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Abstract
Forecasting the future trajectories of multiple
agents is a core technology for human-robot in-
teraction systems. To predict multi-agent trajec-
tories more accurately, it is inevitable that mod-
els need to improve interpretability and reduce re-
dundancy. However, many methods adopt implicit
weight calculation or black-box networks to learn
the semantic interaction of agents, which obviously
lack enough interpretation. In addition, most of
the existing works model the relation among all
agents in a one-to-one manner, which might lead
to irrational trajectory predictions due to its re-
dundancy and noise. To address the above issues,
we present Hypertron, a human-understandable and
lightweight hypergraph-based multi-agent forecast-
ing framework, to explicitly estimate the motions
of multiple agents and generate reasonable trajec-
tories. The framework explicitly interacts among
multiple agents and learns their latent intentions by
our coarse-to-fine hypergraph convolution interac-
tion module. Our experiments on several challeng-
ing real-world trajectory forecasting datasets show
that Hypertron outperforms a wide array of state-
of-the-art methods while saving over 60% parame-
ters and reducing 30% inference time.

1 Introduction
Human intention prediction is an instinctive ability. Taking
pedestrian trajectories as an example, humans can predict oth-
ers’ future trajectories based on a priori experience and ex-
plicit features of other agents (e.g., location, sociality, time,
speed, etc.) to socially make a proper trajectory strategy.
However, building predictive models with such capability is
challenging. Such models are often parameter redundant and
lack interpretability. Therefore, a good forecasting method
should effectively predict future trajectories based on the ex-
plicit social and temporal interactions among agents and their
latent intentions within an acceptable inference time.

There are many existing methods for multi-agent trajec-
tories prediction within scenes, ranging from recurrent neural
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Figure 1: Examples of multi-agent interaction modeling. Differ-
ent color lines represent different simulation methods. Unlike other
standard approaches for implicit, homogeneous, and one-to-one
modeling methods, Hypertron adopts an explicit hypergraph model-
ing approach, which allows for lightweight learning of the relations
among vertices by heterogeneous hyperedges.

network (RNN) [Lee et al., 2017; Ivanovic and Pavone, 2019]
or attention mechanism [Giuliari et al., 2021; Yuan et al.,
2021] to graph neural network (GNN) [Salzmann et al., 2020;
Wang et al., 2021]. As shown in Fig 1, many of their interac-
tions among agents are modeled implicitly, which introduce
massive homogeneous learnable parameters. These methods
have the following shortcomings in agents’ interactions: 1)
Homogeneous learning methods adopt a uniform represen-
tation to model interactions, which is poorly interpretable
because it fails to consider rich semantic information. 2)
One-to-one approachs calculate the relation between vertices,
which can’t simulate the relation among multiple vertices and
introduce too much redundancy.

To tackle the aforementioned problems, we drive our re-
search perspective to a hypergraph approach to model the re-
lations among agents, which is explicit, heterogeneous, and
lightweight as shown in Fig 1. We introduce a hypergraph-
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based explicit agents interaction method following a coarse-
to-fine paradigm, which learns relation among multiple
agents simultaneously by heterogeneous hyperedges. Firstly,
it constructs coarse temporal and social hypergraphs based
on explicit relation among agents (e.g., location, sociality).
Then, the coarse hypergraphs are optimized by the coarse-
to-fine hypergraph convolution (CFHconv) to incorporate the
latent intentions of the agents. Finally, the trajectory features
are further updated by the CFconv Interaction Module (CIM),
which enables the interaction of agents in different dimen-
sions.

Furthermore, we construct a human-understandable and
lightweight framework, dubbed Hypertron, an explicit social-
temporal hypergraph framework for multi-agent forecasting.
Hypertron stacks multiple layers of CIM to explicitly learn
the relation among agents in the social and temporal dimen-
sions and generate diverse and plausible trajectories.

To the best of our knowledge, we are the first to propose
a hypergraph based framework for multi-agent forecasting,
which is illustrated in Fig 2. Our main contributions are sum-
marized as follows:

(1) We introduce an interpretable and lightweight
hypergraph-based trajectory prediction framework
that generates diverse hypotheses to reflect plausible
future trajectories.

(2) We present a coarse-to-fine hypergraph construction
strategy that can explicitly simulate the relation of multi-
agent trajectories with a sequence representation.

(3) We design the CFHconv interaction module that stacks
social- and temporal-CFHconv to model different dimen-
sional interactions and incorporate latent intentions of
agents.

