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Abstract
Automatic Video Polyp Segmentation (VPS) is
highly valued for the early diagnosis of colorec-
tal cancer. However, existing methods are limited
in three respects: 1) most of them work on static
images, while ignoring the temporal information in
consecutive video frames; 2) all of them are fully
supervised and easily overfit in presence of lim-
ited annotations; 3) the context of polyp (i.e., lu-
men, specularity and mucosa tissue) varies in an
endoscopic clip, which may affect the predictions
of adjacent frames. To resolve these challenges, we
propose a novel Temporally Consistent Context-
Free Network (TCCNet) for semi-supervised VPS.
It contains a segmentation branch and a propaga-
tion branch with a co-training scheme to super-
vise the predictions of unlabeled image. To main-
tain the temporal consistency of predictions, we de-
sign a Sequence-Corrected Reverse Attention mod-
ule and a Propagation-Corrected Reverse Attention
module. A Context-Free Loss is also proposed to
mitigate the impact of varying contexts. Extensive
experiments show that even trained under 1/15 la-
bel ratio, TCCNet is comparable to the state-of-the-
art fully supervised methods for VPS. Also, TCC-
Net surpasses existing semi-supervised methods for
natural image and other medical image segmenta-
tion tasks.

1 Introduction
Automatic video endoscopic polyp segmentation is of great
research value for the prevention of Colorectal Cancer (CRC).
However, most previous methods are fully supervised and
trained on static images. They have three major limitations.
Firstly, recent methods like [Fan et al., 2020; Kim et al.,
2021] only relied on static images to train and evaluate their
models, while ignoring the temporal information in an endo-
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Figure 1: Clips from two endoscopic videos. In the first row,
disagreements among successive annotations are bounded by blue
squares. The same tissue in blue square is labeled as polyp in the
1st frame, but labeled as background in the 2nd and 3rd frames.

scopic sequence. As shown in Fig. 1, the images are from
the same endoscopic sequence and focus on the same polyp
object. Their trajectories and appearance changes are tempo-
rally correlated. It is insufficient to only focus on independent
static images for the Video Polyp Segmentation (VPS) task.
Secondly, limited annotated data is the bottleneck for the VPS
task. Due to the fuzzy boundary of polyp and its similarity
to the background tissue, even skilled clinicians may fail to
reach an agreement on the annotations for successive frames,
as shown in the first row of Fig. 1. Thirdly, although an endo-
scopic video focuses on the same polyp tissue, the context of
the polyp (i.e., lumen, specularity and mucosa tissue) changes
due to angles of camera or lights, which may impact on the
prediction results of adjacent frames. E.g., in the second row
of Fig. 1, the contexts of the 2nd and 3rd frames are different
from that of the 1st one.

To tackle the aforementioned limitations, we propose a
novel Temporally Consistent Context-Free Network (TCC-
Net) for the semi-supervised VPS task, which contains a seg-
mentation branch and a propagation branch. For the first lim-
itation, we design a Sequence-Corrected Reverse Attention
(SC-RA) module and a Propagation-Corrected Reverse At-
tention (PC-RA) module to fully exploit the temporal infor-
mation and keep the prediction temporally consistent among
successive frames. Reverse Attention [Fan et al., 2020] is
employed to refine the boundary of saliency map. To correct
the map’s prediction error, we introduce an error correction
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mechanism. Positional information [Hu et al., 2021] is ob-
tained from the endoscopic sequence and effectively prevents
a suspected area from being misclassified. For the second
limitation, we design a co-training scheme to train the net-
work in a semi-supervised manner. A sequence clip with one
labeled reference frame and several unlabeled frames is fed
into the two parallel branches. For the unlabeled frames, the
outputs of one branch are supervised by the pseudo labels
[Chen et al., 2021] generated by the other branch. Different
from existing semi-supervised methods, we focus on the tem-
poral consistency between the ground truth of the reference
frame and the pseudo labels of the unlabeled frames. For the
third limitation, we propose a Context-Free Loss to mitigate
the impact of varying contexts within successive frames.

