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Abstract

Deep Metric Learning, a task that learns a feature
embedding space where semantically similar sam-
ples are located closer than dissimilar samples, is a
cornerstone of many computer vision applications.
Most of the existing proxy-based approaches usually
exploit the global context via learning a single proxy
for each training class, which struggles in captur-
ing the complex non-uniform data distribution with
different patterns. In this work, we present an easy-
to-implement framework to effectively capture the
local neighbor relationships via learning multiple
proxies for each class that collectively approximate
the intra-class distribution. In the context of large
intra-class visual diversity, we revisit the entropy
learning under the multi-proxy learning framework
and provide a training routine that both minimizes
the entropy of intra-class probability distribution
and maximizes the entropy of inter-class probabil-
ity distribution. In this way, our model is able to
better capture the intra-class variations and smooth
the inter-class differences and thus facilitates to ex-
tract more semantic feature representations for the
downstream tasks. Extensive experimental results
demonstrate that the proposed approach achieves
competitive performances. Codes and an appendix
are provided !.

1 Introduction

Deep Metric Learning (DML) is a core component of a variety
of computer vision applications including face recognition
[Meng et al., 20211, fine-grained retrieval [Liu et al., 2016],
and few-shot learning [Snell et al., 2017], which involves
learning an effective similarity measure between samples. The
basic idea for DML is to learn a feature embedding space via
pulling together samples from the same class and pushing apart
samples from the different classes. The existing approaches
usually learn such a desired space by optimizing different
loss functions, such as triplet loss [Hoffer and Ailon, 2015],
contrastive loss [Chopra et al., 2005], and proxyNCA loss
[Movshovitz-Attias et al., 2017]. These losses are roughly
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divided into two categories: pair-based losses and proxy-based
losses. The former captures the data relations with either pair,
triplets, or a group of samples in a mini-batch, which could
provide rich supervisory data-to-data information for training
the feature embedding space. However, they empirically suffer
from high training complexity and sampling issues as the
number of pairs, triplets, or tuplets of samples is exponentially
increased. In contrast, the latter assigns a learnable proxy for
each class and optimizes the similarity between the feature
embeddings and the class proxies in a data-to-class way, which
has been demonstrated to perform competitively with the pair-
based approaches [Musgrave et al., 2020; Teh et al., 2020;
Boudiaf et al., 2020; Roth et al., 2020].

In reality, the fine-grained visual samples are commonly not
uniformly distributed but have a complex intra-class structure.
The samples in the different clusters are often related to dif-
ferent characteristics, such as color, pose, and location. To
this end, assigning each class with only one proxy often leads
to poor local minima, due to inappropriately exploiting the
embedding space. In this paper, we design a novel approach
called Multi-Proxy Learning (MPL) under the data-to-class
framework to capture the non-uniform intra-class patterns via
learning a set of proxies for each category. The captured
patterns could then be used for the downstream tasks of in-
terest. Concretely, our approach introduces multiple proxies
for each category to assist in learning a succinct, high-level
semantic feature embedding space for improving the model’s
generalization ability.

Several prior approaches exploit the class distribution with
a set of proxies for each category via either merging similar
centers [Qian er al., 2019] or learning a large amount of prox-
ies [Zhu et al., 2020]. However, these approaches implicitly
differentiate the intra-class proxies, which may suffer from
the mode collapse issue during the training stage, i.e., the
intra-class proxies tend to deteriorate to be identical.

In this paper, we revisit the entropy regime and design
two novel regularization terms respectively for the intra-class
and the inter-class proxies. Our approach is based on the
underlying fact: the entropy of the probability logit vectors
generated by the feature embeddings and the class proxies
is a measure of the “confidence” that the sample belongs to
the corresponding class. On one hand, learning the feature
representation model that has a higher value of the output
entropy reduces the “confidence” of the sample to be correctly
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classified, which smooths the predictions from all the classes
and would alleviate the overfitting issue. On the other hand,
learning the model that has a lower value of output entropy
among the intra-class proxies increases the “confidence” of
the sample to be one of the intra-class proxies, leading to a
better discrimination ability among the intra-class proxies.

