Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Filtration-Enhanced Graph Transformation

Zijian Chen', Rong-Hua Li', Hongchao Qin', Huanzhong Duan?, Yanxiong Lu?, Qianggiang
Dai’ and Guoren Wang'

!Beijing Institute of Technology
>Tencent
blockchanzj @ gmail.com, lironghuabit@ 126.com, ghc.neu @ gmail.com,
{boosterduan,alanlu } @tencent.com, qiangd66 @ gmail.com, wanggrbit@ 126.com

Abstract

Graph kernels and graph neural networks (GNN5s)
are widely used for the classification of graph data.
However, many existing graph kernels and GNNs
have limited expressive power, because they can-
not distinguish graphs if the classic 1-dimensional
Weisfeiler-Leman (1-WL) algorithm does not dis-
tinguish them. To break the 1-WL expressiveness
barrier, we propose a novel method called filtration-
enhanced graph transformation, which is based on
a concept from the area of topological data anal-
ysis. In a nutshell, our approach first transforms
each original graph into a filtration-enhanced graph
based on a certain pre-defined filtration operation,
and then uses the transformed graphs as the inputs
for graph kernels or GNNs. The striking feature of
our approach is that it is a plug-in method and can
be applied in any graph kernel and GNN to enhance
their expressive power. We theoretically and ex-
perimentally demonstrate that our solutions exhibit
significantly better performance than the state-of-
the art solutions for graph classification tasks.

1 Introduction

Graphs are well-studied structures which are utilized to
model entities and their relationships. Graph classification is
an important task in many application domains such as chem-
istry [Shervashidze er al., 2011], biology [Kriege and Mutzel,
2012], social networks [O’Bray et al., 2021] and natural lan-
guage processing [Nikolentzos et al., 2017al. For example, in
Chemistry, we are often interested in predicting the toxicity
of chemical compounds using graph classification methods.
Graph kernels and graph neural networks (GNNs) are two
main approaches for graph classification. Graph kernel meth-
ods have achieved state-of-the-art (SOTA) results in many
datasets [Kriege er al., 2020]. Most previous graph ker-
nels are based on the classic R-convolution framework which
decompose graphs into substructures and add up the pair-
wise similarities between these substructures with different
criterions, such as subtrees [Shervashidze er al., 2011], cy-
cles [Horvéth er al., 2004], shortest paths [Borgwardt and
Kriegel, 2005] and small subgraphs [Shervashidze et al.,
2009]. Current studies on graph kernels focus mainly on
Weisfeiler-Leman (WL) based methods [Morris et al., 2017,

1987

Kriege et al., 2016; Morris et al., 2020], continuous at-
tributes [Kriege and Mutzel, 2012], multi-scale methods
[Kondor and Pan, 2016] and others [Zhang et al., 2018;
Du et al., 2019].

Another line of SOTA methods for graph classification
are GNN based methods. Many existing GNNs first em-
ploy a message-passing aggregation scheme to learn low-
dimensional vectors for nodes in a graph [Hamilton et al.,
2017; Xu et al., 2019]. Then, a graph-level representation is
obtained by performing a pooling operation [Lee et al., 2019]
which will be used to classify graphs. The main limitation
of the 1-dimensional Weisfeiler-Leman (1-WL) graph kernels
and the message-passing based GNNs is that they cannot dis-
tinguish graphs if the 1-WL test does not distinguish them
[Xu et al., 2019]. To break the 1-WL expressiveness barrier,
recent works pay more attention on graph kernels or GNN be-
yond 1-WL test, such as high-dimensional WL kernels [Mor-
ris et al., 2017], high-order GNN [Morris et al., 2020], count-
ing pre-defined substructures as additional features [Bouritsas
et al., 20201, calculating structural coefficients for message
passing [Wijesinghe and Wang, 2022] and augmenting node
identifiers [You et al., 2021] and random features [Sato et al.,
2021; Abboud et al., 2021] into GNNs.

