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Abstract

Online bipartite matching has attracted much atten-
tion due to its importance in various applications
such as advertising, ride-sharing, and crowdsourc-
ing. In most online matching problems, the rewards
and node arrival probabilities are given in advance
and are not controllable. However, many real-
world matching services require them to be con-
trollable and the decision-maker faces a non-trivial
problem of optimizing them. In this study, we for-
mulate a new optimization problem, Online Match-
ing with Controllable Rewards and Arrival prob-
abilities (OM-CRA), to simultaneously determine
not only the matching strategy but also the rewards
and arrival probabilities. Even though our problem
is more complex than the existing ones, we propose
a fast 1/2-approximation algorithm for OM-CRA.
The proposed approach transforms OM-CRA to a
saddle-point problem by approximating the objec-
tive function, and then solves it by the Primal-Dual
Hybrid Gradient (PDHG) method with acceleration
through the use of the problem structure. In simu-
lations on real data from crowdsourcing and ride-
sharing platforms, we show that the proposed algo-
rithm can find solutions with high total rewards in
practical times.

1 Introduction

Online bipartite matching [Mehta, 2012; Feldman ef al.,
2009] has attracted much attention because of its many ap-
plications, such as advertising [Mehta, 2012], ride-sharing
[Dickerson et al., 2018], and crowdsourcing [Ho and
Vaughan, 2012]. These applications require platformers to
find efficient online ways of allocating their limited resources
among customers or participants, which significantly impacts
their business profits. Formally, the problem of allocation is
defined on a bipartite graph G = (U, V; E): U is the fixed
node set known in advance, and nodes in V' arrive at each
time in a probabilistic manner; a reward is obtained when an
arrival node in V' is matched with a node in U; the goal is to
find a matching strategy that maximizes the total rewards. !

!Codes/details of our experiments and the proof of Lemma 2 can
be found in https://github.com/Yuya-Hikima/IJCAI2022-Online-

Existing studies assume that rewards and arrival proba-
bilities are given a priori as fixed constants [Mehta, 2012;
Dickerson et al., 2018], in which case only the matching strat-
egy needs to be optimized. However, platformers can usu-
ally control rewards, which affect arrival probabilities. This
triggers the non-trivial problem of optimizing the rewards as
well as the matching strategy for greater profits, due to the
trade-off between rewards and arrival probabilities. For ex-
ample, in a ride-sharing platform, higher fares (rewards) in-
crease the profit obtained with each match, but cause lower
participation (arrival) probabilities of requesters for taxis as-
signment, which might degrade the total profits obtained even
if the matching strategy is optimal. Although important and
appearing in many applications (described in Section 3.2), the
problem has not, to the best of our knowledge, been tackled
directly in online matching studies.

In this study, we propose the novel problem of simulta-
neously optimizing the matching strategy and the trade-off
between rewards and arrival probabilities to maximize busi-
ness profits. We call the problem Online Matching with Con-
trollable Rewards and Arrival probabilities (OM-CRA). OM-
CRA solutions realize profitable online matching under an
appropriate balance of rewards and arrival probabilities. In
the case of a ride-sharing platform, business profits are ex-
pected to increase in the following scenario: for areas with
few taxis, a fare (reward) per one match is prioritized over
the arrival probabilities of requesters; for areas with many
taxis, the arrival probabilities are increased with lower fares
to stimulate many matches.

Although OM-CRA is an important problem for applica-
tions, OM-CRA has two difficulties to solve: (i) we need to
simultaneously optimize the matching strategy and the trade-
off between the rewards and the arrival probabilities (finding
just the optimal matching strategy is hard [Manshadi et al.,
2012]); (ii) it takes a lot of time to compute the objective
value because it is the expected total rewards for the random
order of participants with exponential realizations.

In this paper, we develop a fast 1/2-approximation algo-
rithm for OM-CRA. First, based on recent studies on online
matching [Dickerson et al., 2018; Alaei ef al., 2012], we ap-
proximate the objective value by the optimal value of a lin-
ear optimization problem. Using this approximation reduces

Matching-with-Controllable-Rewards-and-Arrival-Probabilities.
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OM-CRA to a non-convex continuous optimization problem
whose objective value can be evaluated easily. Then, we
reduce the problem to a convex-concave saddle-point prob-
lem [Benzi et al., 2005] under mild assumptions. Many im-
portant functions typically used in the applications satisfy
these assumptions. We then solve the convex-concave saddle-
point problem by the Primal-Dual Hybrid Gradient (PDHG)
method [Chambolle and Pock, 2011; Goldstein et al., 2015].
It is a powerful optimization method for saddle-point prob-
lems; an optimal solution is attained by alternately updating
the primal and the dual variables. By utilizing the problem
structure, we can accelerate the update of the primal variables
in PDHG, which allows us to find a solution quickly even for
large-scale problems.

We conducted simulation experiments on real data from a
crowdsourcing platform and a ride-sharing platform. The re-
sults show that the proposed algorithm outputs solutions with
higher total rewards than baselines in practical time.

