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Abstract

Scene understanding in adverse weather conditions
(e.g., rainy and foggy days) has drawn increasing
attention, arising some specific benchmarks and al-
gorithms. However, scene segmentation under rainy
weather is still challenging and under-explored due
to the following limitations on the datasets and meth-
ods: 1) Manually synthetic rainy samples with em-
pirically settings and human subjective assumptions;
2) Limited rainy conditions, including the rain pat-
terns, intensity, and degradation factors; 3) Sepa-
rated training manners for image deraining and se-
mantic segmentation. To break these limitations, we
pioneer a real, comprehensive, and well-annotated
scene understanding dataset under rainy weather,
named Rainy WCity. It covers various rain pat-
terns and their bring-in negative visual effects, cov-
ering wiper, droplet, reflection, refraction, shadow,
windshield-blurring, etc. In addition, to alleviate
dependence on paired training samples, we design
an unsupervised contrastive learning network for
real image deraining and the final rainy scene se-
mantic segmentation via multi-task joint optimiza-
tion. A comprehensive comparison analysis is also
provided, which shows that scene understanding in
rainy weather is a largely open problem. Finally, we
summarize our general observations, identify open
research challenges, and point out future directions.

1 Introduction

Out-door application, e.g., semantic segmentation under the
driving situation, has achieved impressive progress with the

existing segmentation models under clear weather conditions.

However, the performance of these methods drops sharply
when facing inclement weather, since adverse weather can
significantly degrade the image quality and readability. One
typical scenario is the rain condition, as shown in Fig. 1, with
multiple degradation scenes and rain patterns, making the
segmentation task more challenging.

*These authors contributed equally to this work.
TCorresponding authors.
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Figure 1: Column (a) from top to bottom: Clear image from
Cityscapes, synthetic rainy images from RainCityscapes, real rainy
images respectively from ACDC and our Rainy WCity. Column
(b) presents their segmentation results by DeepLabV3+. Due to the
limited rain conditions and degradation factors, their rainy day sce-
narios and predictions are closer to clear days. However, when all
these factors are included, it is almost impossible for the model to
generate discernible results. Column (c) shows the mean Intersec-
tion over Union (mIoU) on the validation part of these datasets by
DeepLabV3+. The gray bar shows the largest domain gap between
real rainy images from our Rainy WCity and clear images from
Cityscapes, compared to the gap between other real rainy dataset
(ACDC)/synthetic dataset (RainCityscapes) and Cityscapes.

(c) mloU

(a) Input

To promote this task, there are at least two urgent questions
required to be addressed: how to construct a benchmark for
comprehensively evaluating and training the segmentation
model under rainy scenes? And how to make the segmentation
model robust to diverse rainy scenes?

For the first question, some researchers recently put their
efforts towards dataset generation and collection, including
synthetic and real rainy datasets. Some studies aggregate
the depth information [Hu er al., 2021] to generate the rainy
samples or spray water on the glass to simulate driving on
rainy days [Porav er al., 2020]. Although these schemes
have boosted the development of segmentation tasks under
driving scenes, there still exists significant distribution dis-
crepancy in the real rainy scenes, and the synthetic data
lose the randomness that may exist. In particular, the data
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Dataset Resolution Label/Total Real Scenario Intensity
Occlusion ~ Blur ~ Droplet  Reflection ~ Wiper  Light ~ Moderate ~ Heavy

Cityscapes [Cordts et al., 2016] 2,048 1,024 0/0 X X X X X X X X X
Raincouver [Tung et al., 2017] 1,280 720 285/326 v X v v v X v X X
KITTI [Alhaija et al., 2018] 1,382%x512 0/0 X X X X X X X X X
RID [Li et al., 2019] Variable 0/2,495 v v v v v X v X X
Apolloscape [Huang et al., 2020]  3,384x2,710 0/0 X X X X X X X X X
nulmages [Caesar et al., 2020] 1,600 900 58/1,300 v X v X v X v X X
BDD [Yu er al., 2020] 1,280% 720 253/5,808 v v v v v X v X X
ACDC [Sakaridis et al., 2021] 1,920 1,080 1,000/1,000 v v v X v v v X X
RainCityscapes [Hu et al., 2021] 2,048 x 1,024 1,760/10,620 X X v v X X v v v
RaidaR [Jin er al., 2021] 1,920 1,080  5,000/58,542 v v v X v X v X X
Rainy Wcity (Ours) 1,920 1,080 500/24,335 v v v v v v v v v

