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Abstract

We study the environment design problem for bi-
ased decision makers. In an environment design
problem, an informed principal aims to update the
decision making environment to influence the deci-
sions made by the agent. This problem is ubiqui-
tous in various domains, e.g., a social networking
platform might want to update its website to en-
courage more user engagement. In this work, we
focus on the scenario in which the agent might ex-
hibit biases in decision making. We relax the com-
mon assumption that the agent is rational and aim
to incorporate models of biased agents in environ-
ment design. We formulate the environment design
problem under the Markov decision process (MDP)
and incorporate common models of biased agents
through introducing general time-discounting func-
tions. We then formalize the environment design
problem as constrained optimization problems and
propose corresponding algorithms. We conduct
both simulations and real human-subject experi-
ments with workers recruited from Amazon Me-
chanical Turk to evaluate our proposed algorithms.

1

We explore the problem where two parties with mis-aligned
objectives, a principal and an agent, are in the same sequen-
tial decision making environment. The goal of the agent is to
take a sequence of actions to maximize his total payoff!. The
principal cannot directly take actions but can update the en-
vironment to influence the agent’s actions and receive reward
based on the agent’s actions. The goal of the principal is to
update the environment such that the agent takes actions that
maximize the principal’s payoff.

This problem setting is motivated by several existing and
potential applications. For example, a user-generated content
website might want to update their site to provide incentives,
such as badges or virtual points, to encourage users to con-
sume and rate the content on their website. An online retailer
might want to decide when and whether to provide coupons
to nudge the user to make the purchase. An assistive Al agent
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"'We use she to denote the principal and ke to denote the agent.
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might want to provide interventions, such as reminding mes-
sages, to help humans achieve personal goals, such as reduc-
ing the amount of time spent on social networking sites.

If we assume the agent is rational and makes decisions ac-
cording to the optimal policy, this problem is similar to sev-
eral existing works in the literature, including policy teach-
ing [Zhang and Parkes, 2008; Zhang et al., 2018], in which
the principal updates the reward functions to induce the agent
to take certain policies, and the poisoning attack for reinforce-
ment learning [Rakhsha et al., 2020; Zhang et al., 2020], in
which an adversarial principal aims to modify the training en-
vironment such that the agent learns the undesired policy. In
this work, we are motivated by the natural setting in which the
agent is a human being and might exhibit biases in decision
making. As observed in empirical studies, humans are known
to exhibit systematic biases in making decisions. For exam-
ple, humans might not have the ability to reason far ahead
into the future [Kahneman, 2003] or might exhibit present
bias [O’Donoghue and Rabin, 1999], giving stronger weights
on immediate costs and benefits rather than balancing them
against those in the future.

We study this two-party sequential decision making prob-
lem under the formulation of Markov decision process
(MDP). A standard MDP is characterized by the set of states,
the set of actions, the state transition function, and the reward
function. The solution of an MDP is a policy that specifies
which action to take in each state that maximizes the total
reward. Our setting deviates from the standard MDP in two
perspectives. First, there are two parties, a principal and an
agent, in the same decision making environment. The princi-
pal and the agent share the same information about the state,
state transition, and action set. However, they have different
reward functions. Moreover, while the agent can take actions
in the environment, the principal can only update the envi-
ronment to influence the agent’s actions. Second, the agent
exhibits decision-making biases in his solution to the MDP.
Since the focus of this paper is in sequential decision making,
we focus on the time-related decision biases, including my-
opic decision making, bounded rationality, and present bias.

We consider two natural sets of design spaces that the prin-
cipal can choose from to update the environment. In the first
design space, the principal can modify the agent’s reward
function in MDP, and the agent’s policy is based on the mod-
ified reward function. This design space corresponds to the
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scenario in which the principal can update the environment
in a global manner (e.g., changing the badge design in so-
cial networking sites), and the agent will take actions in the
updated environment. In the second design space, when the
agent is choosing an action during decision time, the principal
can offer additional incentives to nudge the agent to choose
a different action. This design space corresponds to the sce-
nario in which the principal can take interventions during the
agent’s decision time (e.g., offering a coupon when the user
navigates to a certain page). In environment design with both
design spaces, the goal of the principal is to maximize her
own total rewards, depending on the principal’s reward func-
tion and the agent’s actions, subject to a budget constraint that
the amount of environment updates is limited.

