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Abstract

The generation of feasible adversarial examples is
necessary for properly assessing models that work
in constrained feature space. However, it remains a
challenging task to enforce constraints into attacks
that were designed for computer vision. We pro-
pose a unified framework to generate feasible ad-
versarial examples that satisfy given domain con-
straints. Our framework can handle both linear and
non-linear constraints. We instantiate our frame-
work into two algorithms: a gradient-based attack
that introduces constraints in the loss function to
maximize, and a multi-objective search algorithm
that aims for misclassification, perturbation mini-
mization, and constraint satisfaction. We show that
our approach is effective in four different domains,
with a success rate of up to 100%, where state-
of-the-art attacks fail to generate a single feasible
example. In addition to adversarial retraining, we
propose to introduce engineered non-convex con-
straints to improve model adversarial robustness.
We demonstrate that this new defense is as effec-
tive as adversarial retraining. Our framework forms
the starting point for research on constrained adver-
sarial attacks and provides relevant baselines and
datasets that future research can exploit.

1 Introduction

Research on adversarial examples initially focused on image
recognition [Dalvi er al., 2004; Szegedy et al., 2013] but has,
since then, demonstrated that the adversarial threat concerns
many domains including cybersecurity [Pierazzi et al., 2020;
Sheatsley et al., 20201, natural language processing [Alzantot
et al., 2018], software security [Yefet et al., 2020], cyber-
physical systems [Li er al., 2020], finance [Ghamizi er al.,
20201, manufacturing [Mode and Hoque, 2020], and more.
A peculiarity of these domains is that the ML model is in-
tegrated in a larger software system that takes as input do-
main objects (e.g. financial transaction, malware, network
traffic). Therefore altering an original example in any direc-
tion may result in an example that is infeasible in the real
world. This contrasts with images that generally remain valid
after slight pixel alterations. Hence, a successful adversarial
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example should not only fool the model and keep a minimal
distance to the original example, but also satisfy the inherent
domain constraints.

As a result, generic adversarial attacks that were designed
for images — and are unaware of constraints — equally fail to
produce feasible adversarial examples in constrained domains
[Ghamizi et al., 2020; Tian et al., 2020]. A blind application
of these attacks would distort model robustness assessment
and prevent the study of proper defense mechanisms.

Problem-space attacks are algorithms that directly manip-
ulate problem objects (e.g. malware code [Aghakhani et al.,
2020; Pierazzi et al., 2020], audio files [Du et al., 2020], wire-
less signal [Sadeghi and Larsson, 2019]) to produce adver-
sarial examples. While these approaches guarantee by con-
struction that they generate feasible examples, they require
the specification of domain-specific transformations [Pierazzi
et al., 2020]. Their application, therefore, remains confined
to the particular domain they were designed for. Additionally,
the manipulation and validation of problem objects are com-
putationally more complex than working with feature vectors.

An alternative to problem-space attacks is feature-space
attacks that enforce the satisfaction of the domain con-
straints. Some approaches for constrained feature space
attacks modify generic gradient-based attacks to account
for constraints [Sheatsley er al., 2020; Tian et al., 2020;
Erdemir et al., 2021] but are limited to a strict subset of
the constraints that occurs in real-world applications (read
more in Appendix A of our extended version', where we
discuss the related work thoroughly). Other approaches
tailored to a specific domain manage to produce feasible
examples [Chernikova and Oprea, 2019; Li et al., 2020;
Ghamizi et al., 2020] but would require drastic modifications
throughout all their components to be transferred to other do-
mains. To this date, there is a lack of generic attacks for ro-
bustness assessment of domain-specific models and a lack of
cross-domain evaluation of defense mechanisms.

In this paper, we propose a unified framework? for con-
strained feature-space attacks that applies to different do-
mains without tuning and ensures the production of feasi-
ble examples. Based on our review of the literature and our
analysis of the covered application domains, we propose a
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generic constraint language that enables the definition of (lin-
ear and non-linear) relationships between features. We, then,
automatically translate these constraints into two attack algo-
rithms that we propose. The first is Constrained Projected
Gradient Descent (C-PGD) — a white-box alteration of PGD
that incorporates differentiable constraints as a penalty in the
loss function that PGD aims to maximize, and post-processes
the generated examples to account for non-differentiable con-
straints. The second is Multi-Objective EVolutionary Adver-
sarial Attack (MoEvA?2) — a grey-box multi-objective search
approach that treats misclassification, perturbation distance,
and constraints satisfaction as three objectives to optimize.
The ultimate advantage of our framework is that it requires
the end-user only to specify what domain constraints exist
over the features. The user can then apply any of our two al-
gorithms to generate feasible examples for the target domain.