Table 1: Comparison of driving datasets in terms of the sample resolution, annotated rainy images, total rainy images, authenticity of rain,
scene diversity, and rain patterns, respectively. “Reflection” means road surface reflection due to rain droplet accumulation. “Wiper” means the
effects on the segmentation model due to the movements of wipers. While researchers have previously focused on introducing the essential
characteristics of rainy days into their experiments, it is time to take it a step further to better cope with complex scenarios in practice.

discrepancy arises a problem that the model trained by the
synthetic data losses the ability sharply in actual scenar-
ios. For the existing real rainy datasets [Jin er al., 2021;
Sakaridis er al., 2021], samples are closer to post-rain scenes
since the characteristics of rainy days have not been included,
e.g., raindrops, road reflection, and droplet occlusion.

As shown in Fig. 1, the representative segmentation al-
gorithm DeepLabV3+ [Chen et al., 2018] (trained on the
Cityscapes dataset) shows better performance on the clear
Cityscapes or synthetic rainy Cityscapes scenarios. In con-
trast, the segmentation performance declines precipitously in
the real-world rainy scenes, particularly in our dataset (from
76.2% to 23.2% of the mloU), since there are more complex
degradation factors.

To break these limitations aforementioned, we construct a
novel rainy dataset with accurate semantic annotations, named
Rainy WCity, to investigate the segmentation task for driv-
ing scenes comprehensively. Rainy WCity covers 5 common
driving scenes on rainy days with a total of 24,335 real rainy
samples, where each scene has 100 images with the corre-
sponding well-annotation segmentation label.

Our dataset distinguishes others by featuring the following
elements: 1) Diverse Rain Patterns: including light, moder-
ate, and heavy rain scenarios; 2) Diverse degradation factors:
besides the typical rain occlusion, our dataset considers nu-
merous adverse effects of degradation, commonly occurred on
rainy days but overlooked in other real rainy datasets, e.g., the
droplet interference, road reflection, and windshield-blurring.
In particular, we provide the elaborated classification of these
scenes with the corresponding well-annotated segmentation
labels.

For the second question, researchers have developed efforts
to design the two-stage optimization model by simply cas-
cading the image deraining and semantic segmentation tasks
for the rainy segmentation [Jiang er al., 2020]. As a result,
the segmentation results are barely satisfactory in real chal-
lenging scenarios, while the marginal improvement comes at
the cost of extra computation and memory usage. The rea-
son lies in that these two tasks have a significant discrepancy
with regard to the optimization objective. The former tends
to learn the pixel-wise fidelity, however, the latter focuses
on the semantic-wise fidelity. Unlike these methods, we pro-
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pose to achieve the joint training of the image deraining and
semantic segmentation and construct an unsupervised rainy
scene segmentation method. In particular, we introduce scene
segmentation that meets real rain (S2R2). In addition, to elim-
inate the dependence on the real paired training samples, we
train the deraining network via unsupervised contrastive learn-
ing. Meanwhile, the segmentation counterpart is optimized
via cross-entropy loss. Experimental results on Rainy WCity
demonstrate that our proposed S2R2 method achieves appeal-
ing improvements over the state-of-the-art methods in terms
of deraining performance (image clarity) and segmentation
accuracy.
Overall, contributions can be summarized threefold:

* We re-investigate the segmentation task under real rainy
scenes and construct a real and comprehensive dataset
Rainy WCity with well annotations. It provides a fair and
unified benchmark for further research on this challeng-
ing task.

We design an unsupervised joint optimization framework
(deraining and semantic segmentation) to significantly
promote segmentation performance in rainy scenarios,
serving as a baseline method for further research.

We conduct comprehensive experimental comparison un-
der diverse rainy scenarios and provide thoughtful in-
sights and analysis on this task, which is momentous for
opening research and future direction.