We formulate the principal’s environment design prob-
lems as constrained optimization problems under both de-
sign spaces. We first show that the optimization problems
are generally NP-hard to solve for both design spaces. We
then propose relaxed formulations and corresponding algo-
rithms for solving the problems. To evaluate the effective-
ness of our proposed algorithms for environment design, we
conduct simulations to understand the algorithm performance
over arange of scenarios and parameters. Moreover, to exam-
ine whether we can indeed update the environment to influ-
ence the decisions of real-world human decision makers, we
conduct a human-subject experiment with 300 workers from
Amazon Mechanical Turk. Our results demonstrate the en-
vironment updates derived by our algorithms can effectively
influence humans’ decisions and lead to better total payoff.

1.1 Related Work

Our work is built on the formulation of Markov decision pro-
cess (MDP) commonly seen in reinforcement learning. In-
stead of solving the agent’s optimal policy, we consider a
Stackelberg game formulation, in which the principal first
chooses how to update the environment, and then the agent
makes decisions in the updated environment. The closest
works that consider this two-party setting in MDP include
policy teaching [Zhang and Parkes, 2008; Zhang et al., 2009;
Zhang et al., 2018] and poisoning attack for reinforcement
learning [Rakhsha et al., 2020; Zhang ef al., 2020]. Our work
deviates from these works by incorporating human behav-
ioral models in the framework. The human models consid-
ered in this work are empirically motivated from behavioral
economics, such as bounded rationality [Kahneman, 2003]
and present bias [O’Donoghue and Rabin, 1999].

Our work joins the recent research theme that incorporates
human models in computational frameworks [Frazier et al.,
2014; Mansour et al., 2015; Tang and Ho, 2019; Tang and
Ho, 2021; Kleinberg and Oren, 2014; Masters et al., 2021a;
Masters et al., 2021b]. There have been other lines of re-
search that also includes humans in the loop of reinforcement
learning frameworks, such as inverse reinforcement learn-
ing [Ng et al., 2000; Evans et al., 2016; Shah et al., 2019;
Hughes et al., 2020; Zhi-Xuan et al., 2020] that infers the re-
ward functions in MDP through (potentially human) demon-
strations. Our work differs in that our goal is to induce hu-
mans to perform desired behavior through updating the envi-
ronment instead of improving learning algorithms.
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2 Problem Setting

Decision-making environment. We formulate the sequen-
tial decision making environment as a finite-time hori-
zon MDP with two sets of reward functions: W
(S, A, P,R*, RP,T), where S is the set of states, A is the set
of agent actions, P(s’|s, a) is the transition probability from
state s to state s’ after taking action a, T is the time horizon,
R*(s, a) is the bounded reward obtained by the agent after he
takes action « at state s, and RP(s, a) is the bounded reward
obtained by the principal after the agent takes a at state s.

Agent decision-making policy. Since the agent could be
biased and might not make time-consistent decisions, we rep-
resent the agent policy in a time-inconsistent manner: II :
SxT — A. In particular, for an agent policy 7w € II, (s, t)
denotes the action the agent will take in state s at time ¢
when following policy . We formulate the agent as a planner
H : W — 11, with input being an environment w € W and
output being a policy 7 € II according to his decision-making
model. The agent’s goal is to maximize his perceived (poten-
tially biased) rewards. To characterize the time-inconsistent
behavior of the agent, we define the notion d(t), the discount-
ing factor that the agent perceives the payoff obtained ¢ steps
ahead. In the standard setting, d(t) is often assumed to be
in the form of 4* with v € (0, 1] being the time-discounting
factor. In this paper, we address different forms of d(t) that
captures different agent models, which will be discussed later.