We have conducted a large empirical study to evaluate the
utility of our framework. Our study involves four datasets
from finance and cybersecurity, and two types of classifica-
tion models (neural networks and random forests). Our re-
sults demonstrate that our framework successfully crafts fea-
sible adversarial examples. Specifically, MoEvA2 does so
with a success rate of up to 100%, whereas C-PGD succeeded
on the finance dataset only (with a success rate of 9.85%).

In turn, we investigate strategies to improve model robust-
ness against feasible adversarial examples. We show that ad-
versarial retraining on feasible examples can reduce the suc-
cess rate of C-PGD down to 2.70% and the success rate of
the all-powerful MoEvA2 down to 85.20% and 0.80% on the
finance and cybersecurity datasets, respectively.

2 Problem Formulation

We formulate below the problem for binary classification.
We generalize to multi-class classification problems in Ap-
pendix B.

2.1 Constraint Language

Let us consider a classification problem defined over an in-
put space Z and a binary set Y = {0,1}. Each input z € Z
is an object of the considered application domain (e.g. mal-
ware [Aghakhani et al., 2020], network data [Chernikova and
Oprea, 2019], financial transactions [Ghamizi et al., 2020]).
We assume the existence of a feature mapping function ¢ :
Z — X C R" that maps Z to an n-dimensional feature
space X over the feature set F' = {f1, fa, .., }. For simplic-
ity, we assume X to be normalized such that X C [0, 1]™.
That is, for all z € Z, ¢(z) is an m-sized feature vector
x = (x1...2,) where z; € [0,1] and is the j-th feature.
Each object z respects some natural conditions in order to be
valid. In the feature space, these conditions translate into a
set of constraints over the feature values, which we denote by
Q). By construction, any feature vector = generated from a
real-world object z satisfies all constraints w € ().

Based on our review of the literature, we have designed
a constraint language to capture and generalize the types of
feature constraints that occur in the surveyed domains. Our
framework allows the definition of constraint formulae ac-
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cording to the following grammar:

w=wi Awg |w1 Vws |1 = | f€{r... Y}
Yi=cl|flPr @ |z

where f € F, cis a constant real value, w, w1, ws are con-
straint formulae, =€ {<, <,=,%#,> >}, ¥, ¢, ...,y are
numeric expressions, @ € {4, —, , /}, and z; is the value of
the i-th feature of the original input x.

One can observe from the above that our formalism cap-
tures, in particular, feature boundaries (e.g. f > 0) and nu-
merical relationships between features (e.g. f1/fo < f3) —
two forms of constraints that have been extensively used in
the literature [Chernikova and Oprea, 2019; Ghamizi et al.,
2020; Tian et al., 2020; Li et al., 2020].

2.2 Threat Model and Attack Objective

Let a function H : X — ) be a binary classifier and function
h : X — R be a single output predictor that predicts a con-
tinuous probability score. Given a classification threshold ¢,
we can induce H from h with, H(z) = Ijj(2)>¢, Where I,
is an indicator function, that is, I outputs 1 if the probability
score is equal or above the threshold and 0 otherwise.

In our threat model, we assume that the attacker has knowl-
edge of h and its parameters, as well as of I and 2. We also
assume that the attacker can directly modify a subset of the
feature vector © = (27 ... Ty,), with m < n. We refer to this
subset as the set of mutable features. The attacker can only
feed the example to the system if this example satisfies 2.

Given an original example x, the attack objective is to
generate an adversarial example  + § such that H(x + §) #
H(x), 6 < e for a maximal perturbation threshold € under a
given p-norm, and x + § € Xqg. While domain constraints
guarantee that an example is feasible, (e.g. total credit amount
must be equal to the monthly payment times the duration in
months), we limit the maximum perturbation to produce im-
perceptible adversarial examples. By convention, one may
prefer p = oo for continuous features, p = 1 for binary fea-
tures and p = 2 for a combination of continuous and binary
features. We refer to such examples x + ¢ as a constrained
adversarial example. We also name constrained adversarial
attack algorithms that aim to produce the above optimal con-
strained adversarial example. We propose two such attacks.