2 Rainy WCity Dataset

This section details the difference between our pro-
posed dataset and the existing driving datasets, including
Cityscapes [Cordts et al., 2016], Raincouver [Tung et al.,
20171, KITTI [Alhaija et al., 2018], RID [Li et al., 2019],
Apolloscape [Huang et al., 20201, nulmages [Caesar et al.,
20201, BDD [Yu et al., 2020], ACDC [Sakaridis et al., 20211,
RainCityscapes [Hu et al., 20211, and RaidaR [Jin er al., 2021].
Table 1 provides the comparison results in terms of the image
resolution, sample number, scenarios, and rain patterns. Our
dataset provides a further differentiation of some degradation
factors under real rainy scenes.
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(a) Droplet (c) Before wiper (c) After wiper

Figure 2: Segmentation results by DeepLabV3+ under different rainy driving situations. (a) shows the effects of the droplet. Multiple locations
covered by droplets are misidentified. (b) shows the effect of road reflection. Here, the shadow of cars is incorrectly identified. (c) shows
the blur effect of the wiper. When the wiper scrapes across the glass, although there seems to be no problem in the human eye, the actual

(b) Reflection

segmentation effect significantly deviates.

2.1 Diverse Degradation Scenarios

Shading Effect of Droplet Droplet, the most common
phenomenon on rainy days, will prevent light from passing
straight through the object, and when it falls on the windshield,
the content distortion caused by the reflectance and refraction
becomes more pronounced. In Fig. 2(a), areas covered with
rain droplet has significant misidentification, e.g., the green
“vegetation” is identified as the grey “building”, while the blue
“sky” is misidentified as the grey “building”.

Road Reflection The rain droplets accumulated on the road
commonly form a mirror reflection effect, confusing the seg-
mentation model with the fake and indistinguishable objective
boundary. As shown in Fig. 2(b), the shadow of cars is incor-
rectly identified.

Blurring by Windshield Wiper The wiper eliminates the
visual occlusion caused by the rain accumulation. However,
for the real rainy days, the wiper operation could evidently
promote the visual clarity of human observed views, but the
unexpected change of scene contents is unfriendly to the seg-
mentation model for the real-time application. As is shown in
the yellow box in Fig. 2(c), the result is not consistent with
the human’s view.

2.2 Collection

Data collection starts at the end of March 2021 and has lasted
over five months in total. We mount four cameras on four
cars respectively on their roof behind the windshield. All
four employed cameras are the same model: Xiaomi Recorder
2, which enables recording 30 frames per second with the
resolution of 1,920x1,080. We have collected 5,619 videos
in total and coarsely removed the rain-less and night parts,
resulting in 1,685 videos of rainy scenes left. Most of the
videos last around 3 minutes, and the rest last 90 seconds.

2.3 Selection by Two-stage Filtering
We adopt a two-stage filtering way to select target images that
reflect the character of the rainy day scene as much as possible.

Stagei After finding out these raining videos, we first view
each video and manually note down the approximate time
intervals according to our understanding of rainy scenes. Then

we extract full frames from the time intervals of clips we have
recorded in the first step, containing 24,335 images in total.

Stageii We apply BiSeNetV2 [Yu ez al., 2021] segmentation
models to quickly filter all of these frames from stage i to
acquire corresponding segmentation results. The purpose of
this step is to allow the model to provide its perspective on
these data to know what kind of situation the current models
can not handle. During this stage, besides the droplets impact,
we have discovered extra degradation factors, which help us
split the dataset into three parts in the next step. The details of
these factors will be outlined later. Lastly, we make the final
selection, picking 500 images from stage i by referring to the
segmentation results from stage ii. Among those 500 images,
300 mainly focus on diverse rainfall driving scenes, 100 of
which comprise the unique windshield wiper blurring effect,
and the rest 100 contain the windshield reflection situation.

