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Abstract

Up to now, the image-based inverse tone mapping
(iTM) models have been widely investigated, while
there is little research on video-based iTM meth-
ods. It would be interesting to make use of these
existing image-based models in the video iTM
task. However, directly transferring the image-
based iTM models to video data without model-
ing spatial-temporal information remains nontrivial
and challenging. Considering both the intra-frame
quality and the inter-frame consistency of a video,
this article presents a new video iTM method based
on a kernel prediction network (KPN), which takes
advantage of multi-frame interaction (MFI) module
to capture temporal-spatial information for video
data. Specifically, a basic encoder-decoder KPN,
essentially designed for image iTM, is trained to
guarantee the mapping quality within each frame.
More importantly, the MFI module is incorporated
to capture temporal-spatial context information and
preserve the inter-frame consistency by exploit-
ing the correction between adjacent frames. No-
tably, we can readily extend any existing image
iTM models to video iTM ones by involving the
proposed MFI module. Furthermore, we propose
an inter-frame brightness consistency loss function
based on the Gaussian pyramid to reduce the video
temporal inconsistency. Extensive experiments
demonstrate that our model outperforms state-of-
the-art image and video-based methods. The code
is available at https://github.com/caogaofeng/KPN-
MFI.

1 Introduction

High dynamic range is the most pervasive feature of the mod-
ern televisions (TVs). The effect of the HDR video rendered
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on the HDR display device is clearly approximating the hu-
man eye seeing the real world. Nevertheless, the majority of
the transmitted visual contents are still in SDR format, e.g.,
the Digital TV and Internet Protocol TV (IPTV). Therefore,
there is an urgent demand to convert the legacy SDR contents
to their HDR version.

Transforming SDR contents into HDR ones is frequently
referred to as inverse tone mapping (iTM). The problem of es-
timating HDR images from SDR photographs has been stud-
ied for many years [Liu er al., 2020; Santos et al., 2020;
Cao et al., 2021]. However, the video-based iTM task is chal-
lenging due to the video data always containing more com-
plex scene contexts, motion, etc., in comparison with image
data. It is difficult to model both spatial and temporal infor-
mation simultaneously for video sequence data. As a result,
some existing video-based iTM methods only focus on en-
hancing the quality of a single frame, ignoring the temporal
context information between consecutive frames. In general,
for video data, inter-frame temporal consistency is even more
important than intra-frame visual quality, to a certain extent.
However, these existing video-based iTM methods which are
only based on single frame processing, cannot capture avail-
able information conveyed by the context information in the
neighboring frames, resulting in compromised quality of re-
sults and cannot control the temporal consistency between
frames.

To overcome this challenge, we propose a video iTM
method taking advantage of both spatial and temporal in-
formation. Different from these previous image-based iTM
methods which aim to predict the relative luminance of the
scenes in the linear domain, our model directly predicts HDR
videos in the HDR display format in the pixel domain, includ-
ing the color gamut must be expanded from BT.709 [ITU-R,
2015a] to BT.2020 [ITU-R, 2015b], the bit-depth increased
from 8 bit/pixel to 10 bit/pixel, and the optical-electro transfer
function (OETF) also changes from gamma [ITU-R, 2011]
to Perceptual Quantizer (PQ) [ITU-R, 2014]. To this end,
we propose to model spatial-temporal information simulta-
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neously in our video iTM method by integrating the multi-
frame interaction (MFI) module into an encoder-decoder ker-
nel prediction network (KPN). Firstly, a kernel prediction net-
work framework is adopted in order to preserve the quality of
the single frame video frames and improve the efficiency of
the model by using a parameter sharing mechanism. Sec-
ondly, the multi-frame interaction module is designed to cap-
ture short-term spatial-temporal dependence between adja-
cent video frames. With the feature between adjacent frames
exploited, not only the consistency between frames can be
maintained, but also the quality of a single frame is improved.
Additionally, any image-based method can capture the spatial
and temporal features of a video sequence by introducing the
MFI module, so that it can be readily extended to a video iTM
method. Furthermore, a brightness consistency loss is devel-
oped to optimize our model to focus more on the brightness
consistency between adjacent frame video frames.
Our contributions are summarized as follows:

* A multi-frame interaction module is introduced for
modeling spatial-temporal context information, which
aims at the feature interaction between frames through
leveraging feature re-calibration based on the spatial-
temporal relation between consecutive frames.

e A kernel prediction network framework is proposed
not only to ensure the intra-frame iTM ability of the
encoder-decoder model for single frames, but also to
keep the model efficient by using the parameters shar-
ing mechanism.