3 Constrained Projected Gradient Descent

Past research has shown that multi-step gradient attacks like
PGD are among the strongest attacks [Kurakin et al., 2016].
PGD adds iteratively a perturbation § that follows the sign of
the gradient V with respect to the current adversary z; of the
input z. That is, at iteration ¢ + 1 it produces the input

g =T, (2" + asgn(Val(0n, 24, y))) (1

where 6}, the parameters of our predictor h, II is a clip func-
tion ensuring that = 4+ § remains bounded in a sphere around
x of a size € using a norm p, and V[ is the gradient of loss
function tailored to our task, computed over the set of mutable
features. For instance, we can use cross-entropy losses with a
mask for classification tasks. We compute the gradient using
the first-order approximation of the loss function around z.
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Constraints formulae Penalty function

w1 N\ wag w1 + wo

w1 V wa min(wy, ws)

PEV = (Yo, g} min({r € Wi -y [})
1 < o maz (0,11 — ¥2)

1 < max (0,91 — a2 + 1)
(R | b1 — o |

Table 1: From constraint formulae to penalty functions. 7 is an
infinitesimal value.

However, as our experiments reveal (see Table 2 and Sec-
tion 6), a straight application of PGD does not manage to
generate any example that satisfies (2. This raises the need to
equip PGD with the means of handling domain constraints.

An out-of-the-box solution that we have experimented is
to pair PGD with a mathematical programming solver, i.e.
Gurobi [Gurobi Optimization, LLC, 2022]. Once PGD man-
aged to generate an adversarial example (not satisfying the
constraint), we invoke the solver to find a solution to the set
of constraints close to the example that PGD generated (and
under a perturbation sphere of € size). Unfortunately, this so-
lution does not work out either because the updated examples
do not fool the classifier anymore or the solver simply cannot
find an optimal solution given the perturbation size.

In face of this failure, we conclude that this gradient-based
attack cannot generate constrained adversarial examples if we
do not revisit its fundamentals in light of the new attack ob-
jective. We, therefore, propose to develop a new method that
considers the satisfaction of constraints as an integral part of
the perturbation computation.

Concretely, we define a penalty function that represents
how far an example x is from satisfying the constraints. More
precisely, we express each constraint w; as a penalty function
penalty(xz,w;) over = such that x satisfies w; if and only if
penalty(x,w;) <= 0. Table 1 shows how each constraint
formula (as defined in our constraint language) translated into
such a function. The global distance to constraint satisfaction
is, then, the sum of the non-negative individual penalty func-
tions, that is, penalty(z, Q) = 3, - penalty(z, w;).

The principle of our new attack, C-PGD, is to integrate the
constraint penalty function as a negative term in the loss that
PGD aims to maximize. Hence, given an input xz, C-PGD
looks for the perturbation ¢ defined as

arg max{l(h(z +9),y) — Z penalty(z + 6, w;)} )
o:[|o]l, <e wi€Q

The challenge in solving (2) is the general non-convexity of
penalty(x, Q). To recover tractability, we propose to approx-
imate (2) by a convex restriction of penalty(z, 2) to the sub-
set of the convex penalty functions. Under this restriction,
all the penalty functions used in (2) are convex, and we can
derive the first-order Taylor expansion of the loss function
and use it at each iterative step to guide C-PGD. Accordingly,
C-PGD produces examples iteratively as follows:

2 = I, 5(R(a' + asgn(Ve(h(a"), y)

x
_ Z Vepenalty(xt, ¢;)))) )
loN]
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with 2z° = 2, and R a repair function. At each iteration ¢, R
updates the features of the example to repair the non-convex
constraints whose penalty functions are not back-propagated
with the gradient V .+ (if any).

4 Multi-Objective Generation of Constrained
Adversarial Examples

As an alternative to C-PGD, we propose MoEvA2, a multi-
objective optimization algorithm whose fitness function is
driven by the attack objective described in Section 2.

4.1 Objective Function

We express the generation of constrained adversarial exam-
ples as a multi-objective optimization problem that reflects
three requirements: misclassification of the example, maxi-
mal distance to the original example, and satisfaction of the
domain constraints. By convention, we express these three
objectives as a minimization problem.