2.4 Annotation Procedure

We annotate our images based on the label tool of Cityscapes,
so the class split also follows its manner. Annotating an image
on a heavily rainy day is difficult because of too many complex
factors (e.g., blurring and reflection). To make annotation more
accurate and reliable, we propose using temporal information
to enhance the quality: During the annotation, we will also
refer to adjacent frames to decide the class of unclear pixels
in current frame.

Following the construction of Cityscapes [Cordts et al.,
2016] and ACDC [Sakaridis et al., 2021] datasets, we invite
20 annotators with professional image processing experience.
In particular, annotated samples by one person are passed to
another for a second confirmation to eliminate the bias and
misinterpretation.

The time interval we choose in the selection part is usually
at least 2 seconds long with 60 frames, which means that at
least 60 adjacent continuous frames have accompanied every
image we annotate and at least one video of reference. By
combining spatial and temporal information, our annotation
has richer information and reliable accuracy.
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Figure 3: Overall of our framework. Our framework is divided into two steps. First, the rainy image, together with a clear scene image, is sent
into the feature disentanglement network, where a degradation encoder encodes two specific degradation features and content encoder encodes
two content features. After cross-reconstruction by exchanging the two degradation features, we achieve the basic function of deraining (a).
Then, we view the (c1, c2) as the positive pair and (cz, 22) as the negative pair, proposing a contrastive 10ss Lcontrq as an extra constraint (b).
Besides, the regular cross-entropy loss L. is used to ensure the initial performance of the segmentation model (c).

2.5 Rain Pattern Classification

To better study the scenes under specific rain intensity, we
classified images. Specifically, we randomly selected 5,000
images and invited 20 relevant staff to rate each image with re-
spect to rain intensity, according to the definition of Wikipedia,
and finally, we assigned each image a specific intensity class
based on the average score. This resulted in a total of three
classifications: light rain, moderate rain, and heavy rain. We
trained a classifier to classify the remaining images.

2.6 Comparison to Related Dataset

Finally, our dataset mainly contains 500 fine-grained pixel-
level annotations, accompanied by corresponding 24,335 im-
ages of driving on rainy days, comprising diverse scenes and
various degradation factors. The comparison of data diversity
to other relevant driving datasets is shown in Table 1. The mix-
ture of multiple elements has brought the most close-to-reality
rainy scenes to Rainy WCity.

3 Proposed Method

The architecture of our framework is brief and straightforward,
as shown in Fig. 3. Simply rely on structure information may
cause ambiguous mapping problems [Liao er al., 2021]. So
we need to extract features in a more specific way. Motivated
by [Ma er al., 2022], we design a feature disentanglement
network as the basic unit of our method. Given images x
and x5 from Cityscapes and our Rainy WCity domain, with
the “shared content space” assumption [Huang er al., 2018], it
can disentangle domain-invariant content features c; and co
of these images from the domain-specific counterparts z; and
2. As has been validated by [Chang et al., 2019], the content
features contribute most to the semantic segmentation task.
Therefore, through feature disentanglement, we can transfer
segmentation knowledge from x; domain to x5 domain.
Specifically, we first need a shared content encoder E. to
extract ¢; and co and two degradation encoders to extract
degradation feature z; and z,, respectively. Then, we use a
shared image decoder D; to decode an image using the content
features ¢y, co, and degradation feature 2z, zo. Depending on

which ¢ and z we use, we can perform cross-reconstruction
to supervise the disentanglement learning. Besides, we use a
segmentation decoder D to produce segmentation heatmaps
71 from the content feature c;, where label y; is used as the
supervision signal. After the cross-reconstruction, we achieve
the basic function of deraining of our framework.

The traditional way of deraining is to train a model to de-
compose the rain image into the clean background and residual
of the rain streak. Since pair clean label is difficult to obtain,
we integrate the task of deraining into a segmentation frame-
work, as described in the first step. This idea is based on the
assumption that the segmentation and deraining share a similar
goal: deraining is to restore clean image, which segmentation
can benefit from it. Consequently, the segmentation result
of the derained image should outperform the original rain-
degraded image. Specifically, we propose to utilize contrastive
learning paradigm to distinguish the boundary between pos-
itive and negative pairs, where the comment latent content
feature pair (c1,co) as the positive pair and (cq, 22) as the
negative pair. During training, we update the degradation
encoders and segmentation encoders simultaneously. In this
manner, the deraining module will study to restore rainy image
progressively. Meanwhile, the segmentation network will also
learn to discover the semantics in the restored images. The
two modules complement each other in the process of training.