In this work, we propose a novel approach to circum-
vent the expressive power limit in 1-WL graph kernels and
message-passing based GNNs. Our work is inspired by a re-
cent work which uses filtration curves to represent a graph
[O’Bray et al., 2021], where filtration is a well-known con-
cept in topological data analysis. As shown in [O’Bray et
al., 2021], the filtration curve can capture the topological
features of the graph structure. However, it may still miss
some local graph structure features, since it drops the orig-
inal graph structure and only uses the filtration-curve rep-
resentation for graph classification. Unlike [O’Bray et al.,
2021], we propose a filtration-enhanced graph (FEG) trans-
formation method which transforms each original graph into
a more expressive graph based on a pre-defined filtration. The
filtration-enhanced graphs are then fed into graph kernels or
GNNs. We prove that existing graph kernels or GNNs using
our filtration-enhanced graphs have strictly better expressive
power than the same graph kernels or GNNs using the origi-
nal graphs. Moreover, the proposed FEG transformation can
be computed in linear time using linear space with respect to
the original graph size, thus it can handle large graphs. An-
other nice feature of our approach is that it is a plug-in method

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

and can be used for any graph kernel and GNN to enhance
their expressive power. To summarize, the main contributions
of this paper are as follows.

* We propose a simple yet powerful framework to trans-
form original graphs to filtration-enhanced graphs.

* We theoretically prove that filtration-enhanced graphs
are more expressive than original graphs in WL test us-
ing relatively low time and space complexity.

* We conduct extensive experiments using several bench-
mark graph datasets. The results show that (1) our
filtration-enhanced graphs are more expressive than the
original graphs in graph classification tasks, (2) and the
FEG based graph kernels or GNNs consistently outper-
form the state-of-the-art solutions.

2 Preliminaries

Let G = (V,E) be an undirected graph, where V' and E
denotes the set of vertices and edges respectively. We refer to
G as an attributed graph if its vertices or its edges have native
attributes, otherwise G is called a non-attributed graph. Let
N (u) be the set of neighbors of vertex v in G, and d,, =
|N(u)| be the degree of u. An edge weight function of a
graph, defined by w : E — R, assigns a real-value weight
to each edge e € E, which is often used to represent the
similarity between the two end vertices of the edge. Below,
we give some weighted functions used in our work.

Edge weight functions. All weight functions are only used
for filtration in this paper. For attributed graphs, we consider
the following edge weight functions. For the attributed graphs
that have native edge weights, the output of the edge weight
function is equal to the native edge weight for each edge. For
the attributed graphs whose vertices have native attributes, the
output of the edge weight function is the Lo-distance between
the attribute vectors of two end vertices of the edge.

For the non-attributed graphs, we consider three different
edge weight functions. (1) Common neighbors: the edge
weight is the number of common neighbors of two end ver-
tices of an edge. Note that computing the number of com-
mon neighbors for each edge can be done in O(am) time
by using a triangle enumeration algorithm, where « denotes
the arboricity of the graph which is often a small constant in
real-world sparse graphs [Chiba and Nishizeki, 1985]. (2)
Core numbers: the edge weight is the sum of the k-core
numbers of two end vertices of an edge. Here a k-core of
a graph G is a maximal subgraph of G in which all vertices
have degree at least k [Seidman, 1983]. The core number
of a vertex is the largest value k of a k-core containing that
vertex. The core numbers for all vertices can be computed
by a classic linear-time core decomposition algorithm [Mat-
ula and Beck, 1983]. (3) Ricci curvature: the edge weight
based on Ricci curvature is defined as follows. For each ver-
tex v € G, we can define a probability measure mg as (i)
me = aifu =, ({) m® = (1 - a)/d, if v € N(u),
and (iii) m$ = 0 otherwise. The Ricci curvature of an
edge between u and v, denoted by x(u,v), is based on the
Wasserstein distance W (-, -) between their respective proba-

bility measures, i.e., k(u,v) = 1 — W [Lin et al.,

2011]. Note that Ricci curvature is a graph isomorphism

1988

]
Layer-2
"::: L L] L L]
]
.] L] L] pe °
[} ° L L] Laver-1 [L]
yer-
° o L] L]
(a) Original graphs (b)Full FEG ® ®