(4) We demonstrate that our framework achieves highly com-
petitive results while saving over 60% parameters and re-
ducing 30% inference time.

2 Related Work
Trajectory/Motion Forecasting. The trajectory sequence
can be directly represented by sequential models such as
RNN [Lee et al., 2017; Ivanovic and Pavone, 2019]. With the
rise of powerful attention mechanism, these methods [Giu-
liari et al., 2021; Yuan et al., 2021] directly model the re-
lation of all agents at any time, which introduce a lot of re-
dundancy in the feature attending process. Graph-based mod-
els [Salzmann et al., 2020; Wang et al., 2021] construct rel-
atively sparse edges, but it’s hard to construct efficient and
interpretable edges. Most of the above methods introduce too
many redundant connections among all agents. Unlike the
one-to-one modeling paradigm of prior works, our Hypertron
models the high-order relation of agents efficiently with het-
erogeneous hyperedges.
Social Interaction Modeling. Methods for social inter-
action modeling mainly focus on the temporal and social
dimensions. Sequential methods model the temporal fea-
tures, and GNN are adopted as social models for agent’s
interaction[Wang et al., 2021]. However, temporal models
and relation models only model the interaction implicitly,

since all the edges and attention connections in those methods
are homogeneous. Our method explicitly defines hyperedges
in temporal and social dimensions for agents, thus the model
can easily understand agents’ interaction at any dimension.
Hypergraph Learning. An emerging research topic in com-
plex networks is to extend graph to hypergraph [Feng et
al., 2019; Ji et al., 2020]. It models high-order constraints
among data and learns their correlation by connecting two or
more vertices simultaneously. In sequence representation, re-
searchers use hypergraphs for tasks like molecular optimiza-
tion [Kajino, 2019], video object segmentation [Jiang et al.,
2019], and traffic flow prediction [Yi and Park, 2020]. How-
ever, most methods adopt an implicit approach in modeling
and updating the hypergraph. It is still a worthwhile ques-
tion to consider how to explicitly construct the hypergraph
and make it effective in learning the relation among vertices
by giving explicit and heterogeneous definitions to the hyper-
edges.

3 Methods
3.1 Problem Formulation
We formulate the multi-agent trajectory prediction problem
as estimating future trajectory distributions of N (variable)
agents based on their motions and the tracking history of all
surrounding agents. We denote the current time step as t =
0, our goal is to learn the posterior distribution P (Y|X, I)
of all N agents’ future trajectories over T future time steps
Y = (Y1,Y2, ...,YT ). X = (X−H ,X−H+1, ...,X0) denote
all agent states’ history at all H+ 1 observed time steps. And
depending on the data, the optional conditional items I may
contain the future planning of agents, semantic maps, etc.

3.2 Overview of the Hypertron
To tackle the stochasticity and multi-modality of agents’ fu-
ture behavior, we adopt the conditional variational autoen-
coders (CVAEs) inside of Hypertron. Our model learns the
distribution of future trajectory Y conditioned on past trajec-
tory X and contextual information I by introducing a stochas-
tic latent variable Z. We reformulate future trajectory distri-
bution as:

p (Y|X, I) =

∫
p (Y|Z,X, I) p (Z|X, I) dZ (1)

where p (Z|X, I) is the Gaussian prior distribution and
p (Y|X, I,Z) is the conditional likelihood distribution. Since
the integration over Z is intractable, we apply negative evi-
dence lower bound (ELBO)Lelbo as one of our loss functions:

Lelbo =− Eq(Z|Y,X,I) [log p (Y|Z,X, I)]
+DKL (q (Z|Y,X, I) ||p (Z|X, I))

(2)

where q (Z|Y,X, I) is the posterior net to approximate the
true posterior distribution of Z, and DKL(||) denotes the KL-
divergence.

Hypertron can explicitly learn the semantic relation of
agents in the social and temporal dimensions and predict
the distribution of their future trajectories by stacking mul-
tiple layers of CIM-based encoders and decoders. Its overall
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Figure 2: Overall architecture of the Hypertron. It comprises of three sub-networks: Past Encoder, Future Encoder, CVAEs, and Future
Decoder. The flow via red paths are only available in the training.

framework is shown in Fig 2, and we will introduce its mod-
ules as follows.

Past Encoder. Past Encoder is used to encode the multi-
agent past observed sequence X. By feeding X into CIM,
we get the explicit interactive past features CP . Then, we
use a mean pooling layer across timesteps to get the mean
past features C̃P = mean(CP ). And fully connected layer
(FC) is to map C̃P to the gaussian parameters (µp, σp) of
p (Z|X, I) = N (µp, Diag (σp)

2
).