The contributions are three-fold: (i) We propose a novel
TCCNet for the semi-supervised VPS. To the best of our
knowledge, this is the first work to study the VPS task us-
ing semi-supervised learning. (ii) We design the SC-RA and
PC-RA modules to keep predictions temporally consistent
and introduce the Context-Free Loss to alleviate the impact
of varying contexts. (iii) We conduct experiments on three
VPS datasets. Results show that even trained under 1/15 la-
bel ratio, TCCNet is comparable to the state-of-the-art fully
supervised methods for VPS. Specially, TCCNet exhibits ob-
vious superiority over the existing semi-supervised methods
for natural image and other medical image segmentation. 1

2 Related Work
Polyp Segmentation. Deep Convolutional Neural Net-
works (DCNN) are widely used in polyp segmentation. U-
Net++ [Zhou et al., 2018] designed dense connections and
enabled feature fusion of varying scales. ResUNet++ [Jha et
al., 2019] merged residual blocks, attention blocks, Atrous
Spatial Pyramidal Pooling and Squeeze-and-Excitation (SE)
blocks into a U-shaped architecture. PraNet [Fan et al., 2020]
fused features from varying scales with a Parallel Partial De-
coder (PPD) [Chen et al., 2018] and recovered the boundary
cues with a Reverse Attention (RA) module. Inspired by the
overall structure of PraNet, UACANet [Kim et al., 2021] in-
tegrated the features from the foreground, background and
uncertain area to refine the boundary cues. However, these
methods only work on static images and cannot capture the
temporal information in the endoscopic videos. PNSNet [Ji
et al., 2021] proposed a Normalized Self-attention (NS) block
to dynamically update the receptive field of the network and
obtain the temporal representation. Limited by the scale of
video polyp datasets, PNSNet was pre-trained on static im-
ages and fine-tuned on video polyp images. Such a train-
ing strategy requires abundant annotations and does not suit
the semi-supervised segmentation. By contrast, our semi-
supervised framework fully exploits the temporal informa-
tion. It keeps the prediction temporally consistent and breaks
the bottleneck of limited annotations.
Semi-supervised Medical Image Segmentation. Semi-
supervised Learning (SSL) improves the performance of
medical image segmentation by utilizing a large set of un-
labeled data. Adversarial learning [Zhang et al., 2017] and

1Code is available at https://github.com/wener-yung/TCCNet

consistency regularization [Tarvainen and Valpola, 2017] are
the two most common semi-supervised methods. To avoid
the inefficient perturbation, ICT [Verma et al., 2019] intro-
duced a consistency strategy which encouraged the consis-
tency between the prediction of two unlabeled images’ inter-
polation and the interpolation of those two images’ predic-
tions. UA-MT [Yu et al., 2019] took the reliability of predic-
tions into consideration and designed a consistency loss with
the guidance of an estimated uncertainty. Apart from the in-
put perturbation, feature perturbation [Ouali et al., 2020] and
model perturbation [Chen et al., 2021] are also used for con-
sistency regularization. URPC [Luo et al., 2021] presented an
uncertainty rectified pyramid consistency loss which encour-
aged the prediction at different scales to be consistent. In our
framework, we introduce the model perturbation [Chen et al.,
2021] method into the VPS task and preserve the temporal
consistency between the ground truth of the reference frame
and the pseudo label of the unlabeled frame.

3 Methodology
3.1 Temporally Consistent Context-Free Network
Fig. 2(a) shows the overall architecture of the proposed TC-
CNet. It consists of a segmentation branch and a propagation
branch. In the training phase, a training clip is parallelly fed
into the two branches. The SC-RA module in the segmenta-
tion branch and the PC-RA module in the propagation branch
are designed to correct the error of saliency maps from the
previous layer and keep the temporal consistency of the pre-
dictions. The outputs of these two branches are supervised
with a co-training scheme. From each input image, we syn-
thesize two different images S1 and S2 with the predicted
polyp locations, which are fed into the two branches again to
obtain the global maps and calculate the CFLoss in Sec. 3.4.