The goal of contrastive learning is to learn an encoder that
encodes the private degradation pattern in our Rainy WCity
dataset and helps disentangle the content, which contributes
most to the semantics, from the rainy image. We assume that
latent content feature c¢; and co should be pulled as near as
possible in the feature space, while content feature co and
degradation feature z, should be pushed as far as possible.
Correspondingly, the definition of contrastive loss is as follows:

exp(cg - ¢1/7)
exp(cz - ¢1/7) + exp(ca - 22/7)’
where - denotes the inner product, and 7 > 0 is a temperature

hyper-parameter. Note that all the features in the loss function
are ¢2-normalized.

(D

Econtra = - IOg
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(a)Input  (b) Derain (ours) (c) V3+

(d) V3+ (derain) (e) DualGCN

(i) Ground Truth

(f) MPRNet  (g) Our (derain) (h) Ours

Figure 4: Qualitative comparison with DeepLabV3+ (V3+ for short). (c) is the result of DeepLabV3+ on our Rainy WCity dataset. For (d) to
(g), restoration procedures are directly applied to the rainy images to generate corresponding rain-free outputs, and then we apply the publicly

available pre-trained models of DeepLabV3+ for the segmentation task.

Method PSPNet DeepLabV3+ SDCNet HRNet BiSeNetV2
Rainy Input 13.46 23.21 23.07 26.89 25.93
DualGCN 12.75 23.01 22.56 26.81 25.82
MPRNet 14.98 21.83 21.99 26.92 23.98
S2R2 w deraining 11.87 25.88 19.58 25.31 27.82
S2R2 w trained model - 39.67 - - 32.79

Table 2: Comparison results of different segmentation models in
terms of mloU (%) on our Rain WCity dataset. Five segmentation
models are directly applied to the original rainy inputs and the de-
rained images produced by the Dual GCN and MPRNet methods to
perform the two-stage solutions for the rainy segmentation task. In
particular, we also investigate combinations of our proposed unsu-
pervised deraining model and these five segmentation methods to
construct multiple one-stage rainy segmentation baselines.

This loss function can make the output of the deraining
network closer to the ground truth and increase the distance
between the restored image and the rain image in semantic
space, which improves the classification result of scene pixels
on the other hand.

In addition, we also introduce a pixel-level cross-entropy
loss L. to constrain the semantic segmentation task. This
loss will check each pixel one by one and compare the predic-
tion result y; of each pixel category with our label y;. The
definition of loss is as follows:

Loe=—3 3@ logyi"), @)

h,w ceC

where y; are ground truths annotations for images x1, 91 €
RIXWXC is the segmentation softmax output of 1, and H,
W, and C represents height, width, and number of class cate-
gories, respectively.

The final overall loss function is:

ﬁfinal = £ce + )\Econtraa 3

where ) is the weighting parameter.

4 Experimental Results

To investigate the segmentation task under rainy days and
evaluate our proposed S2R2 model, we conduct extensive
comparison experiments with existing representative meth-
ods on our proposed Rainy WCity dataset. In detail, it con-
sists of two deraining methods (DualGCN [Fu ef al., 2021]
and MPRNet [Zamir ef al., 2021]) and five segmentation

models (HRNet [Wang et al., 2021], BiSeNetV2 [Yu et al.,
20211, DeepLabV3+ [Chen et al., 2018], SDCNet [Zhu et
al., 2019], and PSPNet [Zhao er al., 2017]). For the seg-
mentation part, all these comparison models are pre-trained
on Cityscapes [Cordts et al., 2016] and run by their default
settings.

4.1 Evaluation Metric

We use mean Intersection over Union (mloU) to evaluate seg-
mentation effects; The higher the value, the better. Since
it is almost impossible to get clean pairs for real rainy im-
ages, we adopt two no-referenced image quality assessment
methods for evaluation of the effectiveness of derain models:
Spatial-Spectral Entropy-based Quality (SSEQ) and Natural
Image Quality Evaluator (NIQE), the smaller the value, the
better for these two assessments.