Figure 1: G and H are indistinguishable by 1-WL test, but can be
distinguished after filtration-enhanced graph (FEG) transformation
with a common neighbor based edge weight function.

invariant by accessing the similarity of neighbors between
two nodes [Lin et al., 2011], which is widely used in many
graph learning tasks [Zhao and Wang, 2019; O’Bray et al.,
2021]. Following previous studies [Zhao and Wang, 2019;
O’Bray et al., 2021], we set « = 0.5 in this paper.

Filtration. Filtration is a key concept in computational topol-
ogy [Edelsbrunner et al., 2002]. For a graph G = (V, E)
and an edge weigh function w, a filtration is a sequence of
monotonically-growing subgraphs) C G; C G2 --- C G; C
G in which each subgraph G; can be deemed as a filtered
graph of G based on the edge weights. Without loss of gen-
erality, we assume that the weights take values from an in-
terval [Wmin, Wmax). Then, we can pick [different weight
values Wpin < w1 < wy < - < w; < Wmax to derive a
filtration. Specifically, the subgraph G; in the filtration is the
subgraph induced by all edges with weights no larger than
w;. Formally, we have G; = (V;, E;) where E; = {(u,v) €
Elw(u,v) < w;} and V; = {v € V|(u,v) € E;}. Note that
once the weights for all edges are determined, the filtration is
easy to derive by a sorting algorithm [O’Bray et al., 2021].

1-dimensional Weisfeiler-Leman test. The 1-dimensional
Weisfeiler-Leman test (1-WL test) is a classic and efficient
algorithm to check whether two given graph is isomorphism
[Weisfeiler and Leman, 1968]. The 1-WL test is a color re-
finement algorithm which iteratively revises the vertex colors
until a fixed point is reached. Specifically, the 1-WL test iter-
atively (1) aggregates the colors of nodes and their neighbors,
and (2) hashes the color multi-set into unique new colors. The
algorithm terminates when there is no vertex’s color needed
to update. The algorithm decides that two graphs are non-
isomorphic if at a certain iteration the colors of vertices be-
tween two graphs differ. It is well-known that the 1-WL test
cannot distinguish regular graphs (every vertex in the graph
has the same degree). For example, we can easily verify
that the graphs G and H shown in Fig. 1(a) cannot be dis-
tinguished by the 1-WL test.

3 The Proposed Method

As discussed in Section 1, many existing 1-WL graph kernels
and GNNs suffer from the 1-WL expressiveness limit. To en-
hance the expressive power of those methods, we propose a
simple but very effective approach, called filtration-enhanced
graph (FEG) transformation, which first transforms each in-
put graph into a more expressive graph based on the concept
of filtration and then feeds those more expressive graphs into
graph kernels or GNNs for downstream graph classification
applications. Below, we describes the details of our solution,

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

i o : 4 <\ N\ (We"3o<\or"“o<:\?

O 3 9 o 9

A 4 d Layer-2 o o
o ¢ & o
& O ‘o : 0
Original Graphs Layer-1 Py °
= Filtration | o |Rebuild ¢ ° ¢ ~/
Set p.
@Weights [I::> N HI:\I> FEG FES
& o

/ Partial N
Layer-3
2 9 9
! Layer2 | & o
1)

-~ °
5 °
Layer-1 o o
é

e

(€ O
Weighted Graphs

(o
\&

Figure 2: Illustration of the filtration-enhanced graph transformation

followed by the analysis of the expressiveness and computa-
tional complexity of our method.