Future Encoder. Similar to Past Encoder, Future Encoder
feeds future observed sequence Y into the CIM to learn the
semantic relation among multiple agents. Then we com-
pute the mean past features C̃F = mean(CF ) by the same
methods as Past Encoder. And C̃P and C̃F are concatenated
and fed into the FC to the gaussian parameters (µq, σq) of
q (Z|Y,X, I) = N (µq, Diag (σq)

2
).

Future Decoder. Our future decoder is similar to other
recursive network decoders in an autoregressive way. With
one exception, we adopt an explicit regression approach and
generate social and temporal hypergraphs of the current tra-
jectories to predict the trajectories of the next timestep. The
input sequence of decoder can be formed as Fi = Ŷi + Z,
where Ŷi is the output Ŷ of Future decoder at i-th timestep,
Ŷ

0
is initialized from the XN and Z is the sample from past

encoder (testing) or future encoder (training). And to approx-
imate p (Y|Z,X, I) according to q (Z|Y,X, I), we minimize
the mean squared error between the predicted trajectories and
ground truth Y. And our loss is defined as :

L = min||Y− Ŷ||Lelbo (3)

To generate more diverse and plausible trajectories after
the training phase, we refer to [Yuan et al., 2021] and adopt
the diversity sampling technique in DLow [Yuan and Kitani,
2020] to Hypertron.
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Figure 3: Overview of the coarse-to-fine hypergraph convolution.

3.3 CFHconv
To better model agents’ social and temporal relation by ex-
plicit hypergraph, we propose coarse-to-fine hypergraph con-
volution (CFHconv), a coarse-to-fine paradigm (as shown in
Fig 3). The mathematical formulation of the CFHconv to ag-
gregate agents’ information from input feature X and coarse
hypergraphHcoa is given as:

X = Hconv(A(Fe(Hcoa,Xv)))) (4)

where Xv is vertex feature learned from trajectory feature by
a nonlinear feature transformation (instantiated as 1 ×1 con-
volution). Hconv is hypergraph convolution, A denotes the
constructing function, and Fe is the hyperadge aggregation
function. Different from the traditional hypergraph convolu-
tion, our module adopts a coarse-to-fine paradigm, and we
further state the structure in three steps:

Step1 (Hyperedge feature calculation). Our aim is to op-
timize the coarse hypergraph by computing the fine-grained
association between hyperedge features and vertex features.
Therefore, the module constructs the hyperedge feature Xe

from the vertex features with the coarse hypergraph. For sim-
plicity, we implement Fe by a matrix multiplication with an
embedding:

Xe = We(Xv ⊗H) (5)

where ⊗ denotes matrix multiplication, We is a hyperedge
embedding to be learned, that can be implemented by a non-
linear function (instation 1×1 convolution and ReLU(·)).
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Step2 (Fined hypergraph construction). Then, we calculate
the correlation matrix Wh by hyperedge features and node
features, and thus further optimize the coarse hypergraph by
Wh to obtain the fined hypergraphHf :

Wh = Xe ⊗ Xv (6)
Hf = softmax(Wh �Hc) (7)

where � is element-wise multiplication, and softmax is
used for normalization.

By this paradigm, our fined hypergraph can learn the ex-
plicit (distance calculation) and intrinsic (feature association)
connections of agents in temporal and social dimensions.

Step3 (Hypergraph convolution module). Since fined hy-
pergraph contains more relational information (distance and
association weights) than the traditional hypergraph, we need
to redesign the hypergraph convolution for it.

We define fined vertex D̃ and fined hyperedge degree B̃
as D̃ii =

∑K
j=1Hf (i, j), B̃jj =

∑N
i=1Hf (i, j) = 1, re-

spectively. Hf (i, j) denotes the corrlation between the j-th
hyperedge to the i-th vertex. Fined vertex D̃, fined hyperedge
degree B̃, and fined hypergraph Hf are used to calculate our
hypergraph convolution.

By following the transfer formulation in [Feng et al., 2019;
Zhu et al., 2021], we design our hypergraph convolution
module, and it can be generalized as:

X̃v = σ(D̃
− 1

2HfHT
f D̃
− 1

2 XvΘ) (8)

where Θ is a trainable parameter and σ denotes an nonlinear
activation function (implemented byReLU(·)), and X̃e is the
interaction feature. Since B̃ is an identity matrix, it is omitted
in Eq 8.