The first objective of a constrained attack is to cause mis-
classification by the model. When provided an input x, the bi-
nary classifier H outputs h(x), the prediction probability that
x lies in class 1. If h(x) is above the classification threshold
t, the model classifies x as 1; otherwise as 0. Without knowl-
edge of ¢, we consider h(z) to be the distance of = to class
0. By minimising h(z), we increase the likelihood that the
H misclassifies the example irrespective of ¢. Hence, the first
objective that MOEvA2 minimizes is g1 (x) = h(z).

The second objective is to minimize perturbation between
the original example 2" and the adversarial example, to limit
the perceptibility of the crafted perturbations. We use the
conventional L,, distance to measure this perturbation. The
second objective is go(z) = Ly(x — V).

The third objective is to satisfy the domain constraints.
Here, we reuse the the penalty functions that we defined in
Table 1. The third and last objective function is thus

ale) = 3 penalty(a,).
w; EQ

Accordingly, the constrained adversarial attack objective
translates into MoEvVA?2 into a three-objective function to
minimize with three validity conditions, that is:

minimise g1(z) = h(x) st.ogr(z) <t
minimise go() = Ly(z — 2°) ga2(x) <e
minimise gs(z) = Z penalty(z, w;) g3(x) =0

w; €EQ

and this three-objective function also forms the fitness func-
tion that MoEvA?2 uses to assess candidate solutions.

4.2 Genetic Algorithm

We instantiate MoEvVA2 as a multi-objective genetic algo-
rithm, namely based on R-NSGA-III [Vesikar et al., 2018].
We describe below how we specify the different components
of this algorithm. It is noteworthy, however, that our gen-
eral approach is not bound to R-NSGA-IIL In particular, the
three-objective function described above can give rise to other
search-based approaches for constrained adversarial attacks.
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Population initialization. The algorithm first initializes a
population P of L solutions. Here, an individual represents a
particular example that MoEvA2 has produced through suc-
cessive alterations of a given original example . We specify
that the initial population comprises L copies of z. The rea-
son we do so is that we noticed, through preliminary exper-
iments, that this initialization was more effective than using
random examples. This is because the original input inher-
ently satisfies the constraints, which makes it easier to alter it
into adversarial inputs that satisfy the constraints as well.

Population evolution. MoEvA?2 generates new individuals
with two-point binary crossover. MoEvVA2 selects the par-
ents with a binary tournament over the Pareto dominance, and
mutates the mutable features of the children using polyno-
mial mutation. MoEvA2 uses non-dominance sorting based
on our three objective functions to determine which individu-
als it keeps for the next generation. We provide the details of
the algorithms in Appendix B.

S Experimental Settings

5.1 Datasets and Constraints

Because images are devoid of constraints and fall outside the
scope of our framework, we evaluate C-PGD and MoEvA?2 on
four datasets coming from inherently constrained domains.
These datasets bear different sizes, features, and types (and
number) of constraints. We evaluate both neural networks
(NN) and random forest (RF) classifiers. More details about
datasets and models in Appendix C.

LCLD. Itis inspired by the Lending Club Loan Data [Kag-
gle, 2019]. Therein, examples are credit requests that can be
accepted or rejected. We trained a neural network and a ran-
dom forest that both reach an AUROC score of 0.72. We have
identified constraints that include 94 boundary conditions, 19
immutable features, and 10 feature relationship constraints (3
linear, 7 non-linear). For example, the installment (I), the loan
amount (L), the interest rate (R) and the term (T) are linked
by the relation I = L x R(1+ R)T /(1 + R)T —1).

CTU-13. Itis a feature-engineered version of CTU-13, pro-
posed by [Chernikova and Oprea, 2019]. It includes a mix
of legit and botnet traffic flows from the CTU campus. We
trained a neural network and a random forest to classify le-
git and botnet traffic, which both achieve an AUROC of 0.99.
We identified 324 immutable features and 360 feature rela-
tionship constraints (326 linear, 34 non-linear). For example,
the maximum packet size for TCP ports should be 1500 bytes.