4.2 Comparison Results on Rainy WCity

The rainy segmentation task involves two sub-tasks: image
deraining and scene segmentation. To investigate the intrin-
sic contribution of these two tasks to the final segmentation
performance, we construct several two-stage competitive mod-
els by directly cascading different deraining models (Dual-
GCN, MPRNet, and our deraining model) and segmentation
algorithms (HRNet, BiSeNetV2, DeepLabV3+, SDCNet, and
PSPNet). In particular, we further design a one-stage method
based on our deraining model and DeepLabV3+/BiSeNetV2
to promote the compatibility of these two sub-tasks via joint
optimization. Quantitative evaluation on our proposed Rainy
WCity dataset is tabulated in Table 2.

We use five segmentation models as baseline models, all
of which fail to generate satisfied segmentation results. We
guess the image deraining may destroy the intrinsic semantic
information since these two sub-tasks have the obvious op-
timization discrepancy. We then test two deraining methods
(DualGCN and MPRNet) and the deraining part (trained degra-
dation encoder and image decoder) of our proposed method to
see whether deraining the rainy images as a pre-processing
is helpful for the segmentation. However, in contrast to the
baseline models where the rainy images are directly input, the
deraining processing has unstable effects, i.e., some have im-
proved the performance while others lowered the performance,
proving the pre-processing of deraining is not an effective way.
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o) 9 o] = = 3] Q = = & I 2 5] S = >
3 = = ) > 4 P
S Method 2 -g 2 § § g = ;:‘D E g = g b= § g B g E mloU
% DeepLabV3+  73.5 7.5 474 7.4 11.5 246 6.9 46.5 47.0 0 78.1 5.1 0.2 436 1.5 0 0.1 1.5 21.2
2. MPRNet 58.6 1.9 442 124 105 257 6.0 447 459 0 84.8 43 05 312 1.5 0.2 0.8 2.4 19.8
E DualGCN 73.8 8.1 50.5 6.3 73 233 6.9 46.6 463 0 82.3 54 0.7 418 1.0 0.5 0.1 1.3 21.1
S2R2 (Ours) 91.8 6.9 58.3 32 388 181 392 523 752 05 888 332 4.0 818 242 170 144 321 37.7
. DeepLabV3+ 63.8 0.5 474 6.3 0 219 0 258 428 0 86.6 0 0 28.9 0 3.8 0 0 17.2
& MPRNet 54.1 0 47.3 9.6 0 20.9 0 257 407 0 86.4 0 0 243 0 34 0 0 16.4
2z  DualGCN 66.3 2.6 48.7 3.4 0 15.8 0 28.8  40.8 0 85.5 0 0 32.4 0 5.0 0 0 17.3
S2R2 (Ours) 94.9 2.6 58.7 4.7 0 27.6 0 583 75.6 0 92.9 0 0 86.9 0 40.0 50.0 0 329
§ DeepLabV3+ 735 4.8 46.2 9.8 260 200 145 387 570 0 86.0 7.9 0 45.7 1.1 6.0 0 0 23.0
'é MPRNet 67.1 33 449 132 229 207 177 352 562 0 87.4 59 0 39.9 1.1 35 0.1 0 22.1
% DualGCN 722 4.6 45.5 9.0 112 202 146 393 541 0 88.6 9.2 0 43.5 1.9 4.0 0 0 22.0
& S2R2 (Ours) 871 115 604 9.0 60.2 20.1 360 222 79.8 0 916 281 6.1 815 773 8.3 1.9 0 37.8

Table 3: mloU comparison is performed separately for each of the three categories of our dataset using DeepLabV3+. The first row of each
category means implementing the model to our dataset. For the second and third rows, we apply two state-of-the-art derain methods to obtain
restored images on our dataset, respectively, and then apply DeepLabV3+ on these images. The last row shows our one-stage method. Our

proposed solution gains the best scores in almost all classes.