Further, we use the residual connection to update the ver-
tex features and aggregate the interaction feature X̃v . The
calculation of the output features X̂v can be formulated as:

X̂v = X̃v + Xv (9)

By residual connection, our module can easily stack multi-
ple layers and can be inserted into other model without break-
ing its initial behavior.

3.4 CFHconv Interaction Module
Our CFconv Interaction Module (CIM) is an interaction mod-
ule based on CFHconv. As shown in Fig 4, it learns the
interactions of different agents in temporal and social di-
mensions through fine-grained hypergraphs. For better ap-
plicability to the sequence representation task, CIM fol-
lows the encoder and decoder design of [Lee et al., 2017;
Yuan et al., 2021]. Compared with the traditional hypergraph
convolutional neural network, CFconv has two main types of
differences: (1) It adopts an explicit modeling approach, thus
the information interaction is more target-oriented, and the
network is more lightweight. (2) It follows a coarse-to-fine
modeling idea, which provides a more comprehensive inter-
action and updating process.

Trajectory Feature Extractor. Given N agents’ trajecto-
ries over T times S = {St

pos}t=T
t=1 with their associated scene
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Figure 4: Overview of CFconv Interaction Module. It adopts a
coarse-to-fine paradigm to learns relation among multiple agents si-
multaneously by heterogeneous hyperedges in social and temporal
dimensions.

context I (e.g., semantic map information extracted by CNN
networks), and St

pos is all agents’ normalized positions at
time t. Based on St

pos, the extractor estimates agents’ veloc-
ities St

vel and accelerations St
acc to obtain variable trajectory

features X = X1,X2, ...,XT , and Xt is defined as:

Xt = FC([St
pos, S

t
vel, S

t
acc, S

t
I ]) (10)

where St
I is the current context, and FC is a fully connected

layer that maps trajectory features to high-dimensional space.
Explicit Hypergraph Construction. Thanks to the prop-

erty that hyperedge can contain multiple vertices, it can de-
scribe complex associations among multiple vertices more
accurately by fewer hyperedges. We propose a human-
understandable and machine-learnable hypergraph construc-
tion approach that can explicitly model the relation among
agents in social and temporal dimensions: (1) Social dimen-
sion, we construct the social hypergraph Ht

soc = {etn}n=N
n=1

at the t step based on the Euclidean distances of all agents at
time t, where etn denotes the relation between n-th agent and
other agents. (2) Temporal dimension, the temporal hyper-
graph Hn

tem = {εtn}n=N
n=1 of n-th agent is constructed by mul-

tiplying the Euclidean distance with a scaling factor based on
the length of the time step, where εtn represents the relation of
an agent at different times. Meanwhile, to let the hypergraph
focus on more relevant vertex information, we design a soft
link, a module that uses a threshold θ to filter the too-small
correlation noise and normalize it by softmax function. The
soft link processing is computed as:

H = softmax(H),

{
Hi,j = Hi,j ,Hi,j > θ
Hi,j = 0,Hi,j < θ

(11)
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Method ADE20/FDE20 ↓(m), K = 20Samples

ETH Hotel Univ Zara1 Zara2 Average

S-GAN 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
PECNet 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
STAR 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53
AgentFormer 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
Trajectron++ 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33 0.11/0.25 0.19/0.41

Hypertron 0.35/0.51 0.13/0.17 0.22/0.44 0.19/0.31 0.15/0.23 0.21/0.34

Table 1: Comparison to SOTA models on ETH/UCY dataset.

where Hi
j denotes the correlation between the j-th hyperedge

to the i-th vertex.
Agent/Time Encoding. Unlike other sequential represen-

tation networks, Hypertron feeds into all agents’ temporal
data in a fixed time period simultaneously. Therefore, be-
fore performing Social- and Temporal-CFHconv, we adopt
positional encoding to add identity information to the data in
social and time dimensions to inform each element’s explicit
criteria for CFHconv. For trajectory sequence X, we use sine
and cosine functions to locate embedding:

P i
obs =

{
sin
(

i
10000d/D

)
, d is even

cos
(

i
10000d/D

)
, d is odd

(12)

where P i
obs denote the i-th feature of Pobs and d is each di-

mension of embedding. And the positional encoding output
X̂ is computed as X̂ = W2(W1X + Pobs), where W1,W2 is a
learnable transformation function.