* A brightness consistency loss function based on the
Gaussian pyramid is proposed in order to preserve the
brightness consistency between adjacent video frames.

2 Related Work

2.1 Image-based iTM

With the rapid development of Convolutional Neural Net-
works (CNNs) in many computer vision tasks, (e.g., super-
resolution [Zhang er al., 2021] and denoise [Lin et al., 2021]),
CNN-based iTM methods have been developed. For instance,
Liu et al., [Liu ef al., 2020] use multiple sub-networks to
model the reverse pipeline of the camera producing SDR im-
ages from HDR. [Santos et al., 2020] reconstruct HDR im-
ages by using a CNN with masked features and perceptual
loss. HDRUNet [Chen ef al., 2021b] predicts a non-linear
16-bit HDR image with three sub-networks. Cao et al., [Cao
et al., 2021] adopts pixel-wise kernel convolution of the in-
put SDR image to generate the HDR results to avoid some
artifacts in the under/over-exposed regions.

However, these image-based iTM methods usually aim to
predict the relative luminance of a scene in the linear domain.
Thereby, these image based methods can not directly output
display format data and post-processing (e.g., gamut map-
ping, EOTF, quantization) must be performed.

2.2 Video-based iTM

In general, extant deep learning based iTM literature primar-
ily focuses on HDR image reconstruction. Very few stud-
ies [Chen et al., 2021c; Kim et al., 2019; Kim et al., 2020]
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have been proposed to address the video iTM tasks. One
of the latest video iTM methods HDRTVNet [Chen et al.,
2021c] use three sub-networks to simulate the key steps in
the HDR video generation process. [Kim et al., 2020;
Kim et al., 2019] divided the input SDR frame into base and
detail layers and then reconstruct the detail and enhancement
local contrast, respectively. Nevertheless, all the above ap-
proaches can be seen as single-frame iTM approaches, as
they do not use any advantageous information available in
the neighboring frames. As a result, these single-frame meth-
ods may cause temporal inconsistency and has limited perfor-
mance in single-frame.

To solve these problems of existing video iTM methods, in
this paper, we design a lightweight model, in which the pa-
rameters are shared in the encoder and decoder model for ad-
jacent frames. With the assistance of the multi-frame interac-
tion module, our model exploits the spatial-temporal context
information to improve single frame reconstruction quality
and reduce temporal inconsistency between adjacent frames.

3 Proposed Approach

It is well known that, in video-based reconstruction tasks,
we need to consider both the spatial structure within a sin-
gle frame and the temporal consistency between adjacent
frames. However, existing video-based iTM methods ig-
nore the inter-frame information. Considering both intra-
frame reconstruction ability and inter-frame brightness co-
herency, we design a kernel prediction network with multi-
frame interaction, named KPN-MFI, which comprises an
encoder—decoder backbone, multi-frame interaction module,
and adaptive pixel-wise convolution module. Concretely, a
basic encoder-decoder with an adaptive pixel-wise convo-
lution module is adopted to guarantee the mapping quality
within each frame. Moreover, the MFI module is designed
to captures the inter-frame spatial-temporal context informa-
tion and preserve consistency by exploiting the correction be-
tween adjacent frames. The detail of the proposed KPN-MFI
is shown in Fig. 1. The KPN-MFI is organized under a pa-
rameter sharing mechanism. It means that adjacent frames
share the same parameters of the backbone network.
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As shown in Fig. 1, given three adjacent SDR frames
(S¢—1, 5%, St+1), the KPN-MFI produces three HDR frames
(H¢—1,H;, Hyy1) simultaneously by passing them to the
same encoder-decoder model. Specifically, for each frame
of a sequential (S;_1, S, St+1), multilevel features are ex-
tracted by the encoder. The feature extraction procedure can
be written as:

{Xi, X7} =£(S),

Model Overview

ie{t—1,t,t+ 1}, (1)
where £(-) denotes encoder model, Xi and X? denote the ex-
tracted low-level and high-level feature maps, respectively.
In the encoder, low-level features Xi are with high resolu-
tion and sensitive to the local variations. It means they would
be beneficial to recover fine-grained information. Thus, as
shown in Fig. 1, we include a long skip connection in the
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Figure 1: Overall architecture of the proposed KPN-MFI. k3s1c64 denotes a convolutional layer with kernel size 3, stride 1, and channels
number 64. The same applies to k1s1c64. © is matrix multiplication, * is Hadamard product, ® is element-wise multiplication, € is element-
wise addition, ® denotes convolution operation. (C) denotes concatenate operation. ¢, h, w denote channel number, height, and width of frame
or feature map respectively. GAP means global average poling operation and FC means fully connection operation.