Malware. It comprises features extracted from a collection
of benign and malware PE files [Aghakhani er al., 2020]. We
trained a random forest with an AUROC of 0.99. We iden-
tified 88 immutable features and 7 feature relationship con-
straints (4 linear, 3 non-linear). For example, the sum of bi-
nary features set to 1 that describe API imports should be less
than the value of the feature api_nb, which represents the total
number of imports on the PE file.

URL. It comes from [Hannousse and Yahiouche, 2021] and
contains a set of legitimate or phishing URLs. The random
forest we use has an AUROC of 0.97. We have identified

1316

Dataset Attack | C M C&M

PGD 0.00 22.20 0.00

PGD + SAT 243 0.00 0.00

LCLD - pgp 6168 2203 985

NN MoEvA2 100.00 99.90 97.48
PGD 0.00 100.00 0.00

PGD + SAT | 100.00 0.00 0.00

CTU-13 - pgD 000 1757  0.00
MoEvA2 100.00 100.00 100.00

Papernot 0.00 11.86 0.00

LCLD MoEvA2 99.98 61.84 41.51
Papernot 79.36 13.02 0.0

RF CTU-13 MoEvA2 100.00 7.62 5.41
Malware Papernot 0.00 51.99 0.00
MoEvA2 100.00 100.00 39.30

URL Papernot 84.23 11.25 8.50
MoEvA2 100.00 32.06 31.89

Table 2: Success rate (C&M) of the attacks on the neural network
(NN) and random forest (RF) models, in % of the original exam-
ples. M is the success rate disregarding constraint satisfaction; C is
the ratio of original examples where the attack found examples that
satisfy the constraints and are within the perturbation bound.

14 relation constraints between the URL features, including
7 linear constraints (e.g. hostname length is at most equal to
URL length) and 7 are if-then-else constraints.

5.2 Experimental Protocol and Parameters

In all datasets, a typical attack would be interested in fooling
the model to classify a malicious class (rejected credit, botnet,
malware, and phishing URL) into a target class (accepted,
legit, benign, and legit URL). By convention, we denote by 1
the malicious class and by O the target class.

We evaluate the success rate of the attacks on the trained
models using, as original examples, a subset of the test data
from class 1. In LCLD we take 4000 randomly selected ex-
amples from the candidates, to limit computation cost while
maintaining confidence in the generalization of the results.
For CTU-13, Malware, and URL, we use respectively all 389,
1308, and 1129 test examples that are classified in class 1.

Since all datasets comprise binary, integer, and continuous
features, we use the Lo distance to measure the perturbation
between the original examples and the generated examples.

We detail and justify in Appendices C and D the attack
parameters including perturbation threshold €, the number of
generations and population size for the genetic algorithm at-
tack, and the number of iterations for the gradient attack.

6 Experimental Results

6.1 Attack Success Rate

Table 2 shows the success rate of PGD, PGD + SAT, C-PGD,
and MoEvVA2 on the two neural networks that we have trained
on LCLD and CTU-13; and the success rate of the Paper-
not attack and MoEvA2 on the random forests that we have
trained on each dataset. More precisely, we use the extension
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of the original Papernot attack [Papernot et al., 2016] that
[Ghamizi et al., 2020] proposed to make this attack applica-
ble to random forests.

PGD and PGD + SAT fail to generate any constrained ad-
versarial examples. The problem of PGD is that it fails to
satisfy the domain constraints. While the use of a SAT solver
fixes this issue, the resulting examples are classified correctly.
C-PGD can create LCLD examples that satisfy the constraints
and examples that the model misclassifies, yielding an actual
success rate of 9.85%. On the CTU-13 dataset, however, the
attack fails to generate any constrained adversarial examples.
The reason is that CTU-13 comprises 360 constraints, which
translates into as many new terms in the function of which C-
PGD backpropagates through. As each function contributes
with a diverse, non-co-linear, or even opposed gradients, this
ultimately hinders the attack. Similar phenomena have been
observed in multi-label [Song et al., 2018] and multi-task
models [Ghamizi et al., 2021]. By contrast, MoEvVA2, which
enables a global exploration of the search space, is successful
for 97.48% and 100% of the original examples, respectively.

MOoEvVAZ2 also manages to create feasible adversarial exam-
ples on the random forest models, with a success rate rang-
ing from 5.41% to 41.51%. This indicates that our attack
remains effective on such ensemble models, including with
other datasets. Like PGD, the Papernot attack — unaware
of constraints — cannot produce a single feasible example on
LCLD, CTU-13, and Malware, whereas it has a low success
rate (8.50%) on URL compared to MoEvA2 (31.89%).