Notation. Bold lowercase symbols (e.g., , y) denote vec-
tors, and ||z|| denotes the Euclidean norm of vector «. Cap-
italized writing forms (e.g., A) represent linear maps, while
AT denotes the transpose map for the linear map A. The
inner product of the vectors , y is denoted by = "y. For
x € R", we denote (x) 1 := (max{0, x;})i=1,...n-

2 Related Works

2.1 Online Bipartite Matching

In the research field of online matching, the following
four problem settings have been the focus of most studies
(overviewed by [Mehta, 2012]): (a) Known Identical Inde-
pendent Distributions (KIID), where each node v has the
same arrival probability throughout the entire period [Feld-
man et al., 2009; Haeupler et al., 2011]; (b) Unknown Iden-
tical Independent Distributions (Unknown IID), where each
node v has a fixed but unknown arrival probability [Devanur
et al., 20111; (c) Adversarial order, where an adversary can
determine the arrival order of all nodes v [Karp et al., 1990;
Sun et al., 2017]; (d) Random order, where all v arrive in a
random permutation order [Mahdian and Yan, 2011]. In ad-
dition, recently, generalizations of KIID have been reported;
Known Adversarial Distribution (KAD) assumes that each ar-
rival node v has a different arrival probability at each time
[Alaei et al., 2012]. Online Matching with Reusable Re-
sources under Known Adversarial Distributions (OM-RR-
KAD) is a generalization of KAD, where fixed node u rejoins
the system after a certain period after the previous assignment
[Dickerson et al., 2018].

In this paper, we further extend OM-RR-KAD and pro-
pose a new problem called Online Matching with Control-
lable Rewards and Arrival probabilities (OM-CRA), which
optimizes not only the matching strategy but also the trade-
off between the rewards and the arrival probabilities under
the same setting as OM-RR-KAD. The reason for focusing
on the OM-RR-KAD setting is that it is suitable for various
applications. For example, in a ride-sharing platform, taxis
(resources) can be reused after a certain period of being al-
located to requesters. In addition, the arrival probability of
requester v, defined by origin/destination areas, varies with
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time of day. Our problem can deal with these applications
since it is an expansion of OM-RR-KAD.

2.2 Optimization problems with
Decision-Dependent Noise

Since the uncertainty (i.e., arrival probabilities of nodes) in
our problem depends on the decision variables, our optimiza-
tion problem is classified as a optimization problem with
decision-dependent noise [Hellemo ef al., 2018]. This cat-
egory of problems has been addressed for several applica-
tion areas, such as matching platforms [Hikima et al., 2021;
Tong et al., 2018], crowdsourcing systems [Wang et al.,
2018], single item markets [Babaioff er al., 2015], and trans-
portation investment [Peeta er al., 2010].

Among these studies, [Hikima et al., 2021; Tong et
al., 2018] have tackled matching problems with decision-
dependent noise, similar to ours. [Hikima et al., 2021] op-
timizes some variables, which affect rewards and node ex-
istence probabilities, to maximize the expected profit from
batch-type matching. In the context of the ride-sharing plat-
form, [Tong et al., 2018] determines the fare for passengers
in each area to control passenger participation rates and max-
imize the expected profits from taxi-requester matching. The
difference between these existing studies and ours is whether
or not the timeline factor is considered. Existing studies con-
sider only one-time (batch) matching and seek a myopic so-
lution at a certain point in the time horizon. In contrast, our
study considers online matching situations and seeks an opti-
mal solution from a long-term perspective.

A problem setting similar to ours is found in [Babaioff et
al., 2015]. That work performs price optimization for sin-
gle item markets. Here, the reward for selling a product and
the participant’s purchase probability can be controlled by the
price. It is similar to our study because we control rewards
and arrival probabilities in online matching situations. How-
ever, that study did not consider the compatibility of resources
and participants, while our study considers it. This allows us
to deal with crowdsourcing platforms with skill compatibility
between tasks and workers, and ride-sharing platforms with
distance compatibility between taxis and requesters.

Optimization Methods. For the optimization problem with
decision-dependent noise, search methods such as Bayesian
optimization [Brochu er al, 2010] and random search
[Bergstra and Bengio, 2012] can be applied. However, for our
problem, they do not provide good solutions in practical time
for the following reasons: (i) the feasible region of the opti-
mization problem is too large to be adequately explored; (ii)
it takes a lot of time to compute the exact objective value or
its approximation with high accuracy. In contrast, our method
can output a 1/2-approximation solution in practical time.

3 Problem Formulation

3.1 Matching Procedure

Notation. In this paper, we consider allocating resources to
participants who arrive one by one at each time ¢t € T =
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{1,2,.. . tmax}.> The set of resources U = {u1,...,un},
the set of participants V' := {v1, ..., v,}, and bipartite graph
G = (U,V; E) are given. Each edge (u,v) € F represents
that resource u can be matched to participant v. Alluw € U
and v € V are incident to at least one ¢ € E. For e =
(u,v) € Eand t € T, if resource u is matched to participant
v at time ¢, the platformer receives reward w.; € R and the
participant v pays the platformer reward z,; € R. Thus, the
platformer receives a total of w,; + x,; rewards. For e =
(u,v) € Fand t € T, the constant ¢t € {1,2,...,tmax}
denotes the time duration that must pass for resource w to
become available again when u is matched to v at time ¢, i.e.,
u will be available at time ¢ + ¢, if e = (u, v) is taken at time
t. The case ¢, = |T'| forallt € T and e € E corresponds to
the problem where the resources are non-reusable. Here, we;
and c¢; are given constants while x, is a variable controlled
by the platformer. We also emphasize that we; and x,; can
take a negative value.

System Procedure. In the above setting, we consider the
following system procedure: (I) The platformer determines
the value of z,; for each v € V and ¢t € T. Then, re-
peat the following (II) and (III) for each t € T'. (II) Par-
ticipant v appears and accepts the reword/cost with proba-
bility py¢(x,:) or any of the participant v € V appears but
rejects the reword/cost with probability 1 — >\, put(Tvt).
Here, p,: : R — (0,7,;) is a given monotonically decreas-
ing function and r,; € Ry is a given constant such that
ZUEV ryt = 1. (II) If participant v € V arrives, the plat-
former chooses either (a) to assign one resource u from U
to the participant and get the reward of we; + ., Where
e = (u,v), or (b) not to assign any resource. If the platformer
chooses (a), allocated resource u is removed from graph G
for c.; periods.

