
fectively. However, as we show in the remainder of this sec-
tion, regarding parameters k and 7 (and their combination)
for MSNTYV and parameter 7 for RMSNTV we (presum-
ably) cannot obtain running times for which the exponential
blow-up is only depending on values of the parameters.

Theorem 2 (%). MSNTV is (i) W[1]-hard when parameter-
ized by k + 7, even if ¢ = 0; (ii) W[2]-hard when parameter-
ized by k, even if x =1 and £ = 0.

For Theorem 2(ii), we reduce from the W|[2]-complete DOM-
INATING SET problem (% ).In the reduction behind the proof
of Theorem 2(i), we employ Sidon sets defined subsequently.
A Sidon setis aset S = {s1, s2, ..., S} of b natural numbers
such that every pairwise sum of the elements in S is different.
Sidon sets can be computed efficiently.

Lemma 2. A Sidon set of size b can be computed in O(b) time
if b is encoded in unary.

Proof. Suppose we aim at obtaining a Sidon set S
{s1,...,8p}. Forevery i € {1,...,b}, we compute s; =
2bi + (i mod b), where b is the smallest prime number
greater than b [Erdos and Turdn, 1941]. Thus, given b, one
can compute S in linear time.

It remains to show how to find b in linear time. Due to the
Bertrand-Chebyshev [Tchebichef, 1852] theorem, we have
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that b < 2b. Searching all prime numbers smaller than 2b is
doable in O(b) time (see, for example, an intuitive algorithm
by Gries and Misra [1978]). O

Proof of Theorem 2(i). We reduce from MULTICOLORED
CLIQUE that is W[1]-complete when parameterized by the
solution size [Pietrzak, 2003; Fellows et al., 2009]. An in-
stance I of MULTICOLORED CLIQUE consists of a g-partite
graph G = (V1 W Vo --- WV, E) and the task is to de-
cide whether there is a set K of g pairwise connected ver-
tices, each from a distinct part. For brevity, for some i, j €
{1,...,q},i < j,let E/ be a set of edges connecting vertices

from parts V; and Vj; thus, E = Ui’je{1 ahi<i E}.

Construction. In the corresponding instance I of MSNTYV,
we let all vertices and edges in G be candidates. Then, we
define three gadgets (see Figure 2 for an illustration): the ver-
tex selection gadget, the edge selection gadget, and the co-
herence gadget. Further, we show how to use the gadgets to
construct I. Instance I will be constructed in a way that its
solution is a single committee of size exactly g + (g) corre-
sponding to vertices and edges of a clique witnessing a yes-
instance of I (if one exists). To define the gadgets, we use a
value x that we explicitly define at the end of the construction.

Vertex selection gadget. Fix some part V;, i € {1,...,q}.
The vertex selection gadget for ¢ ensures that exactly one ver-
tex from V; is selected. We construct the gadget by forming a
preference profile p(V;) consisting of x - |V;| agents such that
each vertex v € V; is approved by exactly x agents.

,,,,,

Edge selection gadget. For each two parts V; and V; such
that 7 < j, we construct the edge selection gadget that allows
to select exactly one edge from EZJ . Accordingly, we build a
preference profile p(Ef ) consisting of z - |EZ | agents. Again,
each edge in EZ is approved by exactly = agents.

Coherence gadget. For the construction of the coherence
gadget, let h = |Ui€{1w’q} Vi| and let S = {s1,...,8n}
be a Sidon set computed according to Lemma 2. We de-
fine a bijective function id: Uie{l,...,q} Vi — S associat-
ing each vertex of G with its (unique) id. Now, the con-
struction of the coherence gadget for some pair {V;, V;} of
parts such that ¢ < j goes as follows. We introduce two
preference profiles p((i, 7)) and p’((4, 7)). In preference pro-
file p((¢,7)), (i) each candidate v € V; U V; is approved by
exactly id(v) agents and (ii) each edge e = {v,v'} € EY is
approved by exactly (z —id(v) —id(v")) agents. In preference
profile p’((4, j)), (i) each candidate v € V;UV; is approved by
exactly & —id(v) agents and (ii) each edge e = {v,v'} € E}
is approved by exactly (id(v) + id(v")) agents.