With d(t) defined, we now characterize the agent policy
by defining a perceived Q-function’> Q7 (s, a,t,t), specify-
ing the agent’s perceived value at time ¢ for him to take ac-
tion a in state s at a future time ¢ + ¢ and follows policy 7
afterwards. This additional  parameter captures the agent’s
time-inconsistent belief: what the agent thinks he will do in
a future time ¢ +  while at time ¢ might be different from
what he will actually do at time ¢ + . We also abuse the
notation and let (s, ¢,#) denote the action the agent thinks
what he would do in state s in a future time ¢ + # while at
time ¢. This perceived Q7 (s, a,t,t) can be expressed as the
sum of (1) the perceived reward for taking action a in a fu-
ture time step ¢ + ¢ while at time ¢: d(t)R*(s,a) and (2)
the expected future reward for following policy m after ¢ + ¢:
B[Sy iyr d(t’ — R (5, m(s5 .t/ — 1)]], where 7 is
the random variable denoting the state at ¢’ if the agent fol-
lows 7 after t + ¢. The expectation is over the randomness of
the state transition.

Since the policy is only executed with £ = 0 (£ > 0 repre-
sents the agent’s belief of what he would do ¢ steps ahead),
we let Q7 (s,a,t) = Q7 (s,a,t,0) and 7(s,t) = 7(s,t,0).
The agent policy 7* can then be written as:

(D

7" (s,t) = argmax Q™ (s,a,t)
a

For a given environment, the agent policy can be solved by
applying standard techniques, such as backward induction.

This definition extends the standard Q-function to incorporate
the agent’s biased decision making.
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Biased agent models. As discussed above, we use the no-
tion d(t), denoting how much the agent discounts the payoff
t steps in the future to characterize the agent’s behavior. This
notion characterizes many common behavioral models, with
some illustrative examples below:

e Standard model: In the literature, the agent is often as-
sumed to have a consistent time-discounting factor v &€
(0, 1] for discounting future payoff. Therefore, we can set
d(t) = ~* to represent this standard assumption.

e Bounded rationality or short-sightedness: It considers the
scenario in which the agent can only perform limited com-
putation due to either time, cognitive, or information con-
straints. This can be approximated by considering that the
agent only has information or only can reason about in-
formation within 7 steps. We can formulate this by set-
ting d(t) = ~' forall 0 < ¢t < 7, and d(¢t) = 0 for all
7 < t < T. In the special case of myopic agent, who
only cares about the immediate payoff and not the future
payoffs, we can set 7 = 0.

Present bias: When choosing between earning 10 dollars
100 days from now or 11 dollars 101 days from now, most
people will choose the latter. However, when again being
asked to choose between earning 10 dollars now or 11 dol-
lars tomorrow, many people will change their decisions.
This example illustrates the present bias, describing hu-
mans’ inconsistency in discounting future payoffs. One
common way to account for this behavior is through hy-

perbolic discounting factor: d(t) = 17 for k > 0.

Design space of the principal. Recall that the principal
aims to update the environment to influence the agent’s ac-
tions. We consider two natural sets of “updates” the principal
can make to the environment:

e Reward function modification: The principal may pay
costs to modify the agent’s reward function to influence
the agent’s decisions. Formally, the principal can modify
the agent’s reward from R%(s, a) to R%(s,a) = R*(s,a)+
¢(s, a) for taking action « in state s by paying a cost equal
to the absolute value of the modification |c(s,a)|. The
agent will only observe the modified reward function and
will make decisions based on R*. Note that this type of
environment updates is performed offline in the sense that
it updates the environment before the agent starts to make
their decisions in the environment.

Action nudge: We also consider another design space,
in which the principal can offer a non-negative incentive
c(s,a,t) > 0 to nudge the agent to take action a in state
s at time t. The agent’s reward in state s would then be
R(s,a) + c(s,a,t) if taking action a at time ¢ while the
future perceived rewards do not change. Different from
the reward function modification, this nudge influences the
agent’s decisions during decision time.