3.1 Filtration-enhanced Graph Transformation

The filtration-enhanced graph (FEG) transformation aims to
transform a graph into an FEG based on a pre-defined filtra-
tion. Specifically, an FEG contains [layers; each layer is a
subgraph in the filtration of the original graph and there are
some cross edges that connect the same vertex across two dif-
ferent layers.

There are two steps to create an FEG with [layers. First,
we assign a weight for each edge in the graph based on an
edge weight function, and then compute an [-layer filtration
using [different weight values wy = wpi, < w1 < we <

- < wi—1 < Wmax = w;. Here we just partition the in-
terval [Wmin, Wmax] into [sub-intervals with the same length
(|lw; — w;—1| equals the same value for all 7). Clearly, after
this step, we can obtain [subgraphs by filtering the edges with
weights w; fori =1,2,---1,ie.,,G1 C G, C--- C G, =G.
Second, we add a cross edge between two vertices cross two
closest layers if these two vertices are the same vertex in
the original graph, i.e., adding an edge (v(G;),v(G;)) if v
appears in both G; and G; and j — ¢ is minimum for all
i < j < l. For convenience, we refer to such an FEG as
a full FEG. Clearly, the number of edges of the full FEG is at
most O(!) times of that of the original graph. To reduce the
graph size, we can only consider the new edges for each layer
and drop the edges that are already contained in the previ-
ous layers. In other words, we only maintain the incremental
subgraphs in each layer and the resulting FEG is composed
of G1,Go \G1,--- , Gy \ {U'Z1G;). Similar to the full FEG,
we also add the cross edges between two same vertices cross
two closest layers. To distinguish the full FEG, we refer to
such an FEG as a partial FEG. Fig. 2 illustrates the detailed
procedure of the FEG transformation. The dashed lines in
Fig. 2 represent the cross edges of vertices in different layers.

Since our FEGs are generated by a filtration, they can cap-
ture the topological features of the original graph with an
edge weight function. The intuition behind our method is that
different edge weights can be seen as a changing sequence
according to the filtration. With these weights, the original
graph is divided into different layers which reflect how the
original graph is generated. The cross edges in our FEGs fur-
ther represent the properties of vertices that are updated. As
a result, FEGs express the change of the original graph with
the structure of itself. The difference between full FEG and

1989

partial FEG is whether we take the out-dated edges into ac-
count. For example, in Fig. 2, the green edges are out-dated
in the second layer of the partial FEG, but we still add them in
the second layer of the full FEG. Intuitively, since the original
graph is augmented by our FEG transformation with some ad-
ditional topological features, its expressive power should be
better than the original graph. Indeed, as shown in Fig. 1, the
two original graphs G and H are indistinguishable by the 1-
WL test, but they can be distinguished after FEG transforma-
tion. In Section 3.2, we will formally analyze the expressive
power of our approach.

Filtration-enhanced snapshots. We also introduce a variant
of FEG, called filtration-enhanced snapshots (FES), by drop-
ping the cross edges in an FEG. Specifically, an FES is a set of
subgraphs G; C G5 C --- C G; = G generated by a filtra-
tion. Similar to FEGs, we have full FES and partial FES, and
the difference between them is whether we consider the out-
dated edges or not. Fig. 2 illustrates the concepts of full FES
and partial FES. Note that both full FEG and partial FEG are
a single graph which can be directly fed into any graph kernel
or GNN for downstream graph classification tasks. However,
both full FES and partial FES are a set of graphs, thus they
cannot be directly used for graph kernels. To make them also
feasible for graph kernels, we can compare the graphs in each
layer and then take the sum over all layers.