backbone to pass Xf to the decoder for a fine intra-frame re-
construction. In contrast, high-level features are with larger
receptive fields and thus more robust to feature displace-
ments. Since feature displacements commonly appear be-
tween adjacent frames, we would like to apply the MFI mod-
ules to the high-level features. In this way, we can well cap-
ture the spatial-temporal context information without suffer-
ing from the alignment problem caused by moving objects
in videos. Before the MFI modules, we first include self-
attention (SA) modules [Zhang et al., 2019b] to map the
high-level features X" to re-calibrated features denoted as
Y,;. Subsequently, the re-calibrated feature maps of sequen-
tial frames are further fed into the MFI module and output
interacted feature maps. It can be expressed as:

Ci1441)»t = MFI(Ye-1,Yt, Yiq1), 2

where C(;_1,:41)—¢ denotes the interacted feature of the
frame S; obtained from the intra-frame features Y;_; and
Y. 1. MFI(-) is the MFI module, which will be described
in Section 3.2.

In the decoder, a set of adaptive kernels is produced from
the interacted features and low-level features, which is for-
mulated as C; = D(C(t,l’tﬂ)ﬁt,Xi), where D(-) is de-

coder model and C; € Rexk*xhxw g g tensor consisting of
pixel-wise kernels. The output HDR frame is produced by
a pixel-wise convolution (PC) operation on the input SDR
frame, as shown in the purple block in Fig. 1. It has been
demonstrated that potential artifacts can be effectively allevi-
ated by predicting pixel-wise kernels rather than HDR pixel
[Cao et al., 2021]. The PC operation is in the form of

Hf' = Z Ki'lp; — Pl Sp,
JEQ(1)

(©))

where H"" € R is the output HDR frame H at i*" pixel
and c*" channel. Q(i) denotes the k x k convolution window
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around i‘" pixel. K¢ € R¥** denoting the kernel at i*" pixel
and c*" channel. p, denotes 2D pixel coordinates and [p; —

pj] € {(_L;lv _kgl)v (_%v _% + 1)7 (23} (kz;lv kgl)}
denotes the position offset between i** and j* pixels.

It is worth noting that if we exclude the MFI modules in
Fig. 1, it is essentially a deep architecture designed for im-
age iTM. The MFI module is proposed to encourage inter-
frame interactions and capture spatial-temporal context in-
formation. Consequently, the developed MFI module can be
embedded in any other image iTM architecture to achieve a

successful video iTM, as demonstrated in Section 3.2.

3.2 Multi-Frame Interaction Module

Inspired by the non-local block in [Wang ez al., 2018] captur-
ing long-range dependencies, a multi-frame interaction (MFI)
module is proposed to fully utilize the spatial-temporal con-
text information. Different from the original non-local block,
the MFI pays attention to the relationship between adjacent
frames (S;—1,S¢+1) and the current frame S;. Intuitively,
adjacent frame information can compensate for the current
frame information reconstruction in both spatial and channel
domains, which motivates us to highlight the relationship be-
tween multiple frames in spatial and channel domains. There-
fore, the spatial and channel interaction operation (i.e., co-
sine distance and channel attention) between adjacent frames
is introduced to make the model able to capture the spatial-
temporal context information. Specifically, as shown in the
orange block in Fig. 1, we first use 1 x 1 convolution layer
to extract the features P € R°*"** from the re-calibrated
high-level feature Y; ;, and (Q,V) € R¢*"X* from Y,.
Then, we reshape (P, Q) to R“*™ and V to R™*¢ ie., P =
[plvp2a "'7p'm]7 Q = [qlana "'aqm}’ and V = [vla V2, "‘,VC]7
where m = h x w is the number of spatial positions on each
feature map. (p,,q;) € R°and v; € R™ are the feature vec-
tors at the i*" spatial position in P, Q, and V respectively.
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The relevance between P and Q is computed with cosine
distance and get the correlation map R € R™*":
pi q;

(HPi”Q)T (Iqillz

The interaction relationship between frame S;_; and frame
S; is measured as:

(t—1)—t
,J -

>, ij=1,..,m. 4

zgfjflﬁt = rivy, di=l.,mj=1..,c ()
where Z(=V2t ¢ R, p; is i row of R, and v; is ;'
column of V. The feature Z(*~Y7* is reshaped to R xw,

Likewise, Z{!TD 7t ¢ ReXhXw can be calculated in the same
manner.