The encoder structures of the two branches are the same.
For a given endoscopic clip with T frames, {It}Tt=1, five
levels of features {F l

t}
T,5
t=1,l=1 ∈ RHl×W l×C are extracted

from the encoder. For fair comparison, we use the same
backbone in PraNet [Fan et al., 2020] as the encoder (i.e.,
Res2Net pre-trained on ImageNet). Following [Fan et al.,
2020], we integrate the high-level features to obtain the global
features {F 6

t }Tt=1 and the global maps {M6
t }Tt=1. To improve

the quality of feature embedding and reduce computing re-
sources, we update the encoder weights in the propagation
branch as an Exponential Moving Average (EMA) [Tarvainen
and Valpola, 2017] of the weights in the segmentation branch.

The decoder structures of these two branches are different,
so are the prediction processes. Specifically, in the segmen-
tation branch, taking the lth layer as an example, {F l

s,t}Tt=1,
{F l+1

s,t }Tt=1 and {M l+1
s,t }Tt=1 are sent to the SC-RA module to

obtain {M l
s,t}Tt=1. The predictions of the T frames are calcu-

lated as a whole. While in the propagation branch, the predic-
tions are calculated frame by frame. Taking the tth frame as
an example, the feature maps of the previous t− 1 frames are
stored as memory features in a memory pool. In the lth layer,
the memory features, F l

p,t and M l+1
p,t are sent to the PC-RA

module, and M l
p,t is therefore obtained.
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Figure 2: (a) An overall architecture of TCCNet. The approach to synthesizing S1 and S2 is described in Sec. 3.4. (b) The detail of SC-RA
module. (c) The detail of PC-RA module. ‘//’ on −→ denotes stop-gradient.

TCCNet focuses on the VPS task with a semi-supervised
method, where a training clip {It}Tt=1 consists of one la-
beled frame and T − 1 unlabeled frames. We denote the
labeled frame as the reference frame (Ir, Yr) and the unla-
beled frames as Du = {It}Tt=2. The training clip is sent to
the two parallel branches. The predictions of segmentation
branch are denoted by {Ps,t}Tt=1 and the predictions of prop-
agation branch are denoted by {Pp,t}Tt=2. It should be high-
lighted that the segmentation branch predicts the entire clip
and outputs T masks, while the propagation branch outputs
T − 1 masks of the unlabeled frames, excluding the mask of
the reference frame.

The supervised loss on the reference frame is formulated
using the Binary Cross Entropy Loss (BCELoss) and the In-
tersection over Union Loss (IoULoss). It is calculated as:
Lsup(Ps,r, Yr) = LBCE(Ps,r, Yr) + LIoU (Ps,r, Yr), (1)

where LBCE(·) and LIoU (·) denote the BCELoss and
IoULoss functions, respectively.

The unsupervised loss on the unlabeled frames is de-
fined using the Cross Pseudo Supervision Loss (CPSLoss)
[Chen et al., 2021]. We get the pseudo segmentation labels
{Y ′

s,t}Tt=2 and {Y ′
p,t}Tt=2 by thresholding the corresponding

predictions. The CPSLoss is bidirectional. Specifically, the
predictions {Ps,t}Tt=2 of the segmentation branch are super-
vised by the pseudo labels {Y ′

p,t}Tt=2 generated from the prop-
agation branch and vice versa. It is calculated as:

Lcps =
1

T−1

∑T
t=2(LBCE(Ps,t, Y

′
p,t) + LBCE(Pp,t, Y

′
s,t)). (2)

3.2 Sequence-Corrected Reverse Attention
The SC-RA module is described in Fig. 2(b). Taking the
lth layer as an example, the SC-RA module receives fea-
ture maps {F l

s,t}Tt=1, {F l+1
s,t }Tt=1 and segmentation maps

{M l+1
s,t }Tt=1 to calculate the sequence-corrected position

maps {Mpos,t}Tt=1, which are used to correct {M l+1
s,t }Tt=1.

{Mpos,t}Tt=1 is the average of Mpos and M ′
pos. Specifically,

we use {F l
s,t}Tt=1 to compute the position map Mpos and

{F l+1
s,t }Tt=1 to compute M ′

pos. The calculation processes of
Mpos and M ′

pos are similar. Taking Mpos as an example, we
complement the feature maps {F l

s,t}Tt=1 with 2D positional
encoding [Carion et al., 2020] and calculate the query vector
Q and key vector K with the 1×1×1 convolutional layer. We
reshape Q and K, and apply matrix inner product to obtain
the similarity map Sim.