The principal’s goal is to maximize her total rewards de-
rived from the agent’s actions under the budget constraint that
the total cost does not exceed budget B. Given the agent’s
policy 7 and the initial state distribution po(s), let p7 (s) be
the state distribution at time ¢ when the agent follows policy
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7, the principal’s total expected reward can be written as’:

(s)RP (s, (s, 1)) 2)

3 Problem Formulations and Algorithms

Before we formulate the environment design problems, we
first present an important, although perhaps not surprising,
result that if the agent exhibit biases in decision making, be-
ing oblivious of the biases could lead to undesired outcome
for the principal. The result showcases the importance of tak-
ing human behavior into account in environment design®.

Lemma 1. If the principal performs environment design by
assuming the agent is a standard agent while the agent is
boundedly rational, the ratio between the principal’s reward
after environment design compared with the principal’s re-
ward obtained in environment design with the correct agent
model could be arbitrarily close to 0.

3.1 Reward Function Modification

We first consider the environment design problem in which
the principal can influence the agent’s decisions through mod-
ifying the agent’s reward functions R*(s,a). Let c(s,a)
be the modification the principal makes on R%(s,a), and
R*(s,a) = R*(s,a)+c(s,a) is the reward function that the
agent perceives and based on when making decisions. Let the
updated MDP environment be 10, replacing the agent reward
function as R®, and the agent policy on this environment be
7w = h(w). The environment design problem for the principal
is to choose the set of updates {c(s, a)} to maximize her pay-
off subject to the budget constraint B. Again, let the initial
state distribution be py(s), and p¥ (s) be the state distribution
at time ¢ when the agent follows policy 7, we can formulate
the environment design problem as follows,

T
maxz pr(s)Rp(s,ﬂ'(s,t))
¢ i=0ses 3)
s.t.z Z le(s,a)| < B;m = h(w)
seSacA

Note that this is a bi-level optimization problem, in which
the principal is optimizing over the space of {c(s, a)} while
the agent is optimizing his policy in response to the princi-
pal’s update in the form of = =h(w). To solve the inner opti-
mization problem (the agent’s optimal policy), we can define
an updated Q™ by replacing the reward R® with R® and solve
the policy 7 using backward induction. We show that this
bi-level optimization problem is generally NP-hard to solve.

Theorem 2. [t is NP-hard to solve the environment design
problem with reward function modification as defined in (3).

3We do not include the time-discounting factor for the principal’s
payoff to simplify the presentations. Our results and discussion can
be easily extended to the setting with time-discounting factor.

4 All proofs are included in the appendix of the full paper.
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Relaxed formulation. To address this hardness result, we
propose to use a soft-max stochastic policy p to relax the
deterministic policy 7. This relaxation makes the inner op-
timization differentiable, so first-order optimization methods
might be applied. Instead of using 7 (s, t) to denote the cho-
sen action, we use p(s, a,t) to represents the probability of
choosing action a in state s at time ¢. Moreover, we again use
@” to denote the perceived cumulative reward for policy p.
The definition is similar to Q™ except that we need to incor-
porate the randomness of policy when evaluating the future
reward. Moreover, we use a soft-max form to approximate

BRP (s,a,t)
Vs, a,t.

W’

Below we formulate the relaxed environment design prob-
lem. We now use pf (s) to denote the state distribution at time
t (with pfj(s) defined as the initial state distribution py(s) for
notational simplicity) when the agent follows policy p. In
addition, we explicitly layout the state distribution over time
following policy p as a constraint in the third constraint of the
optimization problem. Since the gradient of the optimization
variables exists, we can approach this optimization through a
gradient-based algorithm, as in Algorithm 1.

the agent policy: p(s,a,t) =

)RP(s,a)p(s,a,t)

maXZZZp

t=0 se€SacA
s. t.z Z le(s,a)] < B
seSacA
oBQ (s,a,t) “)
p(s,a,t) = W,V&a;t
pt+l Z pr |S Q)p(S/,CL,t),VS,t
s’eSacA
p(s,a,t) > 0,Vs,a,t
Algorithm 1 Gradient-based Algorithm for Solving (4)
1: Input: learning rate §, maximal iterations N
2: initialize ¢,7 = 0
3: whilei < N do
4: samples € S,ae€ A
5. update R%(s,a),Q(s,a,t),p(s,a,t),pl(s),Vs,a,t
6:  calculate agc((s d’;) afs &y: Vs, a,t
. 5 oA s - BZpt () RP(s,a)p(s,a,t)
E C(Sv ) c(8,a) + 9c(3,0)
8 i<+ i+1
9: end while
10: return c
Discussion. When 8 — oo, p(s,a,t) approximates to a