Then, the reshaped interaction relationship features
Z(=D= and ZUHD = are fusion using 1 x 1 convolution
layer and obtain multi-frame interaction relationship map Z’,
which can be regarded as spatial attention in multi-frame con-
text information. In order to further preserve the channel
attention between Z' and Y;, a channel attention module is
adopted as function:

M =wxZ' w=FC(GAP(Y})), (6)

where * presents hadamard product, GAP and F'C' denote
global average pooling operation and fully connection opera-
tion, respectively. M* € Re*h>w (y ¢ Re*1X1 is employed
to learn the channel-wise weights for Y, in terms of preserv-
ing global properties.

At last, we use a residual attention mechanism, where the
initial feature maps Y; are element-wisely weighted by (1
+ M) for preserving feature consistency and compensating
information. Thus, the multi-frame interaction feature map
with spatial-temporal information can be formulated as:

Chutttn—t = M +1) @Y, @)

In this way, we capture inter-frame correlation according
to the spatial-temporal pixel-wise relation between multiple
sequential frames. Similarity, we can get the multi-frame in-
teraction feature map C; ¢4 1)—¢—1 0r Cy_1,1)—p41-

3.3 Loss Function

Our loss function contains an intra-frame content loss £ and
an inter-frame brightness consistency loss L. Specifically,
the intra-frame content loss function is formed as:

Lc = Z HTanh(Hi) — Tanh(H;) ‘1 gde{t—1,t,t+1}, (8)

where H' denotes the ground truth HDR frame, Tanh(-)
function is adopted to balance the low and high luminance
values impact.

In order to ensure the temporal consistency further, we pro-
pose an inter-frame brightness consistency loss £7. Some
existing inter-frame consistency loss uses the optical flow to
align the frame, e.g., temporal stability loss in [Lai er al.,
2018] and Long-term temporal loss in [Zhang et al., 2019al.
However, the current best inter-frame alignment methods
(e.g., [Hui and Loy, 2020] and [Chen et al., 2021a]) have a
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limited effect on complex scenes. If we calculate the con-
sistency loss between unaligned frames, it will reduce the
model performance. To alleviate the impact of misalignment,
we propose decomposing the predicted frame with a Gaus-
sian pyramid. With the decomposition process of the Gaus-
sian pyramid, the misaligned high-frequency information be-
tween the misaligned frames is gradually eliminated. Con-
cretely, we first align the predicted frame H;_; and H;4
to H; (defined as H(;_1)_+ and H(;;1)—¢) by an optical
flow model Liteflownet3 [Hui and Loy, 2020]. Then, we
obtain the illumination component (B;_1) ¢, Bz 41)—¢ ) of
aligned frames (H(;_1)_¢, H(;41)—¢) according to the clas-
sic Retinex theory [Land and McCann, 1971]. Finally, the
illumination component is decomposed in a Gaussian pyra-
mid, and the loss is calculated for each layer of the pyramid
composition. The inter-frame brightness consistency loss L7
is defined as:

1 A . , .
£r= ‘Zlvj[HBg"*l)%’/ 7BgH1 + HBgtH)Ht 7BgH1}’ ©)
=

where 7 means the number of pyramid decomposition lay-
ers and [ is the total number of the pyramid decomposition
layers (we set [ = 5 in our experiments), B’ is ;" illu-
mination component, we use bilateral filter (with parame-
ter d = 9,sigmaColor 10, sigmaSpace = 5) to fil-
ter the frame to approximate the illuminance image in log-
arithm domain. y; is coefficients to measure the importance
of the low-frequency pyramid component. During the pyra-
mid decomposition process, the component with the smaller
resolution carries the less high-frequency detail information
and the more accurate representation of low-frequency in-
formation (such as global brightness ), and the less mis-
aligned information between frames. Therefore, we set
[v1, 72,73, V4, V5] = [1/16,1/8,1/4,1/2,1]. The Gaussian
function with (ksize =9, 0 = 1.7).

The overall loss function to optimize the model is given by:

L=Lc+alT, (10)

where « is a constant to balance L and L7 (o = 0.05 in our
implementation).