4 Experiments
Datasets. To evaluate our methods, we conduct experiments
on three publicly examined datasets: The ETH/UCY datasets
and the Stanford Drone Dataset. As in previous works, the
experimental models predict the next 12 timesteps trajectories
by observing trajectories of last 8 timesteps.

There are five subsets of real-world pedestrian trajectory
prediction in ETH/UCY datasets, each of which contains
complex pedestrian behavior, including multi-directional
nonlinear trajectories, working together, standing and unpre-
dictable movement to avoid collisions, etc. The multi-agent
social scene trajectories with rich interactions are sampled by
0.4 second intervals.

The Stanford drone dataset (SSD) includes 20 top-down
scenes of university scenes captured by drones. It is much
larger than ETH/UCY and includes other objects like bicycles
or cars in addition to pedestrians. And the frame rate is the
same as for ETH/UCY.
Metrics. We employ minimum average displacement er-
ror (ADEK) and minimum final displacement error (FDEK)
of K prediction samples Ŷk of each agent compared to the

ground truth Yk: ADEK = 1
T minK

k=1

∑T
t=1 ‖ŷ

t,(k)
n − ytn‖

2
,

FDEK = minK
k=1 ‖ŷ

t,(k)
n − ytn‖

2
, where ŷt,(k)n denotes the fu-

ture location of agent n at time t in the k-th sample and ytn is
the corresponding ground truth.
Implementation Details. We train the Hypertron with Adam
optimizer, and the initial learning rate is 0.001. The num-
ber of hyperedges in the social hypergraph is set to 32, and

S-GAN Sophie PECNet PCCSNet Hypertron

ADE20 27.23 16.27 9.96 8.62 8.86
FDE20 41.44 29.38 15.88 16.16 16.25

Table 2: Comparison to SOTA models on SSD dataset.

Methods Parameters Inference time mADE20/mFDE20

S-GAN 43.6K 0.3258s 0.58/1.18
S-LSTM 252K 0.9356s 0.72/1.54

PECNet 2.08M 0.6070s 0.29/0.48
STAR 1.06M 0.6211s 0.26/0.53
AgentFormer 1.53M 0.7453s 0.23/0.39
Trajectron++ 0.87M 0.8469s 0.19/0.41

Hypertron 0.61M 0.5138s 0.21/0.34

Table 3: Comparison to SOTA models in parameters and inference
time. mADE20 and mFDE20 denote the average performance on
ETH/UCY.

each hyperedge eis indicates the social correlation of the i-th
agent with others. Similarly, the counterpart of the temporal
hypergraph is set to 20, and each ejt indicates the temporal
correlation of the agent in the j-th timestep with others.

4.1 Quantitative Evaluation
Accuracy. For fair comparisons, we do not use any seman-
tic/visual information for ETH/UCY to compare with prior
work, including S-GAN [Gupta et al., 2018], PECNet [Man-
galam et al., 2020], STAR [Yu et al., 2020], Agentformer
[Yuan et al., 2021] and Trajectron++ [Salzmann et al., 2020].
Tab 1 shows the results on all five subsets. We find that our
method significantly improves state of the art (SOTA), where
it outperforms other works on 1 and 4 out of 5 subsets in
ADE20/FDE20, respectively. Especially, Hypertron achieves
the lowest average FDE20 error of 0.34 on all subsets, out-
performing the second best method (Trajectron++) by 17%.
Notably, our method shows promising results on two higher
crowd density subsets, ETH and University (Univ), illustrat-
ing that Hypertron can effectively interact among multiple
agents in dense scenes by the social and temporal hyper-
graphs and generate accurate future trajectories.

We report the performance on SSD dataset in Tab 2 with
Sophie [Sadeghian et al., 2019], PCCSNet [Sun et al., 2021],
etc. Our model can obtain competitive results on SSD dataset,
achieving only a lower accuracy than PCCSNet. We ar-
gue that our model does not extract enough contextual in-
formation and that a better extract approach should lead to
improved performance. This result reflects that Hypertron
can effectively achieve temporal and social interaction among
agents and has strong robustness.
Efficiency. The number of parameters and the inference time
are essential to model’s applicability. We compare the pa-
rameters and inference time of Hypertron with other SOTA in
Tab 3, including S-GAN, S-LSTM [Alahi et al., 2016], etc.
To measure the inference time, we use a V100 GPU. Hyper-
tron is very compact compared to previous work and achieves
a better balance of size, inference time, and performance.
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Figure 5: Trajectory visualization. (a), (b) are in the ETH/UCY, and (c), (d) are in the SSD.
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Figure 6: Visualization of coarse-to-fine hypergraph. (a) is a social
hypergraph at one timestep and (b) is a temporal hypergraph for one
agent’s trajectory.