Specifically, let f be a graph kernel function, FES =
{Gi]1 < i <1} and FES" = {G}]1 < i < I} are
two FESes, then the graph kernel of FES is defined by
fs(FES,FES') = 22:1 f5(G;, G%). Here fs is defined as

5 Gi=G =0
f(Gi,GY) Gi#0 & Gi#0 (1)

0 otherwise,

where f is basic graph kernel function and § is a constant
which is equal to the minimum f(G;, G}) for any G; # () and
G # (. Note that the reason we use 4 1s that it can measure
the similarity of two empty subgraphs in the filtration. The
following theorem shows that the kernel matrix obtained by
fs is still semi-positive definite if the kernel matrix derived by
the original kernel function f is semi-positive definite. Due
to the space limit, all proofs in this paper can be found in the
supplementary document.

Theorem 1. If f is a kernel function on graphs, then fs is
also valid kernel function.

3.2 Expressiveness

Here we analyze the expressiveness of FEG and FES in WL
test. Let G = (V,E) be the original graph, FEG =
(UL, Vi, E1U- - -UEUE) 2U- - -UE;_1 ;) be the full FEG of
G with [layers of the original graph, FES = U._,(V;, E;)
be the full FES of G with [layers of the original graph, where
V; and E; are vertices and edges of the i-th layer subgraph
respectively, E; ;1 is the cross edges of two adjacent lay-
ers. V;(FEG) is the vertex set of the i-th layer. We as-
sign each vertex a layer-wise color, expressed as a 2-tuple
(layer, colory. Let C"(u) be the color of v at the i-th iter-
ation of WL test and C*(S) = {C%(x) | Vx € S}. Then,
by the classic WL algorithm [Weisfeiler and Leman, 1968],

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

we have CFL(u) = ¢(C%(u), C*(N(u))), where ¢ is a hash
function and N (u) is the set of neighbors of .

Lemma 1. Let G and G’ be two graphs or two filtration-
enhanced graphs. The following statements are true: (a)
Vu € Gou' € G, if Ci(u) # CU(), then C*F(u) #
CL(u'). (b) Yu,v € G, if C*(u) # C*(v), then CHL(u) #
C(v).

Lemma 2 (Different layers of FEG are independent in
WL test). Let FEG and FEG' be any two full filtration-
enhanced graphs with 1 > 2 layers. If {C"(u) | Yu €
VI(FEG)} # {Ci(v) | Vu' € Vi(FEG")}, then {C*(u) |
Vu € V(FEG)} #{C'u') | Vv’ € V(FEG")}.

Based on Lemma 2, it is sufficient to analyze the colors of
Vi(FEG) in the WL test.

Lemma 3. For Vu; € V(FEG),u, € Vi(FEG'), the ac-
cording vertices in original graph are v € G,u' € G’ re-
spectively. If C*(u) # C*(v), then C*(u;) # C*(u;)

Theorem 2. If G and G’ differ at the i-th iteration of WL test
for the first time, FEG and FEG' differ at the i-th iteration
of WL test at least.

Theorem 3. If G and G’ differ with the WL test, FES and
FES’ also differ with the WL test.

By Theorem 2 and Theorem 3, the expressive power of the
full FEG or FES is at least as strong as the original graphs, no
matter what filtration is defined on it. Since there exist graphs
that cannot be distinguished by WL test but their correspond-
ing full FEGs or FESes can be distinguished with an appro-
priate filtration method (as shown in Fig. 1), our FEG or FES
based solutions can achieve strictly more expressive power
compared to the approaches based on the original graphs.

3.3 Complexity Analysis

Recall that the filtration-enhanced graph divides edges of the
original graph into [layers, and adds new edges called cross
edges between layers if needed. In the worst case, there are
n vertices and m edges in each layer of the full FEG and the
number of cross edges is at most n between two adjacent lay-
ers. For partial FEG, the number of vertices size is at most
2m and the number of cross edges is bounded by 2m in the
worst case (one edge per layer). There is no cross edge be-
tween different layers in FES, so the vertex size and edge size
are at most 2m and m respectively. Clearly, the vertex size
and edge size are [x n and [x m in the worst case for the
full FES. In conclusion, the space complexity of full-FEG,
partial-FEG, full-FES and partial-FES are O(l x m), O(m),
O(l x m) and O(m) respectively. And the time complexity is
same as the space complexity when ignoring the time taken
for computing the filtration. Since we do not need too much
layers in practice (e.g., no larger than 5 layers in most cases),
the space and time complexity is linear w.r.t. the graph size.