4 Experiments

4.1 Experimental Settings

Dataset. We collect 21 pairs of 4K-UHD HDR videos
under HDR10 standard and their SDR counterpart from
YouTube, as in [Chen et al., 2021c; Kim et al., 2020]. 17
video pairs are used for training and the left 4 videos for test-
ing. We sample three consecutive frames every two seconds
of each video, and then we delete the frames with scene tran-
sitions. Thus, 3,241 pairs are generated for training while
482 pairs for testing are generated. The frames are cropped
to 1024 x 1024 with overlapping, and 42, 608 pairs are gen-
erated totally for training.

Evaluation Metrics. In our experiments, we assess the
performance in terms of the Peak Signal to Noise Ratio
(PSNR), Structural Similarity (SSIM) [Wang er al., 2004],
AFE;rp [ITU-R, 2019] and HDR-VDP3 [Mantiuk er al.,
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Method PSNRt SSIMT AFE;rp) HDR-VDP3+ MABD| Params| GFLOPs |
HuoPhysEO 21.0278 09133  69.6043 7.4001 0.0147 - —

. DeepHDR 28.0664 09518  29.6662 7.0987 0.0122  51.5419 18.9459
image-based KPNiTM  33.6523 09591  12.3999 8.3062 0.0150  35.8732 73.4167
HDRUnet 36.6332  0.9823 9.4729 8.3054 0.0125 1.6515 23.4223

SRITM 36.3970 09838  10.6946 8.0513 0.0131 2.6338  182.5195

‘ JSINet 36.2092 09787  10.4287 7.9656 0.0127 1.2493 81.8757
video-based | HDRTVNet 37.2615  0.9868 9.5365 8.4408 0.0126  38.1977 55.5621
Ours 37.7260  0.9856 9.1975 8.5516 0.0119  3.3735 29.0289

Table 1: Quantitative results of our method comparison with state-of-the-art methods. Bold text indicates the best result, and underlined text
indicates the best performing state-of-the-art method.

PSNR PSNR PSNR PSNR PSNR PSNR PSNR
GFLOPs SSIM  GFLOPs SSIM  GFLOPs ssiM GFLOPs ssiM GFLOPs ssiM GFLOPs SSIM  GFLOPs, . SSIM
Params AEire  Params AE;p  Params AE;rp  Params E AEp  Params AEjrp  Params AEjrp  Params|{ AEpp
MABD HDR-VDP3 MABD HDR-VDP3 MABD HDR-VDP3 MABD HDR-VDP3 MABD HDR-VDP3 MABD HDR-VDP3 MABD™ HDR-VDP3
SRiTM JSINet HDRTVNet KPN-MFI

Figure 2: Radar charts visualizing Table 1. Values are normalized to the unit range, and axes is inverted so that a higher value is always better.

2011]. AE;rp and HDR-VDP3 are designed for HDR
videos. Furthermore, we choose the MADB in [Jiang and
Zheng, 2019] to validate the temporal consistency of models.

4.2 Experimental Results

Qualitative Evaluations

To evaluate the performance of the proposed approach, we
compare our approach against several existing state-of-the-art
video-based iTM methods, including SRiITM (ICCV) [Kim et
al., 20191, JSINet (AAAI) [Kim et al., 2020] and HDRTVNet
(ICCV) [Chen et al., 2021c]. Since there are few video-based
iTM methods, we also compare our approach with several
existing image-based methods, including HuoPhysEO [Huo
et al., 2014], DeepHDR (TOG) [Santos et al., 2020], KP-
NiTM [Cao et al., 2021], and HDRUnet (CVPR) [Chen et (d) HDRUnet (€) SRITM () JSINet
al., 2021b]. All these methods are retrained on our dataset.
As shown in Table 1 and Fig. 2, our method KPN-MFI out-
performs other methods by a large margin on PSNR, AE;7p,
and HDR-VDP3, but a slight decrease on SSIM. Quantitative
results show the effectiveness of the proposed method. Be-
sides, the calculation cost and parameters are compared. Our
model can achieve a good balance between efficiency and per-
formance. We can also see in Fig. 2, our method is with
balanced performances in the context of all the 7 metrics.

(g) HDRTVNet (h) Ours @ GT

Quantitative Evaluations Figure 3: Qualitative comparisons on over brightness scenes.

Furthermore, visual results are listed in Fig. 3 and Fig. 4.