In a nutshell, our MPL intrinsically reshapes the feature rep-
resentation learning from the following three aspects. First, a
united multi-proxy learning framework. The proposed MPL in-
troduces multiple proxies for each class and enjoys the merits
from both the proxy-based and pair-based paradigms, which
automatically selects the nearest proxy from each negative
class as a hard sample for optimization. Second, the intra-
class diversity. During training, we enforce the intra-class
proxies to have a large diversity to prevent them from be-
ing too similar and alleviate the collapse issue, which helps
to characterize the intra-class variation sufficiently. Finally,
the inter-class smoothness. The inter-class smoothness regu-
larization term encourages the smoothness of the inter-class
predictions, bringing in a better generalization ability when
combined with the intra-class diversity regularization term.

2 Related Work
2.1 Deep Metric Learning

DML is an important component in both machine learning
and computer vision communities. Most of the existing DML
approaches focus on the design of the loss functions, which
are divided into pair-based approaches (e.g., N-pair loss [Sohn,
2016], lifted structure loss [Oh Song et al., 2016], Margin [Wu
et al., 2017], MS loss [Wang er al., 2019]) and proxy-based
approaches (e.g., ProxyNCA loss [Movshovitz-Attias et al.,
20171, Proxy-Anchor loss [Kim et al., 2020], Proxy synthesis
[Gu et al., 2021], ProxyNCA++ [Teh et al., 2020]) based on
the loss formulation.

The pair-based approaches focus on optimizing pairwise
constraints, which minimize the distances between the intra-
class samples while maximize the distances between the inter-
class samples. However, such approaches potentially suffer
from the high training complexity and sampling issues. To
alleviate these issues, the proxy-based approaches [Kim et al.,
2020; Teh et al., 2020] assign each class with a learnable proxy
to provide a global context during each training iteration. The
current literature has shown that the proxy-based approaches
could achieve a comparable performance with the pair-based
approaches. In [Sun er al., 2020], Sun et al. demonstrated
that both proxy-based and pair-based approaches could be
formulated into a united framework.

In most formulations of the existing proxy-based losses,
emphasis has been paid to learning a single proxy for each
of the classes. In contrast, we focus instead on learn-
ing several proxies for each class to characterize the fine-
grained intra-class distribution. This formulation has also
been explored in the two previous works [Qian er al., 2019;
Zhu et al., 2020]. The difference is that we develop the
multi-proxy learning framework by minimizing the entropy of
intra-class proxies to prevent them from being too similar and
maximizing the entropy of inter-class proxies to improve the
model’s generalization ability.
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2.2 Entropy Learning

Entropy in information science is usually used to describe a
probability distribution and has been widely explored in differ-
ent tasks, from supervised learning [He et al., 2016; Dubey et
al., 2018] to unsupervised learning [Melacci and Gori, 2012;
Rutquist, 2019]. For the supervised classification task, a
model is basically optimized by minimizing cross-entropy
between the predictions and their ground truth. In the con-
text of either semi-supervised [Grandvalet and Bengio, 2005;
Saito er al., 2019; Sohn er al., 2020] or unsupervised learning
[Melacci and Gori, 2012; Rutquist, 2019], minimizing the
entropy value of the predictions performs as a regularization
term to shape a model and to obtain appealing predictions.
In addition to employing the entropy principle to constrain
the distribution consistency between the predictions and the
ground-truth, we further employ it to regularize the predictions,
to achieve intra-class diversity and inter-class smoothness.