3.4 Base Graph Kernels and GNNs

We apply the proposed FEG and FES to following three base
graph kernels and three GNNs. Note that our methods are
also able to use to other graph kernels and GNNs.

Base graph kernels. (1) Weisfeiler-Leman subtree kernel
(WL) for a number of iterations counts pairs of matching

1990

subtree patterns in two graphs, while at each iteration up-
dates colors of two graphs [Shervashidze et al., 2011]. (2)
Shortest path kernel (SP) counts pairs of shortest paths in two
graphs that have the same source and sink labels and identi-
cal length [Borgwardt and Kriegel, 2005]. (3) Graphlet kernel
(GL) counts identical pairs of graphlets with no larger than 5
vertices [Shervashidze et al., 2009].

Base GNNs. GraphSAGE (SAGE) [Hamilton et al., 20171,
Graph Isomorphism Network(GIN) [Xu er al., 2019] and
GraphSNN (SNN) [Wijesinghe and Wang, 2022] are three
graph neural networks proposed recently, which differ in
message passing mechanism. (1) SAGE first aggregates mes-
sage of neighbors evenly, and then concatenates message of
neighbors and itself to derive the new message at next layer.
(2) GIN adds learned parameter € to the message of itself, and
uses MLP to derive message at next layer, which was proved
as powerful as 1-WL test in distinguishing graphs. (3) SNN
calculates structural coefficient of edges to adjust message of
itself and neighbors, which was also proved more powerful
than 1-WL test in distinguishing graphs.

4 Experiments

In this section, we aims to evaluate the potential benefits
of our filtration-enhanced graph transformation methods for
graph classification tasks using graph kernels or GNNs. In
particular, we address the following questions:
Q1: Does FEG or FES shows better results than the original
graphs with the same base graph kernel or GNN?
Q2: Does FEG or FES with graph kernels and GNN’s outper-
form the state-of-the-art (SOTA) methods in terms of graph
classification accuracy?
Q3: How the number of layers in FEG or FES affects the per-
formance on different methods?
Q4: How filtration used in FEG or FES affects the perfor-
mance on different methods?

Our source code are available at https://github.com/
BlockChanZJ/Filtration- Enhanced- Graph- Transformation.

Datasets. We use 7 benchmark attributed graph datasets
including 3 datasets with native edge weights (BZR_MD,
COX2_MD, ER_MD) and 4 datasets with continuous ver-
tex attributes (BZR, DHFR, ENZYMES, PROTEINS). All
these 7 benchmark datasets are widely used in graph clas-
sification studies [Kriege and Mutzel, 2012; O’Bray er al.,
2021]. Note that for all attributed graphs, we use the native
attributes to derive a filtration. In addition, to answer Q3,
we also use 7 benchmark non-attributed graph datasets de-
rived from chemoinformatic (MUTAG, NCI1, D&D) [Kriege
and Mutzel, 2012; Shervashidze et al., 2011] and social net-
works (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY,
REDDIT-MULTI-5K, abbreviated as IMDB-B, IMDB-M,
RDT-B and RDT-5K respectively) [Yanardag and Vish-
wanathan, 2015], which are used to evaluate our algorithms
with different edge weight functions defined in Section 2.
All the datasets are available at Is11-www.cs.tu-dortmund.de/
staff/morris/graphkerneldataset.