The segmentation maps {M l+1
s,t }Tt=1 from the previous

layer are used to reduce the response of background region.
We get the local response by:

{gl}Tt=1 = {exp(σ(U(M l+1
s,t )))/e}Tt=1, (3)

where σ is the sigmoid function; and U(·) is the up-sampling
operation. g is then reshaped to g′l ∈ R1×THlW l

.
We apply element-wise product between Sim and g′ to

suppress the response of non-polyp region. Then we select
the top-K values on the key dimension and average them to
get position map M l

pos.
The sequence-corrected position maps {Mpos,t}Tt=1 are

used to compute the sequence-corrected segmentation maps
{M l

SC,t}Tt=1 by:

{M l
SC,t}Tt=1 = {Mpos,t ∗ σ(U(M l+1

s,t )) + σ(U(M l+1
s,t ))}Tt=1. (4)

The current segmentation maps are then calculated using the
Reverse Attention [Fan et al., 2020],

{M l
s,t}Tt=1 = {convs(⊖MSC,t ∗ F l

s,t) +M l
SC,t}Tt=1, (5)
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where convs(·) denotes the convolution layers.
We adopt supervision on the segmentation predictions

from the middle layers and the sequence-corrected segmen-
tation maps. The calculation is:

Ls
deep =

6∑
l=4

Lsup(P
l
s,r, Yr) +

5∑
l=3

Lsup(P
l
SC,r, Yr)

+
1

T − 1

T∑
t=2

(

6∑
l=4

LBCE(P
l
s,t, Y

′
p,t) +

5∑
l=3

LBCE(P
l
SC,t, Y

′
p,t)),

(6)

where PSC = σ(U(MSC)) and Ps = σ(U(Ms)).

3.3 Propagation-Corrected Reverse Attention
The PC-RA module is shown in Fig. 2(c). The Space-Time
Memory (STM) [Oh et al., 2019] module aims to utilize all
the available temporal cues. For the tth frame, the feature
map F l

p,t along with the segmentation map M l+1
p,t are embed-

ded as a pair of 2D key and value maps, which are defined as:

Kl
Q,t ∈ RHl×W l×C/8 = ϕq(F

l
p,t + conp(σ(U(M l+1

p,t )))),

V l
Q,t ∈ RHl×W l×C/2 = gq(F

l
p,t + conp(σ(U(M l+1

p,t )))),
(7)

where ϕq(·) and gq(·) are two parallel 3 × 3 convolutional
layers, and conp(·) is a 7× 7 convolutional layer.

Each of the previous frame is independently embedded into
a pair of key and value maps by following the above strat-
egy. We concatenate them in the temporal dimension and
store them in the memory pool. Kl

M ∈ RT ′×Hl×W l×C/8

and V l
M ∈ RT ′×Hl×W l×C/2 are obtained, where T ′ is the

number of memory frames. The memory embedding and the
current feature embedding are fed into the STM module to
obtain a memory map F l

mem,t.
The formulation of the propagation-corrected map MPC,t

is similar to that of the sequence-corrected map in Sec. 3.2.
Similarity map Sim is calculated with the feature map of the
tth frame and that of the reference frame. The ground truth of
the reference frame Yr is used to calculate the local response
by gr = exp(Yr)/e. We then get the position map Mpos,t by
applying element-wise product between Sim and gr, select-
ing top-K values on the dimension and reshaping operation.

The propagation-corrected segmentation map M l
PC,t is

then calculated similarly to the sequence-corrected segmen-
tation map in Eq. (4). We apply the Reverse Attention on
F l
mem,t and M l

PC,t to get the segmentation map M l
p,t by Eq.

(5). Similar to Sec. 3.2, we adopt the supervision upon the
segmentation maps. The loss function is defined as:

Lp
deep =

1

T − 1

T∑
t=2

(
6∑

l=4

LBCE(σ(U(M l
p,t)), Y

′
s,t)

+
5∑

l=3

LBCE(σ(U(M l
PC,t)), Y

′
s,t)).