delta function with the probability mass on the action with
the highest () value, which recovers the original problem.
Moreover, recall that the Q) function is defined with respect
to the policy (when calculating the expected future rewards).
We can show that this soft-max relaxation converges to the
@ function of deterministic policy exponentially fast in 8. In
our simulations, we also empirically demonstrate that setting
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a small £ is enough to approximate the optimal of the original
problem in (3).

Lemma 3. For any environment w, let m,, and p,, be the
agent’s deterministic and stochastic policies following our
model. Let Q™ (s,a,t) and QP> (s, a,t) be the correspond-
ing Q-functions. For all (s, a,t), we have

|Qﬂ-w(5aa>t) - C)a

where C' > 0 is a constant and (3 is the parameter of p.

Q" (s,a,t)] < O(e™”

3.2 Action Nudge

We now formulate the environment design problem via ac-
tion nudge. The principal can choose to pay c(s,a,t) > 0
to the agent if he takes action a in state s at time ¢. In this
approach, the agent’s perceived (Q function does not change,
but the agent’s action will be influenced by this additional in-
centive, i.e., the agent will choose the action that maximizes
Q7 (s,a,t) + c(s,a,t) in state s at time ¢t. Moreover, since
the nudge is calculated offline but deployed online, the budget
constraint is satisfied in expectation. Formally, the principal’s
environment design problem can be written as:

s.t. Z Z c(s,m(s,t),t)p; (s) < B ©)

t=0 s€S
(s, t) = argmax{Q" (s, a,t) + c(s,a,t)},Vs,t
a

Solving this problem directly is again generally NP-hard
due to the same bi-level optimization property and the de-
terministic policy structure. Below we utilize the problem
structure and develop an alternative formulation.

Alternative formulation. Let 7 be the agent’s policy in the
original decision-making environment. The goal of action
nudge is to make the agent change from action a = (s, t)
to a new action a’. Assume the principal can break ties in any
way she prefers when multiple actions lead to the same pay-
off>, the cost the principal needs to pay to make the agent se-
lect action o’ instead of a is ¢(s, a’,t) =Q(s, a,t)—Q(s,d’, t).
We can pre-calculate all the cost the principal needs to pay for
action nudge (s, a,t) = Q(s,7(s,t),t) —Q(s,a,t),Vs,a,t.
With the above observations and the additional tie-
breaking assumption, the environment design problem via ac-
tion nudge is reduced to selecting which action the principal
should nudge the agent to select for all (s, t). The nudged ac-
tion a would generate a reward of RP(s,a) and incurs a cost
¢(s, a,t). The goal is to maximize the total rewards such that
the total cost is no larger than budget B in expectation. This
problem reduces to a standard constrained MDP problem.

SWhile this assumption seems strong, it can be approximately
satisfied by adding a arbitrarily small value to c(s, a’, t) to make the
agent break ties to align with the principal’s goal.
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mgx Z Z Z RP(s,a)o(s,a,t)

t=0 seSacA
T
s.t. Z Z Z c(s,a,t)o(s,a,t) < B
t=0 s€SacA
(6)
YD Plslsia)d(shat) = " d(s.at+1),Vs,t
s'eSacA acA
Z ¢(Sa a, O) = pO(S),VS

a€A
o(s,a,t) > 0,Vs,a,t

In this optimization problem, ¢(s,a,t) is the optimiza-
tion variables, representing the joint probability at time ¢
for the agent to be in state s and take action a. To trans-
late ¢(s,a,t) to the stochastic policy p(s,a,t), we have

U (san)
psat) = s—==0r oy

linear program in ¢(s, a,t). Therefore we can directly apply
standard linear programming solvers to solve this optimiza-
tion problem. When the agent is in state s at time ¢, this
solution indicates that the principal should nudge and offers
c(s,a,t)if ¢(s,a,t) > 0.°

The optimization problem is a

4 Experiments

We conduct both simulated and real-human experiments to
evaluate our proposed algorithms for environment design.