3 Method

3.1 Preliminaries

Given a training set Dy, of n instances from C classes, the
deep metric learning aims at learning an embedding function
feo that maps the visual instance x to the feature embedding
v with v = fg(x), such that the similar instances are close
to each other and the dissimilar instances are far away from
each other in the feature embedding space. The classification
[Zhai and Wu, 2018] or the proxy-based approaches [Teh et al.,
2020] introduce a faithfully represented proxy for each class
stored as the learnable parameters and train the feature em-
bedding model via pulling the samples to their corresponding
class proxies and repelling them from the other class prox-
ies. The probability of instance x to be predicted into class
c,eed{l,..,C}is

exp(s(pe, v)/7)

Zle exp(s(pj, v)/7)’

where p. denotes the proxy or the weight for class ¢, s()
denotes a similarity metric, e.g., cosine similarity, negative Eu-
clidean distance, and inner product; 7 is the temperature. Dur-
ing training, both the model parameter ® and the proxy matrix
P are collectively optimized by minimizing the expected KL
(Kullback-Liebler)-divergence of the predicted probability dis-
tribution from the true class label vector over the training set
Dt’r:

©", P* = argminE, y.p, Drr (yllp(y|2;: P, ©)).  (2)

p(clz; P, ©) = (D

For the most metric learning paradigms, the model parame-
ters ® are initialized with a pre-trained model and fine-tuned
with the training set.

3.2 Multi-Proxy Learning (MPL)

Considering that the samples in each fine-grained class may
roughly be clustered into a few groups due to the intra-class
variation, we present a multi-proxy learning framework that
assigns a set of proxies py, (r = 1,2, ..., R), for each class, to
capture the intra-class distribution and increase the model’s
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Figure 1: Illustration of the proposed Multi-Proxy Learning framework. The input images are projected into the feature embedding space,
where three constraints are imposed, i.e., a classification loss L., an inter-class smoothness regularization H;n e, and an intra-class diversity
regularization H;n¢rq. The solid lines in the embedding space denote the proxies selected for the classification loss.

flexibility, where R > 1 is the proxy number of each class. As
illustrated in Figure 1, the proposed MPL consists of a basic
classification loss and two regularization terms, which will be
introduced below.

Multi-Proxy Cross-Entropy Loss. For an instance x, we
first project it into an embedding space with the feature rep-
resentation model and then construct a multi-proxy cross-
entropy loss to ensure the instance to be correctly classified.
Specifically, the multi-proxy cross-entropy loss enforces the
feature embedding of the instance z to be closer to its most
dissimilar intra-class proxy than the other most similar proxies
from all the negative classes. Thus, the conditional probability
distribution over C' classes is formulated as:
exp( min_ s(p,v)/7)
p(cz; P, ©) = e E))

C
exp( min s(p%7,v)/7)+ exp( max s(p’,v)/T
(pgePp (p2¥)/7) JZ%#C (P}7€Pj ®5:v)/7)

where P, denotes the intra-class proxy set of class c, p.. de-
notes the r-th proxy of the class c. In this way, the model
parameters ® and the proxy matrix P are collectively opti-
mized by minimizing the cross-entropy loss of the predicted
probability distribution from the true class label vector over
the training set Dy,.:

C
arg Iél}lgl Lee = — Z Z]I(c =y)logp(c|z; P, ©), (4)

(;p,y)ND,‘,‘ c=1

where I denotes the indicator function.

Intuitively, a proxy is a representative of a subset of intra-
class training data that captures the global context of a subset
of the class. In this way, the model mines the hardest intra-
class proxy as well as the hardest inter-class proxies to ensure
the instances to be classified correctly, which could be seen
to simulate the mechanism of pair-based approaches to cap-
ture the informative and fine-grained relationships. Thus, it
could benefit from both the proxy-based and the pair-based
paradigms.

The loss function described above is capable of extracting
discriminative information from the training classes, but still
suffers from the following drawbacks. First, the proxies from
the same class are not regularized, which may fail to capture
the variations of the class as expected. Second, the loss func-
tion emphasizes to correctly classify the training instances and
may suffer from the overfitting issue, which would lead to

1596

poor adaptation on the novel classes. To this end, we further
propose two kinds of regularizations to mitigate these issues.