Having all the gadgets defined it remains to use them to
form the agents and the preference profiles of instance I'; and
to define z, ¢, and k. Since we want to have a committee con-
sisting of ¢ vertices and () edges, we let k == ¢ + (%). We
aim at a single committee, thus we set £ = 0, which enforces
that the committee must stay the same over time. Further, we
set x = 2sp. Finally, to form the preference profiles of I
we put together, in any order, vertex selection gadgets for ev-
ery part V;, i € {1,...,q} as well as edge selection gadgets
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and coherence gadgets for every pair {V;, V;} of parts such
that ¢ < j. As for the agents of I, with each gadget G we
add a separate set of agents needed to implement G making
sure that all other agents introduced by all other gadgets are
approving no candidate in their voting profiles occurring in G.

The running time analysis and correctness proof can be
found in a full version (¥). O]

As for RMSNTYV and the parameters k£ and 7, the situation
differs from that for MSNTV. Namely, for the former we can
only show the (parameterized) intractability with respect to 7.

Theorem 3 (%). RMSNTV parameterized by T is W[1]-
hard.

Altogether, Theorems 1 to 3 mark clear borders of computa-
tional tractability, allowing us to refine our search for efficient
(parameterized) algorithms for the problems we introduced.

3 Polynomial for Constant Parameter Values

We start a series of algorithms in this section, with the one of-
fering a polynomial-time running time in the case of a small
target committee size k. The proof of Theorem 4 is based on
computing in XP-running time an auxiliary directed graph in
which we then check for the existence of an s-¢ path witness-
ing a yes-instance.

Theorem 4 (k). MSNTV and RMSNTV both admit
an O(1 - m2*+1 . n)-time algorithm and hence are contained
in XP when parameterized by k.

Since the committee size k£ must be at most m, we obtain the
following fixed-parameter tractability result regarding m.

Corollary 1. MSNTYV and RMSNTYV both are solvable in
time 20(m10g(m) . p,

The above two results are quite meaningful for elections with
few candidates, even more if the committee to be chosen is
very small. In fact, small-scale elections seem quite com-
mon in practice, which can be observed in preflib [Mattei
and Walsh, 2017], an open-access collection of real-world
election data. It turns out that 37% and 48% of instances
stored therein feature, respectively, at most 10 and 30 candi-
dates. Thus, we believe the above algorithm is promising in
the light of real-world applications, especially as our theoret-
ical bounds only regard the worst-case complexity.

We move on to the next result, providing an algorithm ex-
ploiting a small number 7 of stages.

Theorem 5 (). When parameterized by 7, MSNTV and
RMSNTYV are contained in XP.

The XP containment shown in Theorem 5 is surprising be-
cause known results for multistage or temporal (graph) prob-
lems show either NP-hardness for constant lifetime or trivial
fixed-parameter tractability for this parameter. In practice, the
algorithm from Theorem 5 could prove useful for short-term
planning, which is inevitable for successful planning.

The last result features the difference between RMSNTV
and MSNTYV manifesting in the impact on the computational
complexity of the difference ¢ of consecutive committees.
Theorem 6 (). Every instance I (A, C, Uk, ¢, x)
of RMSNTYV with n agents, m candidates, and T voting pro-
files can be decided in O(T - m***+* - n) time.
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Figure 2: Tllustration of the construction in the proof of Theorem 2, exemplified with edge e = {v,w} € Ef withv € V;andw € V. A
column represents a stage (which in turn represents an vertex or edge selection gadget for some vertex or edge set, respectively, or a coherence
gadget of a pair of colors) and a row represents an agent (approving either a vertex or an edge).

Inspired by a first draft of our paper, recently Kellerhals ez
al. [2021] proved that RMSNTYV is solvable in 2°¢) . (n +
m+7)9W) time—it is in FPT when parameterized only by £.

4 Provably Effective Efficient Data Reduction

In this section we discuss efficient procedures that can be
used to preprocess an instance in order to simplify its fur-
ther processing. Preprocessing can be quite effective even
for NP-hard problems [Weihe, 1998]. In terms of param-
eterized complexity, preprocessing with guarantee is called
problem kernelization: For a parameterized problem L, it is
a polynomial-time algorithm that maps any instance (z,p) €
>* x Ny of L to an equivalent instance (z’, p’) of L (a prob-
lem kernel) such that |2'| + p’ < f(p) for some function f
only depending on the parameter p.