Platformer’s Goal. The goal of the platformer is to max-
imize the total rewards by deciding x,; and matching strat-
egy appropriately. Here, too large z,,; leads to a decrease in
the total reward due to a decrease in the arrival probabilities
of participants, while too small x,; also leads to a decrease
in the total reward due to a decrease in the reward for each
match. The platformer needs to make decisions while con-
sidering such trade-offs.

3.2 Applications

Crowdsourcing Platform. In the crowdsourcing platform,
the platformer needs to assign their tasks to arriving work-
ers in real-time [Ho and Vaughan, 2012]. We start with the
set of tasks U and the set of worker groups V', where worker
groups are differentiated by skills and attributes. The plat-
former can determine wage x,:(< 0) for each worker group
v € V and each time ¢t € T. Here, x,; is negative because
it is the price the platformer pays for workers. Then, at each
time ¢ € T, a worker in group v € V arrives with probability
Pot(Tot) = TorSut(Zye); worker v appears with probability
r,+ and accepts the wage x.,,; with probability s,:(z,¢). The
crowdsourcing platformer assigns task . € U to the accepting

’The variable ¢ does not represent an absolute time, but is used
to indicate the relative order of appearance of participants.

worker v and takes the rewards we; + ¢, where e = (u, v).
Here, we:(> 0) is the reward paid by the task-holder to the
platformer when task w is solved by worker v. Reward w,; is
set based on the skills and performance of each worker group.
Usually, We1 = Wep = -+ = We|T|- Once the task w is
solved, there is no need to solve it again, so node u is perma-
nently removed after it is assigned. Therefore, c.; = |T'| for
allec FandteT.

Ride-sharing Platform. In the ride-sharing platform, the
platformer needs to assign taxis to arriving requesters in real-
time [Dickerson er al., 2018]. There are multiple taxis, U,
and multiple requester groups, V', where each group v € V
is defined by the origin/destination areas of the request. We
consider every taxi v € U starts and ends at the same loca-
tion (docking position) for all trips. On receiving a request,
the taxi leaves from its docking position to the pick-up point,
executes the trip, and returns to its docking position. The plat-
former can determine fare x,.(> 0) for each group v € V
and each time ¢t € T'. Then, at each time ¢ € T, a requester in
group v € V arrives with probability p,: (i) = rpSut (Tt );
requester v appears with probability r,; and accepts the fare
Xy With probability s,:(x,:). The platformer assigns taxi
u € U to the accepting requester v and takes the reward
Wet + Tyt, Where e = (u,v) and wet (< 0) is the total cost
(e.g., gasoline cost) of allocating taxi u to the requester v at
time ¢. If taxi u is assigned to some v at time ¢, it becomes
unavailable for c.; rounds.

Other Applications. Our matching procedure is applicable
to the following applications in some situations: Optimiza-
tion of worker wages and task allocation in crowd-sensing
[Pu et al., 2017]; Optimization of parking fees and parking
lot allocation in city parking [Meir er al., 2013]; Optimiza-
tion of usage fees and allocation of virtual machines in cloud
computing [Du et al., 2019].

3.3 Optimization Problem

We consider an optimization problem to maximize the to-
tal rewards of the platformer in the matching procedure in
Section 3.1. We propose Online Matching with Controllable
Rewards and Arrival probabilities (OM-CRA):

(OM-CRA) E¢np (@) f (T, 2, &)].

max
xRV XT rell

Here, ¢ € {V U{L}}7 is a random variable, where &, = v
means that participant v arrives at time ¢, and £&; = | means
no participants arrive at time ¢. D(x) is a probability distri-
bution for & € {V U {L}}T; The probability mass function
isPr(¢ | «) = [[,er Pr(& | ), where Pr(§ = v | @) =
Pot(Tye) and Pr(&y = L | @) = 1=3 " - put(T4¢). Variable
m represents a matching strategy in (II) and (IIT) of the match-
ing procedure in Section 3.1 and II is the set of all strategies.
A matching strategy specifies, upon arrival of vertex v € V,
whether to match it, and if so, which v € U to match it
to. Function f(m,x, £) is the expected total reward obtained
from performing the matching procedure given (7, x, £).

3.4 Assumption on p,;
We assume the following throughout this paper.
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Assumption 1. The function p,; : R — (0,7y) is mono-
tonically decreasing, differentiable, and bijective. Moreover,
—pl(x)/put(x) is monotonically non-decreasing with re-
spect to .

Assumption 1 is not so restrictive; many functions used
in real applications satisfy Assumption 1. For example,
put(x) = 1yt (1 — F(x)) satisfies Assumption 1 when F(x)
is a Gauss error function or a logistic function.?

4 Proposed Method

Finding the optimal solution for OM-CRA is difficult for two
main reasons: (i) We need to simultaneously optimize the
matching strategy 7 and variable « (even finding just the op-
timal matching strategy is hard [Manshadi er al., 2012]). (ii)
It takes a large amount of time to compute the exact objective
value or its approximation with high accuracy. This is be-
cause the objective value is the expected total rewards for the
random variable & with |V + 1|!7! realizations. Our solution
is to propose a 1/2-approximation algorithm for OM-CRA.