Intra-class Diversity Regularization. To capture the varia-
tion of the intra-class distribution, we introduce an intra-class
proxy diversity regularization term to minimize the intra-class
distribution entropy conditioned on both the input instances
and the intra-class proxies themselves, which is formulated:

argmmHmtm = Z H[p(:|z; ©,P)]

x~Dyp

CXRCXR

DD

=1 j=1

J)logp(ilps; P),  (5)

where H[p(+|z; ©, P)] denotes the entropy of conditional prob-
ability distribution of the input instance with regard to only
intra-class proxies, which is given by:

H[p(-|z; ©,P)] Zp r|z; ©,P)log p(r|z; ©, P), (6)
r=1
where
exp(s(ph,,v)/T)
p(rlz; ©,P) = @) (7)

v)/7)’

where P,(,) denotes the intra-class proxy set and c(z) denotes
the class that instance = belongs to. The entropy can be seen
as a measure of the diversity of the predicted distribution. If
an instance is significantly close to one of its intra-class prox-
ies, then most of the mass will be concentrated at this proxy,
resulting in an entropy close to 0. Conversely, if an instance
is equally close to all the intra-class proxies, we obtain the
maximum of the entropy. In the problem that the intra-class
instances differ significantly, it is reasonable to encourage min-
imizing the entropy of the conditional probability distribution
among the intra-class proxies such that the similarity between
the instance and one intra-class proxy is distinguished from
the rest. The second term of Eq. 5 diversifies the proxies via
encouraging each proxy to be different from the other proxies.

In this way, the model would prevent the intra-class proxies
from being degenerated via decentralizing the proxies and
thus mitigates the mode collapse issue. To this end, the fea-
ture representation model produces more diverse intra-class
feature representations, which benefits in the adaptation of the
subsequent downstream tasks.

ot e, XD((D v
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Inter-class Smoothness Regularization. Since the fine-
grained classes are visually similar to each other, it is possibly
detrimental to enforce the model to produce too confident
outputs. If two classes are similar semantically, their represen-
tations should be close to each other in the feature embedding
space. Thus, it is undesirable to force the model to give a zero
cross-entropy loss during training. Instead, we encourage the
class prediction being distributed smoothly under the premise
that the predicted class label of an instance coincides with
the ground truth. Specifically, this goal is achieved via max-
imizing both the overall entropy over all training set and the
proxies themselves, which is formulated:

C
arg max Hipger = > Hlp(|z;©,P)] + Y Hp(-[pi; P)], (8)
’ z~Dy, i=1
where
C
Hp(|x; ®,P)] = = > p(c|lz; ©,P)log p(clz; ©,P) (9)
c=1

denotes the entropy of the conditional probability distribution
among all the training classes; p(c|z; ©, P) denotes the class
prediction of an instance x obtained with Eq. (3),

c
H[p([pi; P) = — Y _ pl(c|pi; P)log p(c|ps; ) (10)
c=1

denotes the entropy of the conditional probability distribution
among all the proxies, p; is the average value of the intra-class
proxies from class .

Once the inter-class proxy smoothness term is employed
to regularize the feature representation learning, the model is
encouraged to produce smoother class predictions, leading to
more semantic meaningful feature representations. In the ex-
periments, we will show that for fine-grained datasets with low
inter-class diversity, the inter-class proxy smoothness regular-
ization improves the model’s performances when combined
with the intra-class proxy diversity regularization.

Overall Loss Function. With both regularization terms on
proxies, our final loss function becomes

O* P* = arg IélilI)l Lee — aHipter + BHintra, (11)

where o and 3 are the hyper-parameters. We train the whole
model end-to-end to yield a discriminative metric space, which
is then applied to the downstream tasks, such as image re-
trieval, clustering, and few-shot classification.