4.1 Simulations

In our simulations, we create a grid world of size 10 x 10.
Each grid represents a state in the MDP. There are four actions
representing the direction agent can move to: {up, down, left,
right}. After each action, the agent moves to the nearby grid
associated with the action with 70% chance and to a random
nearby grid with 30% chance. The initial state is in the middle
of the grid world. The time horizon 7' is set to be 20.

We initialize the principal’s reward function values to be
uniformly drawn from the range [0, 0.5]. We then randomly
choose a 2 x 2 block as global optimal region and add 0.5 to
the reward values within this block. Similarly, we randomly
draw 1 to 3 local optimal regions (2x2 blocks) by setting their
reward lower than global optimal but higher than its neigh-
bors. We randomly generate 1,000 environments following
the above procedure and report the average results. on these
1,000 environments.

Different agent behavioral models. We start with the set-
ting that the agent’s reward function is the same as the prin-
cipal’s, i.e., RP(s,a) = R%(s,a) for all (s,a). In this setting,
if the agent is behaving optimally, the principal does not need
to update the environment. Therefore, we focus on examin-
ing how the agent’s biased behavior impacts the total payoff
and how effectively environment design can help.

SThere could be multiple actions that lead to ¢(s, a,t) >0 for a
given (s, t), leading to offering multiple nudges simultaneously. In
Appendix C, we show that there exists a solution such that this does
not happen frequently and discuss approaches to find this solution.
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Figure 1: The principal’s payoff with biased decision-makers with-
out environment design. Agents with higher 7 or lower & are closer
to being rational.
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Figure 2: The principal’s payoff with biased decision-makers after
applying environment design. The y-axis is the relative performance
compared with the optimal, and the x-axis is the amount of budget
relative to the optimal performance.

We first examine the impact of biased agents without envi-
ronment design. We consider agents with bounded rationality
(or short-sightedness) and with present bias. Following the
formulation in Section 2, we modify 7 for boundedly-rational
agents and k for present-bias agents. For boundedly-rational
agents, we set y=1 and vary 7 to be from 0 to 9. For present-
bias agents, we vary k to be in {0.1,1/0.1,1,1/10,10}. The
performance is measured in terms of the principal’s objective.
As shown in Figure 1, the principal’s payoff, even when the
reward function aligns with the agent’s, could decrease sig-
nificantly when the agent exhibits decision biases.

Next we examine the effect of environment design in im-
proving the principal’s payoff. We apply the algorithms in
Section 3, with the soft-max parameter 5 = 3 (the choice of
B is discussed in the appendix). We examine present-bias
agents with k € {1,10} and boundedly-rational agents with
7€{0,1,2}. We vary the budget for algorithms with both de-
sign spaces. As in Figure 2, our algorithms lead to effective
environment design and improve with larger budget. While
action nudge seems more cost efficient, the cost needs to be
incurred for each agent. In reward modification, the environ-
ment may need only be updated once for multiple agents.

Mis-alignment of the principal’s and the agent’s objective.
We now consider the case that the agent’s reward function
might not align with the principal’s. We fix the principal’s re-
ward function as before and vary the agent’s reward function.
We consider the cases in which the agent’s reward function
is the inverse (adversarial), randomly drawn (irrelevant), and
the same (cooperative) of the principal’s reward function. The
agent’s bias model is set to be boundedly rational with 7 = 1
(the results are qualitatively similar for other agent models).
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Figure 3: Misalignment of the principal’s and the agent’s the agent’s
reward function. The y-axis is the relative performance compared
with the optimal (in terms of the principal’s payoff), and the x-axis
is the amount of budget relative to the optimal performance.

As shown in Figure 3, our algorithm can find the sets of envi-
ronment updates to induce desired agent decisions, though it
generally requires more budgets when the principal’s reward
function does not align with the agent’s.