4.1 Approximation of Objective Function

We consider the approximation of the objective function of
OM-CRA. First, we introduce the following problem for a

given @, and denote the optimal value by f(z):

max Tyt + Wey ) Ze 1
z€[0,1]BXT t;]‘ e:(u,zv)GE( t t) t (D
s.t. Z Zet < pvt(xvt), Yv € ‘/, Vvt € T,
e€d(v)
> Zew <1, YueU VteT,

e€d(u) t': 0<t—t'<c

where §(v) denotes the set of edges incident to node v.
Here, for given &, we consider the following matching
strategy mAPAP(1/2)(z) [Dickerson et al., 2018]:

1. Let z*(x) be the optimal solution of the problem (1).

2. When vertex v arrives at time ¢, choose an edge, e =
(u,v) € E,, with probability zo(z) 1

55— Or reject v
with probability 1 — Zer(®) 1

p'ut(w'ut) 2Bet
€€EE vt Pyt (Tut) 20et”’

where E,; == {(u,v) € E | resource u is available at time ¢};

Bet is the probability that edge e is available at time t. We
can estimate (3.; for each e € F and t € T with arbitrarily
small error by simulating the matching strategy up to ¢t — 1
[Dickerson et al., 2018].

Then, the following theorem holds by the results of [Dick-
erson et al., 2018; Alaei et al., 2012].

3When F(z) is a twice-differentiable distribution function and
—G'(z)/G(z) is monotonically non-decreasing for G(z) = 1 —
F(x), F is called a Monotone Hazard Rate function [Barlow et
al., 1963]. This type of function is frequently used to model the
relationship between the offered prices and the acceptance prob-
abilities in the dynamic pricing literature [Babaioff er al., 2015;
Tong et al., 2018].
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Theorem 1. For any x, the following holds:

S (@) < Bep [P0/ (@), 2, 6)]

We obtain the following problem by replacing
maxyer B p(a)[f (7, 2, §)] with f(x) for OM-CRA:

(PA) mmaxA > >

(Ivt + wet)zet

st D Zet < put(Tyr), Y eV, VteT,
e€d(v)

Zetr < la
ecd(u) t': 0<t—t'<c.y

VueU, VteT.

Here, the following lemma and theorem hold:
Lemma 2. (PA) has an optimal solution under Assumption 1.

Theorem 3. Suppose that Assumption 1 holds. Let & be an
optimal solution for (PA). Then, (&, 7*PAY(1/2)(&))isa1/2-
approximation solution for OM-CRA.

From Theorem 3, solving (PA) yields a 1/2-approximation
solution to OM-CRA.

4.2 Reduce (PA) to Convex Optimization Problem

Although (PA) is a non-convex optimization problem with
non-convex functions py: (), we can reduce (PA) to a con-
vex optimization problem under Assumption 1. First, we con-
sider the following problem, which is obtained by eliminating
x from (PA) by using ,; = p,;' (Zeeé(v) Zet):

(CP)
min 3 ( > *p;tl( > Zet) > Zet— wetzet>

2€[0,1]FXT e " yey e€d(v) e€d(v) ecE
s.t. > 2et €Sy, Yo EV, VEET,
e€d(v)
Ze <1, YueU, VteT.

e€d(u) t':0<t—t'<c u
Here, S, is the range of function p,;. Then, we show the
following proposition.

Proposition 4. Let Assumption 1 hold. Let the optimal solu-

tion of (CP) be z* and x%, = pEf(Zeeg(v) zk) forallv e V

andt € T. Then, (x*, z*) is an optimal solution for (PA).
From Proposition 4, we can obtain an optimal solution for

(PA) by solving (CP). Moreover, the following lemma holds
by the results of [Hikima ef al., 2021].

Lemma 5. Let Assumption I hold. Then, —p;;' (2)z is convex
with respect to z for allv € V andt € T. Moreover, the
objective function of (CP) is convex.

From Lemma 5, (CP) is a convex optimization problem.

4.3 PDHG Method for (CP)

We can solve problem (CP) efficiently by applying the
Primal-Dual Hybrid Gradient (PDHG) method [Chambolle
and Pock, 2011; Goldstein et al., 2015]. The PDHG method
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was developed for convex-concave saddle-point problems
and approaches the optimal solution by alternately updating
primal and dual variables. In this section, we reduce (CP) to a
convex-concave saddle-point problem and solve the problem
by the PDHG method.

Here, (CP) can be rewritten as the following problem:

(CP/)ze[glli]%th;T T}%:V fvt(sz,Ut) —w'z, st A(z) <1,

where  f:(2) = {

Symbol 1 denotes the all-one vector. Variable z,; denotes
zZot = (Zet)ees(v) € R%®) . Vector w denotes w :=
(Wet)(eyepxr € REXT. A € REXT — RUXT jg a lin-
ear map according to the second constraint of problem (CP),
thatis, A(2) = (% e50) Lroi—re,, et v

The problem (CP’) is equivalent to the following saddle-
point problem:

-1 .
—por (2)z, if z € Sy,
0, otherwise.

min max L(z,A), where )

=€[0.1]EXT xerY 7

Lz,A)=3 S fu(1Tzy) —wTz4+ AT (Az)-1). 3)
veV teT
The function £ is called the Lagrange function. Since this
problem is convex-concave from Lemma 5 and the definition
of f,+, we can solve it by the PDHG method.
In each iteration k of PDHG, the following updates are per-
formed:

1
2P = arg min £(z, AF) + Z—Hz 2%, @
Tk

ZE[O,l]EXT

AL = arg max £(2F 1 A) —
AerTxT

1 k|2
3|3 = X% 9)
Here, 74,01 > 0 are step-size parameters. Eq. (5) can be
solved explicitly as A*+1 = (AF + o7 (A(2F 1) — 1)), Al-
though (4) requires solving a (| E||T|)-dimensional optimiza-
tion problem, we can solve it quickly by utilizing the problem
structure.