Conclusion: While adversarial attacks unaware of do-
main constraints fail, incorporating constraint knowl-
edge as an attack objective enables the successful gen-
eration of constrained adversarial examples.

6.2 Adversarial Retraining

We, next, evaluate if adversarial retraining is an effective
means of reducing the effectiveness of constrained attacks.

We start from our models trained on the original training
set. We generate constrained adversarial examples (using ei-
ther C-PGD or MoEvA?2) from original training examples that
each model correctly classifies in class 1. To enable a fair
comparison of both methods, for the LCLD (NN), we use
only the original examples for which C-PGD and MoEvA?2
could both generate a successful adversarial example. In all
other cases, we do not apply this restriction, since MoEvA2
is the only technique that is both applicable and successful.
While MoEvVA2 returns a set of constrained examples, we
only select the individual that maximizes the confidence of
the model in its (wrong) classification, similarly to C-PGD
that maximizes the model loss.

Regarding the perturbation budget, we follow established
standards [Carlini et al., 2019] and provide the attack with an
€ budget 4 times larger than the defense.

Table 3 (middle rows) shows the results for the neural
networks, and Table 4 (second row) for the random forests.
Overall, we observe that adversarial retraining remains an ef-
fective defense against constrained attacks. For instance, on
LCLD (NN) adversarial retraining using MoEva2 drops the
success rate of C-PGD from 9.85% to 2.70%, and its own
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Defense Attack | LCLD | CTU-13
None C-PGD 9.85 0.00
None MoEvA2 | 97.48 100.00
C-PGD Adpv. retraining * C-PGD 8.78 NA
C-PGD Adpv. retraining * MoEvA2 | 94.90 NA
MOoEvVA?2 Adv. retraining *  C-PGD 2.70 NA
MOoEvVA2 Adv. retraining ¥ MoEvA2 | 85.20 0.8
Constraints augment. C-PGD 0.00 NA
Constraints augment. MoEvA2 | 80.43 0.00
MoEvVA?2 Adpv. retrain. } MoEvA2 | 82.00 NA
Combined defenses MoEvVA2 | 77.43 NA

Table 3: Success rate of C-PGD and MoEvA?2 after adversarial re-
training and constraint augmentation (on neural networks). For a
fair comparison, the model denoted by the same symbols (* or T)
are trained with the same number of adversarial examples, gener-
ated from the same original samples.

Defense ‘ LCLD CTU-13 Malware URL
None 41.51 541 39.30  31.89
Adv. retraining 3.90 4.67 37.69 22.14
Cons. augment. 19.73 6.63 28.52  20.99
Combined 0.77 4.67 2898 1594

Table 4: Success rate of MoEvA?2 on the random forest models.

success rate from 97.48% to 85.20%. The fact that MoEvA2
still works suggests, however, that the large search space that
this search algorithm explores preserves its effectiveness. By
contrast, on CTU-13 (NN), we observe that the success rate
of MoEvA2 drops from 100% to 0.8% after adversarial re-
training with the same attack.

Conclusion: Adversarial retraining remains an effective
defense against constrained adversarial attacks.

6.3 Defending With Engineered Constraints

We hypothesize that an alternative way to improve robustness
against constrained attacks is to augment ) with a set of en-
gineered constraints — in particular, non-convex constraints.
To verify this, we propose a systematic method to add engi-
neered constraints, and we evaluate the effectiveness of this
novel defense mechanism.

To define new constraints, we first augment the original
data with new features engineered from existing features. Let
f denote the mean value of some feature of interest f over
the training set. Given a pair of feature (f1, f2), we engineer
a binary feature f, as

Je(x) = (fl <)@ (fQ < z3)

where x; is the value of f; in = and @ denotes the exclusive or
(XOR) binary operator. The comparison of the value of the
input z for a particular features f; with the mean f’i allows
us to handle non-binary features while maintaining a uniform
distribution of value across the training dataset. We use the
XOR operator to generate the new feature as this operator is
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not differentiable. We, then, introduce a new constraint that
the value of f. should remain equal to its original definition.
That is, we add the constraint

we = (fe(z) = (fL < 21) B (f2 < 22))

The original examples respects these new constraints by con-
struction. In other words, for an adversarial attack to be suc-
cessful, the attack should modify f. if the modifications it
applied to f; and f5 would imply a change in the value of f,.