Settings for graph kernels. For graph kernels, we use C-
SVM as a classifier and perform 10-fold cross-validation.
The evaluation process was repeated 10 times for each dataset
and each method. The parameter C' of the SVM is tuned

https://github.com/BlockChanZJ/Filtration-Enhanced-Graph-Transformation
https://github.com/BlockChanZJ/Filtration-Enhanced-Graph-Transformation
ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldataset
ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldataset

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Native edge weights

Native vertex attributes

BZR.MD COX2MD ER.MD BZR DHFR ENZYMES PROTEINS

CSM 71.0£0.5 OoO0T O0T 788+0.1 793+13 498%09 Oo0T
< WLOA 649+09 585+22 71.1x1.1 80.6+09 827£05 60.1%1.3 755+0.3
S PM 67.7+10 648+04 733+09 822+1.0 79.0+£05 456+%1.3 74.8+0.2
17 MLG 643+1.1 470+30 652+0.9 854+12 809+£04 478%09 749 +0.4
FC-v 76.5+1.1 732+16 825%1.1 85.8+0.7 81.1+£04 555%1.0 74.6 £0.6
Original graph 60.0£23 568+24 67.5+0.7 789+03 81.1+x04 528%09 76.0 +0.4
Full FEG 70114 693+14 795+0.6 80.6+0.7 81.8%£0.6 575%1.5 76.7+0.6
S Partial FEG 75227 719+19 825+0.8 81.9+0.3 813+08 58.7x1.1 77.5+0.2
Full FES 69.1+22 693+14 782+0.6 80.3+0.5 825%£1.0 569=+1.1 76.8 £0.5
Partial FES 762+2.7 728+21 81612 81.8+0.6 81.7+0.8 53.8+0.7 779 £0.5
Original graph ~ 70.4+1.1 61.4+20 592+20 81.3+£09 773£08 409+%1.7 759+0.4
Full FEG 704+15 727+18 75007 81.2+1.0 835+£06 58.0%1.3 77.3+0.6
& Partial FEG 71.4+24 744+14 821x0.6 874+12 808%1.0 62.6%0.6 77.4+0.2
Full FES 712+16 739+16 757+1.0 820+£03 80.1+05 523+1.0 77.4£0.6
Partial FES 744+18 758+24 81.0+0.7 79.8+£06 779+0.6 509+12 76.1 £0.5
Original graph 49.6+1.4 51.1+19 59.4+0.0 789+0.1 61.0+x00 250%1.1 71.6+0.2
Full FEG 599+14 487+18 66.6+0.7 789+02 61.0+x00 223038 71.8+0.2
é Partial FEG 63.0+19 551+16 61315 792+02 61.0£00 257%1.0 74.0+0.4
Full FES 639+03 56.1+29 68.6+x0.9 792+£02 61.0+£00 256+1.2 73.9+0.5
Partial FES 682+22 638+x11 76.1+0.8 80.7+0.2 76409 37410 75.9+0.3

Table 1: Comparison between SOTA methods and the best results of three basic graph kernels with filtration by native attributes. We report

the average of 10 runs of 10-fold CV, with the best results in red. OOT means that the method did not finish in 24 hours.

Native edge weights

Native vertex attributes

BZR.MD COX2.MD ERMD BZR DHFR ENZYMES PROTEINS

Original graph 693+ 11.0 61.0+9.7 727+7.38 848438 740£29 542477 72.1+53

Z Full FEG 723+17.3 703+77 76.6+5.38 855+38 773+45 60.2+8.1 748 4.4
© Partial FEG 76.0 + 6.8 76.0+83 79.3+4.1 86.5+48 772+44 597+49 73.9+4.1
m Original graph ~ 70.0£6.5 553+134 67.7£8.6 792+58 679+7.1 415%£79 75.1£4.1
Q Full FEG 71.0+£63 65.7+11.7 709 +8.7 80.0+£59 64.1+£50 428+102 755+3.7
é Partial FEG 723+72 63.7+£112 74.6x7.0 81.5+39 679+47 33054 753+39
Original graph ~ 67.7+9.8 627+79 T720+58 86.5+52 757+41 592+64 748 +5.4