The optimization problem in (4) can be decomposed into
the following |0(v)|-dimensional optimization problems for
veVandteT:

. 1 .
min_ for (17 20) + 5|20 — 25 — Ti(wer — AL (AP))|?
200 €[0,1]5() 27y,
(6)

where A,; : R9") — RUXT ig the linear map such that

Zet, ife=(u,v), 0 <t —t < cet
At (Zot)) (wir) = )
(Avt (Zot)) (u,t7) {0, otherwise

The vector w,,; denotes wy¢ == (Wet)ees(v) € RO,

Moreover, the following proposition holds for problem (6).
Proposition 6. Let a := z¥, + 71, (w,; — A, (NF)). We con-
sider the following equation with respect to s:

n

3 (o = mfuuls)) = s )

i=1
Then, the left-hand side of Eq. (7) is monotonically decreas-
ing, and (7) has a unique solution, s*. In addition, z,; =
(@ — 1 f),(s*)1) is the optimal solution for the problem (6).
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Algorithm 1 Adaptive PDHG for (CP’)

Input: 2°, \°, 79, 0¢, ag, 1, and ¢
1: 74 T9,0 < 0g, 0 < Q
2: fork=0,1,...:
3: forveV,teT:
s* < (solution to eq. (7))
Zg (25 — TAL(AF) — sz/;t(S*)l)+
AL (AF 4 o (2A(2FF) — A(2FH) — 1))
if §||zk+1 _zk”2+i|‘)‘k+1 _)\k”Q < 2()\k+1
AT AR — 2F)
8: T4 5,04 3
9 p(_%(zk_zk-H)_AT()\k_)\k-H)
100 d <+ Z(AF = AP 4 A(2R — 2R
o if2)p] < |df :

A

12: T+ T7(l—a),0+ %5, a+an
13: else if ||p|| > 2||d| :
14: T4 7m0+ 0(l —a),a+an

Because the left-hand side of (7) is monotonically decreas-
ing and the right-hand side is monotonically increasing, the
bisection method can quickly find s*. By Proposition 6, the
solution for the problem (6) can be easily calculated from s*.

We now propose Algorithm 1. Algorithm 1 incorporates
the decomposition of the problem (6) and the results of
Proposition 6 into the method of [Goldstein et al., 2015]. In
this algorithm, lines 3—6 update the primal and dual variables
by (4) and (5), and lines 7—-14 adjusts the step-size, 7 and o.

This algorithm is a specialized version of the method of
[Goldstein et al., 2015]; the updates of the primal vari-
ables are accelerated by using problem decomposition (6) and
Proposition 6.

5 Experiments

We conduct experiments to show that the following hold:
(i) our algorithm outputs solutions with higher total rewards
than the baselines in each application; (ii) our algorithm out-
puts the solution in practical time. We performed simulation
experiments using real data from crowdsourcing and ride-
sharing platforms. Experiments were run on a computer with
Xeon Platinum 8168 (4 x 2.7GHz), 1TB of memory, CentOS
7.6. The program codes were implemented in Python 3.6.3.
Codes and more details of our experiments can be found in
our repository provided in the footnote on the first page.

5.1 Baselines
We compared our method to the following six baselines.

CU-A. We set x by Capped-UCB [Babaioff et al., 2015],
which is the pricing strategy for limited supply in a single
item market. This method determines the price while estimat-
ing the average participation probability for all demanders;
here we take it to be a given function. Specifically, for all v
and ¢, let x,; := arg max,{(z + @) min(|U||T|/¢, p(x))}.
where w and ¢ are the averages of we; and c.; for all e
and ¢, respectively, and p(z) = > ,cp >, cy Pot(). Here,
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(U, |V, 1T Proposed CU-A CU-G BO-A BO-G RS-A RS-G
ETR time ETR time ETR time ETR time ETR time ETR time ETR time
(100,100,100) 5.68 628 2.66 84 472 0.00129 1.53 1401 272 1015 1.55 1057 2.86 1001
(50,100,100) 399 460 2.00 49 343 0.00140 1.18 1211 1.94 1015 1.17 1036 2.05 1001
(150,100,100) 6.01 814 270 122 5.03 0.00133 1.60 1604 292 1018 1.60 1077 3.08 1001
(100,50,100) 479 330 2.39 48 4.18 0.00111 148 1205 240 1015 146 1039 2.61 1001
(100,150,100) 5.39 927 244 123 450 0.00147 144 1617 255 1018 143 1063 2.72 1001
(100,100,50) 283 319 1.10 41 2.10 0.00111 0.75 1192 1.39 1009 0.75 1028 1.49 1001
(100,100,150) 7.49 924 358 130 6.38 0.00143 2.15 1615 3.70 1023 2.16 1075 3.90 1001

Table 1: Results of real dataset simulation for a crowdsourcing platform. The time column of each method indicates the computation time (in
seconds). The best value of ETR for each experiment is in bold. Each result is the average of 10 experiments.