Additional simulations. Additional simulations are in-
cluded in Appendix D. We show that setting a small 3 in
Algorithm 1 suffices to approximate the true optimal of (3)
and examine its runtime. This result complements Lemma 3
and demonstrates that we can approximate the overall perfor-
mance of the optimal. In another simulation, we demonstrate
how to combine off-the-shelf inverse reinforcement learning
algorithms to deal with scenarios when the agent rewards and
biases are unknown a priori.

4.2 Real-World Human-Subject Experiments

While our simulation results are promising, they are under the
assumption that the agent makes decisions following the be-
havioral model. In this section, we examine whether our envi-
ronment design algorithms are effective for real human deci-
sion makers whose behavior might deviate from the model.
We have recruited 300 unique workers from Amazon Me-
chanical Turk. Each worker is paid $0.50 and might earn
additional bonuses. The average hourly rate is around $11.50.

Task description. Each worker is asked to play six navi-
gation games, with each represented by a grid world of size
10 x 10. The setup is similar to our simulations, except that
we simplify the rewards to depend only on the state, i.e.,
R%(s,a) = RP(s,a) = R(s), to reduce the cognitive burden
for workers. Workers’ bonuses depend on their total rewards.
We also consider the setting in which the principal and the
agent share the same reward function. To induce biased hu-
man behavior, a worker can only see the rewards of the nearby
states (to simulate the short-sightedness). Out of six games,
there are two games each for vision length of 1, 2, 3, which we
use short-sighted (boundedly rational) agent with 7 = 0,1, 2
to model when solving the environment design problem. The
detailed task setup is included in Appendix E.1.

Each worker is randomly assigned to one of the three treat-
ments: {baseline, modified reward, action nudged}. The
games are drawn from the same pool for each treatment. In
baseline, workers play the drawn games without modifica-
tions. In modified reward, workers see the modified rewards
generated by our algorithm. In action nudge, when a nudge
happens, the workers see an additional messages indicating
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Figure 4: The results from the human-subject experiment. The re-
sults are grouped by the vision length of the games, mapping to dif-
ferent values of 7 in short-sighted (boundedly rational) agents. 4(a)
shows the average principal’s payoff with real human decision mak-
ers in treatments, and 4(b) shows the ratio of worker moves which
are the same as short-sighted model predictions.

they might gain bonus for moving towards a certain direction.
Since our goal is to observe whether environment design has
impacts to real human decision-makers, we set the budget to
be large enough such that the optimal decisions can be in-
duced when the agent follows the behavioral model. We also
report the true incurred cost in the experiment results.

Experiment results. As shown in Figure 4(a), workers un-
der both environment design treatments generate more re-
wards for the principal, suggesting that our algorithms lead
to effective environment designs even for real humans that do
not always behave as the behavioral model. The actual costs
incurred in “modified reward” and “action nudge” treatments
are 73.7 and 50.3 points, while the average gain is 142.9 and
119.2 points. Moreover, since the principal and the agent
share the same reward, the baseline treatment corresponds to
the optimal design (do nothing) for the standard agent model.
The performance improvement of our algorithms re-affirms
the importance of incorporating realistic human models.

We also measure whether real humans behave as predicted
by the behavioral model. As in Figure 4(b), worker behav-
ior aligns with our behavioral models 53.8%, 54.2%, 68.7%
of the time on average in each treatment. We also compare
worker behavior with the standard model, with alignment at
only 33.2%, 36.9%, 45.9% of the time. Interestingly, workers
are more likely to behave as predicted in the “action nudge”
treatment, likely because this treatment generates additional
information that triggers workers to follow the nudged action.

5 Conclusion

We investigate environment design with biased decision mak-
ers. Our work sheds lights on many important applications,
such as Al-assisted decision making. Future works include
incorporating other bias models, including different envi-
ronment design strategies, and addressing potential concerns
when the objectives of the principal and the agent differ, such
as in the adversarial setting. For example, can we design
robust decision-making environments, e.g., imposing regula-
tions/constraints on the environment updates to be allowed, to
better safeguard human welfare. We hope this work can open
more discussion in designing assistive Al technology and in
incorporating behavioral models in computation.
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