(8)

3.4 Context-Free Loss
In an endoscopic video, the context around one polyp may
vary due to angles of camera or lights, which may affect the

prediction results. For our semi-supervised VPS task, the net-
work may overfit on the limited labeled data and context.
Therefore, we propose a Context-Free Loss (CFloss) to re-
duce the dependency on varying contexts and improve the ro-
bustness of the network.

For a training clip, we obtain the locations of polyps by ap-
plying average, erosion and dilation operations on {Ps,t}Tt=2

and {Pp,t}Tt=2. For each frame in this sequence, two patches
are randomly cropped with an overlapping region, which
must contain the polyp tissue. To further increase the diver-
sity of context, we randomly sample two frames from two
different sequences as the background images and synthe-
size two images by overlaying the two patches onto the back-
ground images, thus obtaining two synthesized images S1and
S2.

The synthesized images are fed into the segmentation
branch and the propagation branch, and two global maps are
obtained. Denoting the two segmentation maps of the over-
lapping region as Ωs,1 and Ωp,2, our CFLoss is bidirectional
and formulated as:

LCF =
1

2

∑
i∈Ω

(|ωs,1,i − ωp,2,i|2 + |ωs,2,i − ωp,1,i|2), (9)

where i ∈ Ω indicates a pixel in the overlapping region.

3.5 Training Strategy
Pre-training on pseudo sequences. We generate a pseudo
sequence dataset with static frames to pre-train the network,
which is usually used in Video Object Segmentation (VOS)
task [Oh et al., 2019; Hu et al., 2021]. For a training clip, the
first frame is sampled from the labeled frames and the rest
are generated by applying random affine transforms on the
first frame, such as translation, zooming, cropping, flip and
rotation. In the pre-training phase, only the labeled frames
are used and our network is fully supervised.

Main-training on real sequences. In the main-training
phase, our network is semi-supervised. For a training clip,
the first frame is sampled from the labeled frames and works
as the reference frame. The rest unlabeled frames are ran-
domly selected from the same sequence in temporal order.

Total loss. The total loss of the network is formulated as:

Ltotal = Lsup + λcpsLcps + λsLs
deep

+ λpLp
deep + λcfLCF ,

(10)

where λcps, λs, λp and λcf are the hyper-parameters to bal-
ance the loss terms.

4 Experiments
4.1 Experimental Setup
Datasets. We conduct experiments on three video-based
polyp datasets: CVC-300 [Tajbakhsh et al., 2016], CVC-
612 [Bernal et al., 2015] and ETIS [Silva et al., 2014].
CVC-300/CVC-612/ETIS contains 300/612/196 images from
13/29/26 video clips. The image resolutions are 384 × 288,
500×574 and 1225×966 pixels, respectively. Following [Ji et
al., 2021], 60% images from CVC-612 and 60% images from
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Polyp Segmentation
Method mDice ↑ mIoU ↑ wFm ↑ Sm ↑ Em ↑ MAE ↓

C
V

C
-3

00
-T

V

U-Net++ 0.743 0.649 0.733 0.860 0.868 0.018
ResUNet++ 0.473 0.386 0.459 0.718 0.678 0.034
PraNet 0.826 0.734 0.811 0.904 0.927 0.013
PNSNet 0.813 0.747 0.685 0.866 0.877 0.056
UACANet 0.829 0.734 0.818 0.905 0.935 0.012
Ours (1/15 labeled) 0.824 0.730 0.812 0.906 0.925 0.013
Ours (1/2 labeled) 0.848 0.760 0.832 0.920 0.943 0.013

C
V

C
-6

12
-V

U-Net++ 0.674 0.582 0.642 0.809 0.818 0.031
ResUNet++ 0.512 0.400 0.441 0.703 0.720 0.061
Pranet 0.846 0.767 0.838 0.909 0.934 0.014
PNSNet 0.844 0.764 0.830 0.912 0.933 0.012
UACANet 0.840 0.765 0.830 0.909 0.929 0.012
Ours (1/15 labeled) 0.854 0.777 0.844 0.916 0.943 0.012
Ours (1/2 labeled) 0.854 0.780 0.846 0.918 0.938 0.011