date Proposed CU-A CU-G BO-A BO-G RS-A RS-G
ETR time ETR time ETR time ETR time ETR time ETR time ETR time
1/20 603 128 202 237 225 0.0113 62 2208 132 1029 60 1175 138 1001
1/24 875 126 435 232 482 0.0117 164 2212 235 1032 162 1134 243 1001
2/24 932 135 560 230 624 0.0114 173 2194 255 1034 172 1156 264 1001
2/27 1107 136 729 235 802 0.0114 252 2217 335 1039 250 1168 344 1002
3/16 1081 129 637 231 702 0.0116 248 2228 339 1023 245 1167 348 1001
3/19 1104 127 724 241 798 0.0118 245 2237 333 1027 241 1170 344 1001

Table 2: Results of real dataset simulation for a ride-sharing platform. The fime column of each method indicates the computation time (in
seconds). The best value of ETR for each experiment is in bold. Each result is the average of 10 experiments.

|U||T"|/¢é approximates the number of times the resources can
be used over the entire period, based on the average length
of periods that resources are unavailable. If c.; = |T| for
all (e,t) € E x T, i.e., the resource is not reusable, then
|U||T'|/¢ = |U|. Function p(x) represents the average to-
tal number of arriving requesters for x. Then, we adopt the
1-approximation strategy [Dickerson et al., 2018].

CU-G. CU-G adopts a greedy strategy instead of the %-
approximation strategy for CU-A. The greedy strategy takes
the edge é(v,t) = argmaxe{wet + Tyt | € = (u,v) €
E, u is available} when the node v arrives at time ¢.

BO-A. We apply Bayesian optimization [Brochu et al.,
2010] to search & while adopting the %—approximation strat-
egy [Dickerson et al., 2018] as the matching strategy. BO-A
first evaluates five random points of . Then, after running
the Bayesian optimization for 1000 seconds, it outputs the
solution with the highest objective value among the evaluated
points. The set to search for z is [0, 1]V *7 in crowd-sourcing

platform experiments and [0, 50] %7 in ride-sharing platform
experiments.

BO-G. BO-G adopts a greedy strategy instead of the %-
approximation strategy of BO-A.

RS-A. We apply the random search to variable x while
adopting the %-approximation strategy [Dickerson et al.,
2018] as the matching strategy. In each iteration, search
points are generated from the set [0, 1]V %7 in crowd-sourcing
platform experiments and [0, 50]" %7 in ride-sharing platform
experiments. RS-A outputs the solution with the highest ob-
jective value among the points evaluated in 1000 seconds.

RS-G. RS-G adopts the greedy strategy instead of the %—
approximation strategy of RS-A.

5.2 Metric

We use Expected Total Rewards (ETR), which is the average
of obtained total rewards in 103 simulations, as the metric.

5.3 Experiments of Crowd Sourcing Platform

We conduct experiments for a crowdsourcing platform whose
problem setting is described in Section 3.2.

Data Set and Parameter Setup. We used an open crowd-
sourcing dataset [Buckley e al., 2010]. The dataset contains
records of workers’ judgments on the task of checking the rel-
evance of a given topic and a web page. We set the inputs U,
V, E, we, and p, from the data for each experiment, based
on [Hikima et al., 2021; Ho and Vaughan, 2012].

Experimental Results. Table 1 shows the results of the
simulation experiments with different parameter values. The
proposed method outperforms all baselines in terms of ETR.
This is because the baselines are not able to find proper x;
(i) CU-A and CU-G propose an average price for allv € V,
which is inappropriate for many v € V; they offer the same
price to workers with different skill levels. (ii) BO-A, BO-G,
RS-A, and RS-G cannot fully explore & since (a) it takes a
large amount of time to evaluate the objective value and (b)
the dimension of x is large. Moreover, the computation time
of the proposed method is short enough for practical use.

5.4 Experiments of Ride-sharing Platform

We conduct experiments on a ride-sharing platform whose
setting is described in Section 3.2.

Data Set and Parameter Setup. We used ride data of yel-
low taxis in Manhattan in New York*. We perform sim-

*https://www1.nyc.gov/site/tlc/about/tlc- trip-record-data.page
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ulations using data from 10:00 to 20:00 on weekends and
weekdays for randomly chosen weeks from January to March
2019. We set the inputs U, V, E, we, and p,; from the
data for each experiment, based on [Dickerson et al., 2018;
Hikima et al., 2021].

Experimental Results. Table 2 shows the results of the
simulation experiments with different dates. Regardless of
the date, the proposed method outperforms all baselines in
terms of ETR. Moreover, compared to the results of crowd-
sourcing experiments, the differences between the proposed
method and the baselines are larger. This occurs for the fol-
lowing reasons; (i) CU-A and CU-G output further inappro-
priate  when the resource is reusable. Capped-UCB, which
is used in CU-G and CU-A, is a method to determine x based
on the number of times the resources can be used, Nr. When
the resources are not reusable, N is equal to the total num-
ber of resources. However, when the resources are reusable,
Np depends on the input and the matching strategy, so we
cannot calculate Ny exactly and must approximate it. The
inaccuracy of the approximation deteriorates the quality of
the output of Capped-UCB. (ii) BO-A, BO-G, RS-A, and
RS-G become more inefficient because |V| is larger than that
of crowdsourcing, and then the dimension of & becomes rel-
atively large. In contrast, the proposed method can stably
determine appropriate prices even in the large-scale problem
with reusable resources. In addition, the proposed method
outputs solutions in practical time.

6 Conclusion

We formulated a novel optimization problem, OM-CRA,
to simultaneously determine the matching strategy and the
trade-off between rewards and arrival probabilities. It is use-
ful in obtaining high profits in various applications. We
proposed a fast 1/2-approximation algorithm for OM-CRA.
Simulation experiments on real data from two applications,
crowdsourcing and ride-sharing platforms, confirmed the ef-
fectiveness of the proposed algorithm.