In comparison with other models, the visual results show that  rather than directly estimate the HDR pixel values. More vi-
our model reduces the noticeable artifacts, i.e., blurring, over- sual results can be found in our online website!.

sharping, false contour, and incorrect color. We believe that

this is attributed to the fact that our model introduces the MFI 4.3 Ablation Study

module to fully utilize spatial-temporal context information  Effectiveness of MFI module for image-based model. In
of adjacent frames to reduce these artifacts and synthesize  order to assess the effectiveness of the MFI module, we in-

visually pleasing textures. Besides, our approach adopts an  roduce the MFI module into the existing image-based deep
adaptive pixel-wise kernel prediction strategy, which predicts

an adaptive kernel for each pixel of the input SDR frame "http://www.vista.ac.cn/kpn-mfi/
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Method PSNR 1 SSIM 1 AErp | HDR-VDP3 1 MABD |
MFI-DeepHDR ~ 30.0085 (+1.9421)  0.9472 (-0.0046)  24.4903 (+5.1759)  6.9060 (-0.1927)  0.0121 (+0.0001)
MFI-KPNiTM  35.0250 (+1.3727) 0.9681 (+0.0090) 10.9689 (+1.4301)  8.2842 (-0.0220)  0.0136 (+0.0014)

MFI-HDRUnet  36.9134 (+0.2802) 0.9846 (+0.0023)

9.4474 (-0.0255)

8.3632 (+0.0578)  0.0125 (+0.0000)

Table 2: Quantitative results of the image-based method with MFI module. The value in parentheses represents the amount of change in the

metrics compared to the original methods.

(2) HDRTVNet (h) Ours (i) GT

Figure 4: Qualitative comparisons on dark light scenes.

learning methods (DeepHDR, KPNiTM, and HDRUnet) to
capture the spatial-temporal information between adjacent
SDR frames, named MFI-DeepHDR, MFI-KPNiTM, and
MFI-HDRUnet, respectively. We simply introduce the MFI
module into the last layer of the down-sampling for these
three models. As shown in Table 2, the performance of the
above three methods with the MFI module has improved. It
clearly demonstrates the effectiveness of the MFI module.

Effectiveness of multi-frame interaction module. As
shown in Table 3, in comparison with baseline model #1, the
model #2 with the MFI module achieves and approximately
yields 6.82%, 1.18%, 19.13%, and, 10.22% performance gain
in terms of PSNR, SSIM, HDR-VDP3, and MABD on the
testing dataset. It is clearly demonstrated that the MFI mod-
ule plays a crucial role in improving performance. As the
features of adjacent frames interact in the MFI module, the
spatial-temporal information is captured simultaneously and
the multi-frame information is leveraged to generate a frame
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model #1 model #2 model #3
MFI module X v v
Consistency loss X X v
PSNR 349014  37.2804  37.7260
SSIM 0.9697 0.9811 0.9856
AE;rp 12.3194 9.9622 9.1975
HDR-VDP3 8.0115 8.3858 8.5516
MABD 0.0137 0.0123 0.0119

Table 3: Ablation study on the proposed KPN-MFI.

HDR output.

Effectiveness of brightness consistency loss. Compared
with model #2, in Table 3, the model #3 not only has a per-
formance gain of 3.25% in MABD score, but also has in-
creases of 1.13%, 0.45%, 8.37%, and 1.98% in PSNR, SSIM,
AFE;rp and HDR-VDP3, respectively. It is observed that
performance can be further augmented by introducing a con-
sistency loss. It may be due to the brightness consistency loss
tends to encourage the MFI module to primarily focus on the
related information between two frames and ignore the irrel-
evant information. Therefore, the brightness consistency loss
based on Gaussian pyramid can not only improve the consis-
tency of the model, but also help to improve the performance
of the model to a certain extent.

5 Conclusion

In this paper, we propose a video iTM model which aims at
reconstructing the brightness consistency of HDR video from
SDR video. To this end, an MFI module is designed to cap-
ture the temporal-spatial feature from adjacent frames. No-
tably, we can readily extend the existing successful image-
based iTM method to capture the temporal and spatial fea-
tures of the video by using the MFI module. Meanwhile,
a brightness consistency loss function is adopted to further
improve the inter-frame brightness consistency of the model.
Extensive experimental results demonstrate that our method
consistently achieves superior performance in terms of vari-
ous metrics and renders visually pleasing results. We believe
the proposed KPN-MFI model can be generalized to other
low-level vision video tasks, which will be explored in future
work.
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