C
V

C
-6

12
-T

U-Net++ 0.739 0.655 0.734 0.834 0.831 0.056
ResUNet++ 0.591 0.494 0.559 0.734 0.766 0.074
Pranet 0.837 0.762 0.829 0.895 0.900 0.039
PNSNet 0.820 0.747 0.817 0.895 0.888 0.043
UACANet 0.826 0.754 0.822 0.890 0.891 0.041
Ours (1/15 labeled) 0.827 0.752 0.823 0.892 0.893 0.041
Ours (1/2 labeled) 0.843 0.772 0.838 0.902 0.906 0.038

E
T

IS

U-Net++ 0.309 0.251 0.293 0.624 0.571 0.045
ResUNet++ 0.136 0.106 0.134 0.527 0.463 0.057
Pranet 0.585 0.509 0.560 0.778 0.759 0.020
PNSNet 0.500 0.424 0.492 0.735 0.699 0.027
UACANet 0.547 0.480 0.550 0.764 0.710 0.021
Ours (1/15 labeled) 0.618 0.537 0.587 0.798 0.786 0.023
Ours (1/2 labeled) 0.641 0.550 0.597 0.806 0.813 0.026

Table 1: Comparison with polyp segmentation methods. TCCNet
achieves 65fps inference speed. Under the same settings, PNSNet
reaches 69fps and UACANet reaches 74fps. In the inference phase,
the segmentation branch is used for prediction with parameter size of
24.9M, which is less than UACANet (26.9M) and PNSNet (27.0M).
↑ denotes the higher the better and ↓ denotes the lower the better.

CVC-300 are used for training. For the semi-supervised train-
ing, we label an image every 15 frames for each sequence.
That is, the label ratio is 1/15 in each sequence. We test
the performance of TCCNet on the test datasets in [Ji et al.,
2021], including CVC-300-TV, CVC-612-V and CVC-612-
T. Moreover, to verify the generalization ability of our TCC-
Net, we evaluate our network on ETIS, of which the image
domain is unseen in the training set.

Evaluation metrics. We employ the same evaluation met-
rics in [Fan et al., 2020], including mean Dice (mDice), mean
IoU (mIoU), weighted Fβ measure (wFm), S-measure (Sm),
Enhanced-alignment measure (Em) and Mean Absolution Er-
ror (MAE).

Implementation details. The clip of input sequence T is
set to 3 and the batch size is set to 2. In the pre-training
phase, the network is trained for 200 epochs with Adam opti-
mizer and a learning rate of 10−4. In the main-training phase,
the network is trained for 40 epochs with Adam optimizer.
The initial learning rate is set to 10−4 with polynomial decay
[Kim et al., 2021]. All images are resized to 352 × 352 and
normalized into [−0.5, 0.5]. Random data augmentation is
performed. In the testing phase of TCCNet, we only use the
output from the segmentation branch. C, K, λcps, λs, λp and
λcf are empirically set to 32, 8, 1, 1, 1 and 2, respectively.

4.2 Comparison with State-of-the-art Methods
Comparison with methods for fully supervised polyp seg-
mentation. We compare our semi-supervised TCCNet with
the state-of-the-art (SOTA) fully supervised polyp segmen-
tation models, including U-Net++ [Zhou et al., 2018], Re-

Semi-supervised
Method (1/15 labeled) mDice ↑ mIoU ↑ wFm ↑ Sm ↑ Em ↑ MAE ↓

C
V

C
-3

00
-T

V UA-MT 0.803 0.703 0.761 0.897 0.917 0.016
ICT 0.809 0.712 0.771 0.903 0.919 0.015
CCT 0.813 0.713 0.773 0.897 0.928 0.015
URPC 0.806 0.711 0.785 0.895 0.917 0.015
CPS 0.802 0.706 0.782 0.894 0.911 0.016
Ours 0.824 0.730 0.812 0.906 0.925 0.013