7 Proof

7.1 Proof of Theorem 1

First, based on [Alaei et al., 2012, Lemma 3.1], we show
that max e Eg p(a)[f (7, 2,§)] < f(x). For each &, we
consider the following problem:

P max Tyt + Wet)Ze
(P(£)) I t% e:(g;)eE( t t)Zet
s.t. Z Zet < fvt, Yv € V, vVt € T,
ecd(v)
> > Zew < 1L,VueU VteT,

e€d(u) t/:0<t—t'<cyr

where &,; is a constant that is 1 if &, = v and 0 otherwise. In
other words, &, = 1 if v appears at time ¢ and O otherwise.
Here, let z*(&) be the optimal solution for (P(£)). Since the
optimal value of P(€) is the maximum profit from performing
the matching procedure for &,

max f(m x,8) < 3. 3

teT e=(u,v)EE

(mvt + Wet) 24y (5)
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Therefore, the following holds:
max Be p(a) [f (7, 2, )] < Egrp(w) [max f(m, @, £)]

[Z Yo (Tur +wer) 25 (8)]

teT e=(u,v)EE
= Z Z (Tpr + wet)EEND(m)[z:t(ﬁ)]' 8)
teT e=(u,v)EE
From the first constraints of (P(&)), > .cs(,) 2et(8) < &ut
forall v € V, ¢t € T. Since it holds for all £, the following
holds forallv € V andt € T"
> Eeop@)2e(8)] =Eenn@| > 28(8)]
e€d(v) e€d(v)
< EEND [gvt} Dot (xvt)~ (9)
From the second constraints of (P(£)), we have
Dees(u) 2ot 0<i—ti<c,, e (§) < 1forallu € U, t € T.

Since it holds for all &, the following holds for all w € U and
teT:

< EE~D

Eenp(a) 2o (€)]

e€d(u) t/: 0<t—t'<c

=E¢p@ | 2 2y (€)] < 1. (10)

e€d(u) t/: 0<t—t'<c,y

Since z2%,(€) € {0,1} foralle € E, ¢ € T, and &, the
following holds foralle € F,t € T, and &:

E¢nn(a)[ze: ()] € [0, 1]. (1D
Then, from (9), (10) and (11), E¢opa)[2*(§)]
is a feasible solution for problem (1). Therefore,

EteTz (u,v) eE(xvt + wet)E£~D(m)[ 25 ()] < f(sc)
Then, from (8), maxyen Egwpa)[f (7, 2, €)] < f(2x).

We show 1f(x) < Egup(e[f(mAPAPA/D (), @, €)],
based on [Dickerson et al., 2018, Section 3]. About LP(1)
of [Dickerson er al., 20181, let py: = pype(Tyt), we =
Tyt + Wet, and let Pr[C, > ¢t — '] be 1 if cepr > t — ¢
and O otherwise. Then, LP(1) of [Dickerson et al., 2018]
corresponds to problem (1) in our paper. Therefore, from

[Dickerson et al., 2018, Lemma 2, Section 3], % f (x) <
E¢p(a) [f (TAPAP1/2) (), 2, €)]. Here, although w, does
not have ¢ subscript in LP(1) of [Dickerson et al., 2018],
Lemma 2 of [Dickerson et al., 2018] holds. O

7.2 Proof of Lemma 2

The proof can be found in the supplementary material in our
repository provided in the footnote on the first page.

7.3 Proof of Theorem 3
From Theorem 1, B¢ p(a)[f(mAPAP(2)),2,£)] > 1 /().
),

Since problem (PA) is equivalent to MaXgeRv T f (z
RVXT

for
any x € 1f( ) > 2f( x). Here, for any
(w,7) € RY*T x II, Theorem 1 shows if(x) >
%Inaxrr’eﬂ EgND(w)[f(Trlamag)] > %ngD(w) [f(’/T,.’I},g)]
Then, we have Egope)[f(mAPAP/2)(2)),2,€)] >
B¢ p(a) f (7, @, €)] for (z,7) € RV*T x II. This means

(&, TAPAP(1/2)(g)) is 1-approximation solution for OM-

CRA. O
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7.4 Proof of Proposition 4

Let (&, 2) be an optimal solution for (PA). First, we
show > csy2et # 0 forall v € Voand t € T.

We assume there are ¥ € V and ¢ € T satisfying
> ecs(v) Zei = 0 to obtain a contradiction. We pick an
arbitrary vertex ¢ € §(v). Then, there exists x,; satisfying
TM + Wy > Z(e:(u,u),t)eExT\(e,i){fvt + wet }.  Here,
we let € = p,;(zp) and show that replacing Z,; with
Ty, 25 (= 0) with €, and 2., with max{0, 2., — €} for
all (e,t) € E x T\ (&) increases the objective value
of (PA) from (&,2) without impairing feasibility. The
objective value of (PA) increases because (zps + w;;)e —