Category Method SSEQJ] NIQE| mloU?T
Original 295 4.1 21.2
Droplet MPRNet [Zamir ef al., 2021] 29.5 4.1 19.8
P DualGCN [Fu et al., 2021] 20.7 3.7 21.1
S2R2 (Ours) 205 34 377
Original 323 4.7 17.2
Wiper MPRNet [Zamir et al., 2021] 32.3 4.7 16.4
1P DualGCN [Fu et al., 2021] 22.8 4.2 17.3
S2R2 (Ours) 253 3.8 329
Original 28.1 4.0 23.0
Reflecti MPRNet [Zamir et al., 2021] 28.1 4.0 22.1
Hection  pualGON [Fu er al., 20211 204 37 220
S2R2 (Ours) 20.1 3.2 37.8
Original 21.9 3.8 232
All MPRNet [Zamir ef al., 2021] 29.7 4.2 21.8
DualGCN [Fu et al., 2021] 21.0 3.8 23.0
S2R?2 (Ours) 21.1 34 397

Table 4: SSEQ and NIQE comparisons between different derain
methods on our dataset. The lower, the better. “Original” means
unprocessed rainy images in Rainy WCity. Images with lower SSEQ
and NIQE values are more likely to get good segmentation results.

The segmentation part (trained content encoder and segmen-
tation decoder) of our proposed unsupervised method brings
about significant improvement, which shows the effectiveness
of our method.

Visual comparison are provided in Fig. 4. As expected, our
one-stage segmentation model shows significant superiority
over other two-stage competitors, producing the predicted
maps with clearer objective boundaries and cleaner contents.
Especially for the wiper and reflection scenarios, only our
proposed model can achieve the accurate segmentation of the
road and cars, while other comparison methods gain the dirty
segmentation results.

To further analyze the individual influence on each class,
we tabulate the mloU in Table 3, involving a total of 19 classes
commonly. It is evident that our proposed one-stage solution
gains the best scores in almost all classes. Especially for the
autopilot related classes, e.g., road, building, car, and truck,
our proposed method achieves significant improvements over
other two-stage methods on the real rainy segmentation task.
Taking the road, car, and bus as examples, the comparisons of

the mloU between ours and the second-best method are 73.8%
(DualGCN) vs 91.8% (ours), 43.6% (DeepLabV3+) vs 81.8%
(ours), and 0.5% (DualGCN) vs 17.0% (ours), respectively.
These results reveal two key points: 1) simply cascading the
deraining and segmentation models is far from producing the
satisfying segmentation results on the real rainy days, our
proposed Rainy WCity dataset in particular; 2) our proposed
unsupervised one-stage scheme can significantly alleviate the
compatibility, including the scenes (synthetic and real rainy
conditions) and tasks (deraining and segmentation tasks), ex-
tensively promoting the final segmentation performance under
real rainy days.

Table 4 provides the joint evaluation of image deraining and
segmentation performance. Our proposed one-stage method
achieves impressive performance on almost all metrics, gain-
ing the best scores of the NIQE and mloU in all scenarios.
Although the two-stage method adopts Dual GCN to promote
the image quality and gains the smallest values of SSEQ, the
final segmentation performance is undesired, even worse than
that of the original input. We guess that the deraining opera-
tion may destroy the spatial semantic information, which is
momentous for the segmentation task. By contrast, we adopt
the joint optimization of the image deraining and segmenta-
tion, which greatly promotes the compatibility by achieving
significant improvement in terms of the final mIoU (39.9% vs
23.2%). The metrics of deraining are negatively correlated
with the metric of segmentation, which verifies our design.

5 Conclusion

This paper presents Rainy WCity, a semantic segmentation
dataset for car-driving under the diverse real rainfall scenes.
Apart from the common rainy situation, we have illustrated
its complexity by proposing the fine-grained annotation of the
driving circumstance where droplets, windshield reflection,
and the windshield wiper exist, which are ignored in previous
datasets but play a significant impact factor in this weather.

Besides an unsupervised joint optimization framework
S2R2 is aimed to improve segmentation performance. Exten-
sive experiments demonstrate the effectiveness of our method
in real rainy scenarios.
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