4 Experiments

We comprehensively evaluate the effectiveness of the proposed
MPL on two tasks, i.e., fine-grained image retrieval and clus-
tering. We show that MPL is competent for both tasks. More
experiments are reported in the supplementary.

4.1 Settings

We conduct experiments on three benchmark datasets: CUB
[Wah et al., 2011], Cars196 [Krause et al., 2013], and Stanford
Online Products (SOP) [Oh Song er al., 2016]. CUB dataset

consists of 11,788 images from 200 bird species, where the
first 100 species are used for training and the rest 100 species
are used for evaluation. The Cars196 dataset covers 16,185
images from 196 car classes, where the first 98 classes are used
for training and the rest 98 classes are used for evaluation. SOP
contains 59,551 images from 11,318 classes for training and
60,502 images of the rest 11,316 classes for evaluation. For the
data pre-processing, we follow [Teh er al., 2020] and obtain
the training samples by randomly cropping 224x224 images
from resized 256x256 images and applying random horizontal
flipping for data augmentation. During the evaluation, we use
a single center crop.

In the experiments, we employ the commonly used Ima-
geNet pre-trained Resnet50 model [He et al., 2016] and Incep-
tion with batch normalization (BN) [Ioffe and Normalization,
1 as our backbone with the feature embedding dimensionality
as 512. If not specific, the results are obtained with Resnet50.
The model is optimized with Adam [Kingma and Ba, 2015] for
50 epochs. We adopt the P-K sampling strategy to construct
each batch with P=8 and K=4, where P is the class number
in each batch and K is the sample number of each class. For
both CUB and Cars196 datasets, we set the proxy number of
each class to 5 during training. For the SOP dataset, the proxy
number of each class is set to 2. The temperature value is
set to % across all the datasets. For the image retrieval task,
Recall @k is used for evaluation. For the clustering task, we
report the Normalized Mutual Information (NMI) to measure
the clustering quality with the K -means clustering algorithm.

4.2 Comparisons with the SOTA Methods

For the fine-grained image retrieval and clustering tasks, we
compare MPL with the eight competitors in Table 1. From
the results, we observe that MPL achieves state-of-the-art per-
formances in most of the cases. On one hand, MPL clearly
outperforms the counterparts under different metrics on both
CUB and Cars196 datasets. When comparing the results with
BN, MPL obtains 0.3% performance gain for CUB and 0.7%
gain for Cars196 over the second-best competitor for the im-
age retrieval task, and obtains 1.1% performance gain for
CUB and 1.2% gain for Cars196 over the second-best com-
petitor for the clustering task. When comparing the results
with Resnet50, MPL achieves 70.4% and 88.1% R@1 perfor-
mances on CUB and Cars196 datasets for the image retrieval
task, outperforming the second-best approaches by 1.9% and
0.8%, respectively. For the clustering task, MPL obtains 1.4%
and 2.3% gains over the second-best approaches on CUB
and Cars196, respectively. On the other hand, MPL does not
achieve the best performance on the SOP dataset. The reason
may be that each class of the SOP dataset only consists of 5
images on average, which makes it hard to construct a multi-
center structure in each class and therefore goes against the
advantage of learning multiple local cluster centers. However,
MPL still performs competitively on the SOP dataset due to
the benefits from both the proxy-based and pair-based learning
paradigms.