The results show that Hypertron can save over 60% param-
eters and reduce more than 30% inference time compared to
AgentFormer. We analysis that our model can achieve bet-
ter performance with acceptable inference time and parame-
ters because our CIM uses hypergraphs to construct the rela-
tions among agents in social and temporal dimensions. It can
achieve lightweight interactions while reducing the noise and
useless computation from interaction redundancy.
Ablation Studies. We further conduct extensive ablation
studies at ETH/UCY. The results are shown in Tab 4, and
we find each component of our model plays a key role in
improving performance. First, we use Social-CFHconv and
Temporal-CFHconv separately instead of our final model to
explore the effectiveness of our module. The results in a loss
of at least 0.04/0.05 mADE20/mFDE20 score on the test set,
showing that Social/Temporal-CFHConv can greatly improve
our model by interacting in the social and temporal dimen-
sions. Second, we replace Social/Temporal-CFHConv with
Transformer [Vaswani et al., 2017] to further enhance the val-
idation of our model performance. The performance drops
at least 0.02/0.03 mADE20/mFDE20 score, indicating that
our CFHConv has better interaction capabilities than Trans-
former. Our performance gains are attributed to our explicit
hypergraph construction, it allows Hypertron to learn the spe-
cific meaning of each hyperedge and achieve target-oriented
optimization of the model.

4.2 Qualitative Evaluation
Trajectory visualization. Fig 5 shows Hypertron’s most
likely predictions for some examples of ETH/UCY and SSD
datasets. We find that Hypertron’s predictions are consistent
with these groups, resulting in lower error than other models.
By comparing results on both datasets, although our model

Method ADE20/FDE20 ↓(m), K = 20Samples

ETH Hotel Univ Zara1 Zara2 Average

w/o Social 0.47/0.70 0.16/0.22 0.29/0.49 0.24/0.35 0.20/0.33 0.27/0.42
w/o Temporal 0.43/0.61 0.14/0.20 0.29/0.44 0.22/0.32 0.18/0.31 0.25/0.38

Social-TF 0.39/0.56 0.13/0.20 0.24/0.51 0.21/0.36 0.16/0.24 0.23/0.37
Temporal-TF 0.39/0.55 0.14/0.19 0.26/0.46 0.19/0.35 0.17/0.27 0.23/0.36

Hypertron 0.35/0.51 0.13/0.17 0.22/0.44 0.19/0.31 0.15/0.23 0.21/0.33

Table 4: Ablation studies on the ETH/UCY. w/o Social/Temporal
means without Social/Temporal-CFHConv. Social/Temporal-TF de-
notes replacing Social/Temporal-CFHconv with transformer.

shows good performance, it still has relative errors in predic-
tion due to the lack of additional contextual information (e.g.,
map, environment information). However, by adding addi-
tional information, the prediction results are more stable.
Visualization of coarse-to-fine hypergraph. We visualize
some coarse-to-fine hypergraph as examples in Fig 6. Fig
6(a) is a social hypergraph at one timestep and Fig 6(b) is a
temporal hypergraph for one agent’s trajectory. We can find
our hypergraphs can model both social and temporal dimen-
sions very well. In the social dimension, with the social hy-
pergraph, weights can be assigned based on the explicit dis-
tance among agents and their latent intentions. And with the
temporal hypergraph, it can focus on the relevance and impor-
tance between different timesteps. It is worth noting that we
explicitly focus on the distance information between different
timesteps in the temporal hypergraph, so we can promisingly
find that Hypertron can kindly handle the case of sharp turns
by assigning a relatively higher weight to the closer vertices.

5 Conclusion
In this work, we present Hypertron, an explicit social-
temporal hypergraphs framework for multi-agent forecasting.
It generates diverse and reasonable trajectories by stacking
multiple explicit agent interaction modules to estimate the in-
tentions of agents. The interaction module constructs coarse
temporal and social hypergraphs based on explicit relation
among agents (e.g., location, sociality). The coarse hyper-
graphs are optimized by the coarse-to-fine hypergraph convo-
lution to incorporate the latent intentions of the agents. Exten-
sive experiments on several challenging trajectory forecasting
datasets with SOTA methods show that Hypertron achieves
better performance with fewer parameters and inference time.
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