(e=(,0) ) EEXT\(8,1):d w10 >0 (Lot + Wee) min{Zey, e} >
(zm + wy — Z(e:(u,u),t)eExT\(é,i):@ut+wetzo(jfvt +
wet))e > 0. Here, for all e = (u,v) € Eandt € T, if
jvt + Wet < 0, then éet = O, if éet > 0 and (ivt + wet) < 0,
we can increase the objective value of (PA) without impair-
ing feasibility by setting Z.; := 0 and this contradicts the
assumption that (&, 2) is the optimal solution of (PA). The
first constraint of (PA) is satisfied because € < p,;(zar) and
Zeea(v) max{0, 2, — €} < Eeeé(v) Zet < Pyt(Zyt) for all
(v,t) € {V xT}\{(v,1)}. Here, let & € U be the node inci-
denttoéand J(&,1) := {t' € T | 0 < t'—1 < c;;}. Then, the
second constraint holds for all (u, t) € {UxT}\{u}xJ(¢,1)
since the left-hand side of the inequality only decreases. For
all (u,t) € {&} x J(&,1), the second constraint holds because

(e,t)e{(e,t)EEXT|e€d(u),0<t—t' <c . }\(&,1) max{0, Zerr  —
€} +e€ < 1. Therefore, replacing &,; with zar, 2,; (= 0) with
¢, and Z.; with max{0, 5.; — €} for all (e,t) € E x T\ (&,1)
increases the objective value of (PA) from (&, 2) without
impairing feasibility. This contradicts the optimality of
(@, 2) for (PA). Then, 3 5, Zet # Oforallv e V,t € T.

Then, we show that there exists an optimal solution (&, %)
for (PA) that satisfies p,;(Zy) = Zeea(v) Zey for all v €
V, t € T. Let (&, 2) be an optimal solution for (PA).
Then, from constraints of (PA), > . 5(v) Zet < Dot (Zye) for
allv € V, t € T. Suppose that there exists (v, t) satisfying
Deesw) Zet < Put(Eor) andlet Q= {(v, 1) | X c50,) Zet <
Dot (Tye)}. Since Zeeg(v) Zet > 0and limy o0 pye(z) = 0
from Assumption 1, there exists a positive scalar d,,; that sat-
isfies Zeea(v) Zet = Dot(Tpr + dyt) for all (v,t) € Q. Let
Tyt be Tyt + dyy for all (v,t) € Q, and Z,¢ be &,y for all
(v,t) ¢ Q,and Zbe 2. Then, (&, Z) is an optimal solution for
(PA) because it is a feasible solution and the objective value is
greater than or equal to the optimal value from 2 > 0. There-
fore, in (PA), there exists an optimal solution (&, Z) satisfying
Zeeé(v) Zet = Pot(Zyt) forallv € V and t € T. There-
fore, (PA) with the constraint “z,; = p,;,' (> ee 5(0) Zet) for
all v € V,t € T, that is, (CP) is equivalent to (PA). Then,
(x*, z*) is an optimal solution for (PA). O

7.5 Proof of Lemma 5

Since —pl,(x)/py+(x) is monotonically non-decreasing
from Assumption 1, —p,:(z)/pl,(x) is monotonically non-
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increasing. Then, —z — p,:(z)/p.,(x) is monotonically de-
creasing because —x is monotonically decreasing.

For all (v,t) € V x T and given z € S, there exists only
one z that satisfies p,:(z) = z from Assumption 1. Then, the
following equality holds:

/

(~pai (2)2) = =0 (2) = (0o (2)) =

= *pvt(l')/p;;t(x) (12)
Here, we consider z! € S, and 22 € S, satisfy-
ing 2! < 22 Let x! satisfy py(z') = 2z' and 2?
satisfy py(22) = 22. Then, ' > a2 since p, is

monotonically decreasing from Assumption 1. Since (12)
holds and —x — pyt(x)/pl,(x) is monotonically decreas-
ing, (= (21)2") = —a' — pur(a!)/pl (") < —a® —
Put(x?) /P (2®) = (=py (2%)2%)'. Since (—py'(2)2)' is
monotonically increasing, (—p,,'(z)z) is convex. More-
over, the objective function of (CP) is convex since
Pt (Xees(w) Zet) Doees(w) Zet 1 convex with respect to 2
forallv € V andt € T from [Boyd and Vandenberghe, 2004,
Section 3.2.2]. O

7.6 Proof of Proposition 6

From Lemma 5, f/, is monotonically increasing and the
left-hand side of equation (7), 3=,cs,)(ai — T fie(s)), is
monotonically decreasing. In addition, lims o f/,(s) =
limg, oo — — pyt(x) /Pl (x) = —o0 and limg_,,., f1.(s) =
11m’1‘—>—00 —T — pvt(x)/p;n‘,(x) = 00 since pvt(x)/p;t(x)
is monotonically non-decreasing from Assumption 1.
Therefore, im0 ;c500) (@i — Tfiy(s)) = oo and
Umysr,, D ies(0) (@i — Thfie(s)) = —oo. Hence, equation
(7) has a unique solution s* € (0, 7).

Next we show z,; = a—7 f/,(s*)1 is the optimal solution
for the problem (6). Let y := z,;. Problem (6) is equivalent
to the following optimization problem:

) 1
min f(s) + s—ly — al? (13)
Yy 27—1@
s.t. lTy =s.

Then, we can define its Lagrangian function as follows:
L(Svya )‘7") = fvt(s) + ﬁ”y - a’”2 +A- (1Ty - S)

The KKT conditions are f7,(s) — A = 0, =% + X\ = 0 for
alli € §(v), and 1Ty — s = 0. Here, let \* := f/,(s*) and
yr = a;—7fl,(s%). Then, (s*, \*, y*) satisfy the KKT con-
ditions. Since problem (13) satisfies the Slater’s constraint
qualification, y* is an optimal solution for problem (13) from
[Boyd and Vandenberghe, 2004, Section 5.2.3]. Then, z,;
satisfying z,+ = y* = a — 71 f,,(s*)1 is an optimal solution
for problem (6).
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