C
V

C
-6

12
-V

UA-MT 0.829 0.746 0.796 0.895 0.926 0.013
ICT 0.827 0.744 0.802 0.894 0.928 0.014
CCT 0.847 0.770 0.821 0.904 0.937 0.012
URPC 0.837 0.758 0.814 0.900 0.934 0.012
CPS 0.841 0.765 0.831 0.912 0.928 0.013
Ours 0.854 0.777 0.844 0.916 0.943 0.012

C
V

C
-6

12
-T

UA-MT 0.818 0.741 0.809 0.889 0.888 0.043
ICT 0.826 0.749 0.819 0.893 0.894 0.041
CCT 0.815 0.736 0.805 0.884 0.886 0.044
URPC 0.820 0.744 0.808 0.882 0.888 0.043
CPS 0.814 0.740 0.809 0.887 0.883 0.043
Ours 0.827 0.752 0.823 0.892 0.893 0.041

E
T

IS

UA-MT 0.588 0.485 0.490 0.768 0.762 0.037
ICT 0.602 0.502 0.517 0.779 0.780 0.031
CCT 0.608 0.512 0.515 0.779 0.780 0.024
URPC 0.614 0.529 0.564 0.788 0.782 0.029
CPS 0.605 0.515 0.550 0.781 0.779 0.027
Ours 0.618 0.537 0.587 0.798 0.786 0.023

Table 2: Comparison with semi-supervised methods.

sUNet++ [Jha et al., 2019], PraNet [Fan et al., 2020], UA-
CANet [Kim et al., 2021] and PNSNet [Ji et al., 2021]. We
re-train the SOTA models with the released code under their
default settings for further epochs to ensure fairness. The
comparison results are shown in Table 1. It can be observed
that our semi-supervised model trained under 1/15 label ratio
is comparable to the fully supervised models. Under 1/2 label
ratio, our TCCNet outperforms the fully supervised models
in almost all cases. All the SOTA models perform poorly on
the EITS dataset, since the image domain of ETIS is unseen
in the training set and it is easy for the models to overfit on
the CVC-300 and CVC-612 datasets. Thanks to the consis-
tency regularization, our network under 1/15 label ratio gains
3.3% mDice improvement over the best SOTA fully super-
vised polyp segmentation model PraNet.

Comparison with methods for semi-supervised segmen-
tation. We compare our method with the existing semi-
supervised models, including UA-MT [Yu et al., 2019] and
URPC [Luo et al., 2021] for other medical image segmenta-
tion tasks and ICT [Verma et al., 2019], CCT [Ouali et al.,
2020] and CPS [Chen et al., 2021] for natural image segmen-
tation task. For fair comparison, we change the backbones of
these SOTA networks to our segmentation network in the seg-
mentation branch and train the networks with the same data
augmentation and training strategy. The comparison results
are listed in Table 2. It can be seen that our method achieves
superior performance to other methods in almost all cases.

4.3 Ablation Studies
Ablation studies for different modules. The ablation re-
sults of different modules on the CVC-300-VT and CVC-
612-V datasets are shown in Table 3. From the first four rows,
we can observe that the proposed modules, SC-RA module,
PC-RA module and CFLoss gain improvement over Baseline
(the first row). The combination of SC-RA module and PC-
RA module introduces the sequence information into the two
branches and further improves the performance, as shown in
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Modules CVC-300-VT CVC-612-V
SC-RA PC-RA CFLoss mDice ↑ mIoU ↑ wFm ↑ Sm ↑ mEm ↑ MAE ↓ mDice ↑ mIoU ↑ wFm ↑ Sm ↑ mEm ↑ MAE ↓

0.791 0.695 0.746 0.890 0.900 0.017 0.803 0.718 0.773 0.891 0.904 0.016√
0.809 0.716 0.801 0.893 0.918 0.014 0.836 0.762 0.825 0.908 0.927 0.012√
0.811 0.716 0.798 0.897 0.915 0.015 0.828 0.749 0.815 0.903 0.919 0.015√
0.809 0.712 0.798 0.895 0.927 0.018 0.817 0.734 0.720 0.891 0.914 0.019√ √
0.814 0.717 0.800 0.895 0.926 0.014 0.842 0.758 0.824 0.908 0.938 0.014√ √ √
0.824 0.730 0.812 0.906 0.925 0.013 0.854 0.777 0.844 0.916 0.943 0.012

Table 3: Ablation results on the CVC-300-VT and CVC-612-V datasets for SC-RA module, PC-RA module and CFLoss.