Preferably, we want f to be some polynomial, in which
case we call the problem kernelization polynomial. Polyno-
mial problem kernelizations serve as efficient and provably
effective data reductions, which intuitively “cut off” “obvi-
ous” parts of an instance. After such preprocessing, a final
algorithm fed with the obtained kernel can perform signifi-
cantly better compared to the original instance.

We first consider a kernelization regarding the numbers m
of candidates and 7 of stages.

Theorem 7 (%). MSNTV and RMSNTV admit problem
kernels of size polynomial in m + T.

The proof of Theorem 7 uses weighted versions of our prob-
lems (called W-MSNTYV). Each weighted version takes, for
each stage, a vector of size m in which each entry i €
{1,...,m} corresponds to the number of approvals that can-
didate ¢ gets in a given stage (so, the number of agents upper-
bounds the sum of all entries of the vector). Roughly put,
in the proof of Theorem 7 one takes the original instance
of MSNTYV, translates it into an instance of W-MSNTV (by
simply stage-wise computing the approvals of each candi-
date), compresses its weights (via a result by Frank and Tar-
dos [1987]), and finally translates it back into a new instance
of MSNTYV, which then forms the desired kernel.

Theorem 7 has also an appealing intuitive interpretation.
Namely, when there are few candidates and few stages, then
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the instance cannot be too large. In fact, a complementary in-
tuition is also true: if there are few agents and few stages, then
there cannot be too many meaningful candidates. Formally:

Theorem 8 (k). MSNTV and RMSNTV admit problem
kernels of size polynomial inn + 7.

Theorem 8 makes use of two data reduction rules which ex-
plicitly show how to prune the unnecessary candidates. To
this end, recall that there are at most n - 7 approvals in any
instance. Hence, we have the following.

Observation 1. There are at least max{0,m —n - 7} candi-
dates which are never approved.

Upon Observation 1, we will next discuss deleting candidates
which are never approved, in order to upper-bound the num-
ber m of candidates by some polynomial in n + 7. Then, we
can apply Theorem 7 to obtain the polynomial-size problem
kernels. We treat MSNTV and RMSNTYV separately.

For MSNTV, Observation 1 allows us to reduce any in-
stance to an equivalent instance with m < n - 7.

Reduction Rule 1. If m > nr, delete a candidate which is
never approved.

Intuitively, Reduction Rule 1 is correct because selecting a

candidate which is never approved into a committee at some

stage is not beneficial: it only increases the symmetric differ-

ence at the respective stage but not the committee’s score.
For RMSNTYV, a similar approach applies.

Reduction Rule 2. Ifm > max{n, k} -7, then delete a can-
didate that is never approved.

Itis not so clear that deleting an unapproved candidate is safe.
Indeed, this can decrease the symmetric difference between
some consecutive committees in a potential solution below £.
Still, assuming that m > n7 (otherwise, we simply output
the original instance as the kernel), one can show that there
must exist a candidate y that can replace the deleted candi-
date z # y in every committee that z was previously a mem-
ber of. In the case of & < n, applying Reduction Rule 2
exhaustively already yields the result from Theorem 8. Yet,
the case of £ > n and other details of the reduction rules
require a more complex analysis ().
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Theorems 7 & 8 emphasize the role of a short time-horizon
in our problems as they both deal with instances with few
stages. In passing, we point out that the above theorems also
imply that the corresponding parameterized problems are in
FPT. This is due to a well-known fact that a kernelization
implies fixed-parameter tractability for the same parameter.

5 Conclusion and Discussion

While our multivariate analysis revealed several intractabil-
ity results, we emphasize that we also identified quite prac-
tically relevant tractable cases. In natural applications, such
as electing committees serving for only few days/events, the
number 7 of stages is usually small. Even more, since plan-
ning too far in advance usually increases uncertainty. Fur-
thermore, usually either the number n of voters or the num-
ber m of candidates is expected to be small (as suggested by
quite a significant number of small-sized election in the pre-
flib database). Additionally, in many elections the committee
size k is not very large. Hence, our results for 7 and for k
(polynomial-time solvability for constant values) as well as
for 7+n, for 74+m, or for m alone (fixed-parameter tractabil-
ity) form a very positive message.