4.3 Ablation Study

Proxy number per class. To evaluate the effects of the
proxy number of each class, we conduct experiments on CUB
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CUB Cars196 SOP
Method Arch | Emb | @1 R@2 NMI | R@l R@2 NMI |R@l
ProxyNCA [Movshovitz-Attias ef al., 2017] | BN 128 | 492 619 595 | 732 824 649 | 737
MS+S2SD [Roth et al., 2021] BN 512 | 682 79.1 71.6 | 8.3 922 720 | 789
ProxyGML [Zhu er al., 2020] BN 512 | 666 776 698 | 855 91.8 724 | 78.0
SoftTriple [Qian et al., 2019] BN 512 | 654 764 693 | 845 90.7 70.1 | 783
Proxy-Anchor [Kim ez al., 2020] BN 512 | 684 792 - 86.1 91.7 - 79.1
MPL (Ours) BN 512 | 68.7 794 709 | 86.8 922 73.6 | 784
DCML-MDW [Zheng et al., 2021] R50 | 512 | 684 779 718 | 852 91.8 739 | 79.8
NormSoftMax [Zhai and Wu, 2018] R50 | 512 | 613 739 - 842 904 - 78.2
Margin [Wu et al., 2017] RS0 | 512 | 644 754 684 | 822 89.0 68.1 | 783
Trip-DiVA [Milbich et al., 2020] R50 | 512 | 685 785 71.1 | 873 928 72.1 | 794
ProxyNCA++'[Teh et al., 2020] R50 | 512 | 68.1 791 732 | 8.1 919 714 | 784
MPL (Ours) | R50 | 512 | 704 80.6 74.6 | 88.1 931 744 | 792

Table 1: Recall@k (in %) and NMI on both CUB and Cars196 datasets, and Recall@1 (%) on SOP dataset. “Arch” and “Emb” denote the
network architecture and the dimensionality of the feature embedding, respectively. BN: Inception with batch normalization, R50: Resnet50.
indicates the methods implemented by ourselves with the released codes. Best results are marked in bold.
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Figure 2: An ablation study about the effects of the proxy number of
each class on the CUB and the Cars196 datasets.

Inter | Intra CUB Cars196
R@1 R@2 NMI | R@1 R@2 NMI
X X | 689 792 728 | 864 924 71.8
v X | 692 794 717 | 859 912 62.2
X v | 698 796 737 | 865 91.9 73.1
v v | 704 80.6 746 | 88.1 93.1 744

Table 2: An ablation study (in %) of the effects of intra-class diversity
and inter-class smoothness regularization terms on both datasets.

and Cars196 datasets with different proxy numbers for each
class. As illustrated in Figure 2, the performances gradually
increase with a growing number of intra-class proxies, and the
best performances are achieved with N=5 for most metrics on
both CUB and Cars196 datasets. This indicates that the num-
ber of proxies matters for effectively capturing the intra-class
distributions. We also observe that the performance plateaus
when the number of proxy is above 5, possibly because the
sample number for both CUB and Cars196 datasets are limited
such that there is no further margin for improvement.

Impacts of hyper-parameters o and S. To evaluate the
impacts of the two hyper-parameters on the performance, we
conduct experiments on the Cars196 dataset varying their val-
ues from 0.5 to 2 with an interval of 0.5. From the results in
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Figure 3: Impacts of the hyper-parameters o and 3 on the Cars196
dataset.

Size Emb CUB Cars196
R@1 NMI | R@l NMI
512 | 704 746 | 88.1 744
224x224 | 1024| 71.8 759 | 894 74.8
2048 | 724 746 | 89.5 75.1
512 | 725 757 | 884 734
256x256 | 1024| 743 763 | 904 75.8
2048 | 745 774 | 90.6 75.0

Table 3: Evaluation (%) on the input size and the dimensionality of
embedding on both the CUB and the Cars196 datasets.

Figure 3, we observe that the retrieval task is robust to both «
and (3, while the clustering task is a little sensitive to the varia-
tion of the hyper-parameters. On one hand, with the increase
of «, the NMI drops slightly, which indicates that when the
model overemphasizes smoothness, the discrimination abil-
ity is weakened correspondingly. On the other hand, with
the increase of 3, the NMI increases gradually and reaches a
plateau, indicating that encouraging the intra-class proxies to
be distributed yields benefits in improving the performance.