To avoid combinatorial explosion, we add constraints only
on pairs of the most important mutable features. We measure
importance with the approximation of Shapley value [Shriku-
mar ef al., 2017], an established explainability method. In
the end, we consider a number M of pairs such that M =
argmax, () < & where N is the total number of features.

As a preliminary sanity check, we verified that constraint
augmentation does not penalize clean performance and con-
firmed that the augmented models keep similar performance.

To evaluate this constraint augmentation defense, we use
the same protocol as before, except that the models are trained
on the augmented set of features. That is, we assume that the
attacker has knowledge of the added features and constraints.

We show the results in Table 3 and 4 (third row). Con-
strained augmentation nullifies the low success rate of C-PGD
on LCLD - the gradient-based attack becomes unable to sat-
isfy the constraints. Our defense also decreases significantly
the success rate of MoEva2 in all cases except the CTU-13
random forest. For instance, it drops from 97.48% to 80.43%
for LCLD NN, and from 100% to 0% on CTU-13 NN.

We assess the effect of constraint augmentation and adver-
sarial retraining more finely and show, in Figure 1, the suc-
cess rate of MOoEvA2 on the LCLD neural network over the
number of generations. Compared to the undefended model,
both constrained augmentation and adversarial retraining (us-
ing MoEvAZ2) lower the asymptotic success rate. Moreover,
the growth of success rate is much steeper for the undefended
model. For instance, MoEVA2 needs ten times more gener-
ations to reach the same success rate of 84% against the de-
fended models than against the undefended model (100 gen-
erations versus 12 generations). Adversarial retraining using
C-PGD is less effective: while it reduces the success rate in
the earlier generations, its benefits diminishes as the MoEvA2
attack runs for more generations.

Conclusion: Constraint augmentation is an effective al-
ternative defense against constrained adversarial attacks.
The benefits of both defense mechanisms against Mo-
EvA2 are achieved as soon as the earliest generations
and persist throughout the attack process.

6.4 Combining Defenses

We investigate whether the combination of constraint aug-
mentation with adversarial retraining yields better results. A
positive answer would indicate that constraint augmentation
and adversarial retraining have complementary benefits.

We add to the models the same engineered constraints as
we did previously. We also perform adversarial retraining on
the augmented models, using all adversarial examples that
MOoEvVA managed to generate on the training set. Then, we
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Figure 1: Success rate of MoEvA?2 against the original LCLD neural
network and the defended counterparts, over the generations.

attack the defended models using MoEVA applied to the test
set. For a fair comparison with adversarial retraining, we also
apply this defense without constraint augmentation, using the
same number of examples. We do not experiment with C-
PGD, which was already ineffective when only one defense
was used. Neither do we consider the datasets for which one
defense was enough to fully protect the model.

Tables 3 and 4 (last rows) present the results. On LCLD
(NN), the combined defenses drops the attack success rate
from 97.48% (on a defenseless model) to 77.23%, which bet-
ter than adversarial retraining (82.00%) and constraint aug-
mentation (80.43%) applied separately. On the RFs, the
combination either offers additional reductions in attack suc-
cess rate compared to the best individual defense (LCLD and
URL) or has negligible effects (CTU-13 and Malware).

Conclusion: Constraint augmentation and adversarial
training are two effective defense strategies that have
complementary effects. Compared to their separate ap-
plication, the combination can decrease the attack suc-
cess rate by up to 5%.

7 Conclusion

We proposed the first generic framework for adversarial at-
tacks under domain-specific constraints. We instantiated our
framework with two methods: one gradient-based method
that extends PGD with multi-loss gradient descent, and one
that relies on multi-objective search. We evaluated our meth-
ods on four datasets and two types of models. We demon-
strated their unique capability to generate constrained adver-
sarial examples. In addition to adversarial retraining, we pro-
posed and investigated a novel defense strategy that intro-
duces engineered non-convex constraints. This strategy is
as effective as adversarial retraining. We hope that our ap-
proach, algorithms, and datasets will be the starting point of
further endeavor towards studying feasible adversarial exam-
ples in real-world domains that are inherently constrained.
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