Our results also underline the importance of the time as-
pect for preprocessing. For both MSNTV and RMSNTV,
we show that efficient data reduction to size polynomial in
the number of agents and the number of candidates is un-
likely [Bredereck et al, 2020al. Yet, combining any of
the two parameters with the number of stages (see Theo-
rems 7 & 8) allows for efficient (polynomial) data reduction.

Moreover, the tractability result for 7 seems generally in-
sightful for the multistage community where problems usu-
ally remain computationally hard even a for constant number
of stages. Additionally, the revolutionary multistage model
may be relevant on its own and may pave the way for study-
ing more new models where consecutive changes are both
lower- and upper-bounded. This is already underlined by the
study of Kellerhals et al. [2021] on several further problems
like matching or s-t path taking up our revolutionary setup.

Representation. Although it is naturally justified to start
with the simplest meaningful model variant, our focus on
SNTV might look restrictive. =~ We stress that most re-
sults transfer easily to general Approval profiles (see W-
MSNTV): Replace each voter approving multiple candidates
by multiple voters, each approving one candidate. Also ba-
sic scoring rules can be modeled: Create for each candidate c
that receives score s(c) exactly s(c) votes for ¢. The main
drawback is that now the parameter number n of voters corre-
sponds to the total number of approvals or the total score sum,
respectively; yet, most positive results still hold. It remains
open whether a direct modeling of more complex preferences
instead of blowing up in the number of voters can avoid blow-
ing up the running time as well. Recently, it was shown that
many of our results transfer to more complex voting rules.'

Deeper comparison of our models. As opposed to the
single-stage case, both conservative and revolutionary com-
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mittee election over multiple stages are NP-complete, even
for a constant number of agents. From a parameterized algo-
rithmic point of view, computing a revolutionary committee is
easier than a conservative one: When asking for committees
to change for all but constantly many candidates, RMSNTV
is polynomial time solvable, yet when asking for committees
to change for only constant many candidates, MSNTV re-
mains NP-hard. Finally, we wonder if RMSNTYV parameter-
ized by k + 7 or £ + 7 admits a polynomial problem kernel,
and whether RMSNTYV parameterized by « + 7 is in FPT.

Future work. Further future work may include study-
ing approximate or randomized algorithms for MSNTV
and RMSNTYV as well as experimentally testing our results.
Moreover, further concepts and problems (e.g., bribery and
manipulation) from computational social choice may be stud-
ied in the (conservative and revolutionary) multistage model.
Note that, for instance, 2-Approval (each agent approves up
to two candidates) in the conservative multistage setup is al-
ready NP-hard for one agent (similar to the proof of Theo-
rem 1(i)). As a concrete future work, we want to prove that
MSNTYV is W[1]-hard when parameterized by k+n (inspired
by a proof of Fluschnik ez al. [2019]).

Offline versus online. Importantly, our model is applica-
ble for offline scenarios, in which preferences are collected in
advance (e.g., by social media polls, Internet profiling, cus-
tomer targeting). However, online scenarios also offer an in-
teresting research direction, yet requiring significant changes
in our original models. To observe this, consider an online
scenario of selecting two committees such that in the first
profile all committees are scoring equally high and in the
second profile there is exactly one such a committee. In the
worst case, every algorithm returns a solution requiring ex-
changing all candidates between the two selected commit-
tees; thus, no reasonable guarantee concerning the number
of changes is achievable. To avoid such trivial cases, when
studying the online setting, one needs to carry out significant
model modifications. One way to proceed (following the mul-
tistage literature [Bampis ez al., 2019a; Bampis et al., 2018b;
Gupta er al., 2014]) is to introduce a goal function and con-
sider the quality of the selected committees and the symmet-
ric difference as soft constraints. Another way is to restrict
the differences of consecutive profiles (analogously to Parkes
and Procaccia [2013]). Such a correlation between consecu-
tive profiles (greatly restricting the model) provides enough
information to achieve some guarantees on the solution.
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