Impacts of regularization terms. In Table 2, we evaluate
the impacts of two regularization terms on both CUB and
Cars196 datasets. From the results, we have the following
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Figure 4: The cosine distributions of the intra-class proxies and the
proxies to their inter-class nearest proxies on the training set of the
CUB dataset.

observations. First, the inter-class regularization term brings
a small improvement in the retrieval task on the CUB dataset
but hurts the performances on the Cars196 dataset for both
retrieval and clustering tasks. We speculate that the model
would spoil the discriminative patterns with the inter-class
regularization alone that smooths the prediction logit but ne-
glects to distinguish the correct class. Second, the intra-class
regularization term contributes to the performance improve-
ments on both CUB and Cars196 datasets, which indicates
the effectiveness of differentiating intra-class proxies. Finally,
when the inter-class and the intra-class regularization terms
are combined, the performances further improve on both CUB
and Cars196 datasets. We argue that when the correct class is
distinguished from the rest classes by assigning each sample
to its nearest intra-class proxy, the smoothing regularization
term benefits the generalization ability of the model.

Impacts of embedding dimensionality and input image size.
To evaluate the impacts of the embedding dimensionality and
input image size, we report the results in Table 3. From the
results, we observe that larger input images significantly im-
prove the performances on CUB and Cars196 datasets for both
retrieval and clustering tasks. In general, the performances
of input size with 256 X256 obtain about 2% gains over those
with 224 x224 on the CUB dataset. Besides, we observe that
the performances generally increase with the growing feature
embedding dimensionality on both CUB and Cars196 datasets.

4.4 Further Analysis

Figure 4 gives the cosine distributions of the intra-class prox-
ies and the proxies to their inter-class nearest proxies on the
CUB training set. We take the model without the proposed
two regularization terms as the baseline and select SoftTriple
[Qian et al., 2019] as a competitor. We observe that both the
baseline and SoftTriple tend to suffer from the mode collapse
issue since most of the intra-class proxies are close to each
other (i.e., cosine similarities are close to 1). In contrast, the
intra-class proxy cosine similarities of MPL distribute a more
concentrated interval, which verifies that the intra-class reg-
ularization terms could help to shape the feature distribution.
Besides, we observe that the cosine similarities between the
proxies and their inter-class nearest proxies of MPL are larger
than those of the baseline, which indicates that the inter-class
regularization term smooths the inter-class distribution.
Figure 5 shows the cosine distributions of all positive (ap)
pairs and all negative (an) pairs on the CUB dataset with the
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Figure 5: The cosine distributions of the baseline and MPL on the
test set of the CUB dataset.
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Figure 6: The entropy distributions of ProxyNCA and MPL on CUB
dataset.

baseline and the MPL. We observe that the cosine distributions
of the positive and negative pairs of MPL are more separated
than those of the baseline on the test sets, which indicates that
the proposed two regularization terms help to adapt to test
classes.

Deep evaluation of inter- and intra-entropy. Fig. 6 visual-
izes the distributions of the entropy values of ProxyNCA and
MPL on CUB. We observe that the inter-entropy constraint
smooths the class predictions as the inter-entropy values are
distributed in larger values than ProxyNCA, which helps the
model to alleviate the overfitting issue. Besides, the values of
the intra-class entropy are in a bimodal distribution, indicating
that some samples are distributed around the corresponding
class centers while some samples are distributed close to one
of the intra-class proxies. Thus, the inter- and intra-entropy
constraints respectively help the model to alleviate the overfit-
ting issue and preserve the diverse intra-class distribution.

5 Conclusion

In this paper, we have proposed a novel approach dubbed
multi-proxy learning (MPL) for fine-grained feature represen-
tation learning, which introduces multiple proxies for each
class and exploits the data-to-proxy relationships through an
entropy learning scheme. By explicitly enforcing a large di-
versity among the intra-class proxies and encouraging the
class predictions to be distributed smoothly, MPL effectively
captures the complex non-uniform data distribution. The ex-
perimental results on two different tasks demonstrate that the
proposed MPL achieves competitive results on both tasks.
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