Dataset Method mDice ↑ mIoU ↑
CVC-300-VT w/o. pre-train 0.800 0.703

w. pre-train 0.824 0.730

CVC-612-V w/o. pre-train 0.826 0.744
w. pre-train 0.854 0.777

Table 4: Impact of our pre-training strategy.

Frame GT Ours UACANet PranetPNSNet U-Net++ResUnet++

�i
m
e

(1)

(2)

(3)

Figure 3: Qualitative results of temporal consistency. The three
frames are from a testing clip in temporal order.

the fifth row. The full model (the last row) achieves better
results, which is attributed to the context-free constraint.

Ablation studies for training strategy. Table 4 lists the ef-
fect of our pre-training strategy. It can be seen that the pre-
training strategy brings 2.4%/2.8% of mDice and 2.7%/3.3%
of mIoU increase on CVC-300-VT/CVC-612-V, respectively.

4.4 Qualitative Results
Temporal consistency of predictions. The quantitative
comparison results between our model and other fully super-
vised VPS models are shown in Fig. 3. It can be observed
that our model well maintains the temporal consistency of
the predictions for a testing clip. Specifically, for the third
frame, other models are likely to be influenced by the optical
artifact region (blue square), leading to the misclassification
as polyp tissue. Our model can learn the position and texture
of polyps from previous frames, thus substantially alleviating
false positives of segmentation.

Analysis on various label ratios. We visualize the im-
provement over the supervised baseline under different label
ratios, as shown in Fig. 4. The time intervals for annotations
are set to 50, 15, 5, 2 and 1. Our network consistently sur-
passes Baseline. To be specific, the mDice gains of our net-
work over Baseline are 18.1%/8.6%, 9.1%/6.5%, 3.1%/2.5%,
2.6%/1.7% and 2.1%/1.4% on CVC-300-VT/CVC-612-V.

Qualitative results of the error correction mechanism for
segmentation map. Fig. 5(a) shows the qualitative results
of the error correction mechanism for segmentation map. Us-
ing SC-RA module as an example, a suspected region is mis-
classified as the polyp tissue in the global segmentation map
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Ours
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(a) CVC-300-VT (b) CVC-612-V

m
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Figure 4: Results under different label ratios on the CVC-300-VT
and CVC-612-V datasets. The time intervals for annotations are 50,
15, 5, 2 and 1.

Frame GT M6 M5 Frame GT w. CFLoss w/o. CFLoss

(1)

(2)

(3)

(a) (b)

(1)

(2)

(3)

�m
e

Figure 5: (a) Qualitative results of the error correction mechanism
for segmentation map in the segmentation branch. The suspected
region is bounded by blue squares. (b) Qualitative results of CFLoss.

M6
s but later corrected to M5

SC by the SC-RA module.
Qualitative results of the proposed CFLoss. Fig. 5(b)
illustrates the qualitative results of the proposed CFLoss.
Given the three consecutive frames, the context of polyp in
the 2nd and 3rd frames are quite different from that in the
1st one. As a result, the network without CFLoss misclassi-
fies the background region as polyp tissue for the second and
third frames. It can be observed that our network effectively
reduces such false positives with the aid of CFLoss.

5 Conclusion
In this paper, we introduced a novel semi-supervised video
polyp segmentation network, i.e., TCCNet. It consists of a
segmentation branch and a propagation branch, which are
trained with a co-training scheme. A SC-RA module and
a PC-RA module are designed to keep the predictions tem-
porally consistent for consecutive frames. A CFLoss is
proposed to reduce the impact of varying contexts on the
predictions of adjacent frames. Experiments demonstrate
that our TCCNet gains better results than the SOTA meth-
ods on both fully supervised polyp segmentation and semi-
supervised medical segmentation. In the future, we would
like to extend our method to other challenging tasks, such as
instrument segmentation from robotic surgical videos.
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