% Full FEG 71.3+7.0 763+35 76.1+6.8 855+50 783+3.0 61.8%6.6 749 +4.4
2 Partial FEG 74.3 +6.3 77.0+6.7 78.9+5.6 86.5+44 795+55 60.7+72 755+5.1

Table 2: Comparison of different GNNs on attributed graphs. GIN and SNN with original graphs denote the existing SOTA methods.

from {1073,--- ,10%}. The layers of FEG/FES are chosen
from {2,---,5} for full FEG/FES, and {2,--- , 10, 20,50}
for partial FEG/FES. All graph kernels are implemented in
Python using the GraKeL library [Siglidis et al., 2020]. The
parameters of graph kernels were chosen as follows. For
Weisfeiler-Leman subtree kernel, we chose the number of it-
erations from {1,---,7}. For graphlet kernel, we sampled
500 graphlets of size up to 5. For shortest path kernel, all
edge weight equals to 1. We compare our methods with
most existing SOTA graph kernels as compared in [O’Bray
et al., 2021] which include subgraph matching kernel (CSM,
k € {3,4,5}) [Kriege and Mutzel, 2012], Weisfeiler-Leman
optimal assignment kernel (WLOA, h € {1,--- ,7}) [Kriege
et al., 2016], multiscale Laplacian graph kernel MLG, v, €
{0.1,0.01}) [Kondor and Pan, 2016], pyramid matching ker-
nel (PM,L € {2,4,6},d € {4,6,8,10}) [Nikolentzos er al.,
2017b] and filtration curves (FC) [O’Bray er al., 2021].

Settings for GNNs. We mainly evaluate FEGs with three ba-
sic graph neural networks described in Section 3.4 including
GraphSAGE [Hamilton et al., 2017], GIN [Xu et al., 20191,
GraphSNN [Wijesinghe and Wang, 2022], and the results of
FESes are similar. Note that GIN and GraphSNN are the
SOTA GNN methods for graph classification as reported in
[Xu et al., 2019; Wijesinghe and Wang, 2022]. The lay-
ers of FEG are chosen from {2,---,5} for full FEG, and
{2,---,5,10} for partial FEG. For a fair comparison, we fol-

1991

low the standard data splits in [Errica et al., 2020]. We report
the best result of all layers and filtration. The parameters of
GNNss are chosen as follows. All three GNNs are trained for
500 epochs with 50 epoch patience to early stop and hidden
units of 64.The convolution layer numbers are selected from
{2, 3,4}. For GraphSAGE and GIN, we set the learning rate
parameter as 0.001, batch size as 128, and dropout is chosen
from {0,0.5}. For GraphSNN, we use dropout of 0.5, batch
size of 64 and learning rate chosen from {0.01,0.001}. For
GNN:ss, the graph representation is derived from sum pooling
and mean pooling.

4.1 Experimental Results

First, to address Q1, we provide a comparison of results on
three base graph kernels (Table 1) and three base GNNs (Ta-
ble 2). Table 1 shows that FEG or FES based graph ker-
nels consistently outperform the original-graph based graph
kernels on attributed graphs. The results on non-attributed
graphs are consistent, which are given in the supplementary
document due to the space limit. For graphs with native edge
weights, all base graph kernels have more than 10% accu-
racy gains with our FEG or FES technique. For example, the
classification accuracy of the partial FES based WL kernel is
76.2% while the WL kernel with the original graphs can only
achieve a 60% accuracy on BZR_MD. Similarly, for graphs
with native vertex attributes, our solutions are also consis-
tently better than the base kernels with the original graphs

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

100 100

WL —%— WL —k—

90 | SP = 90 | SP—=
< GL < GL
S ®
= 80 = 80
g A —A g S A
270 g 70
2 2

60 r & 60

50 50

1 2 3 4 5 1 2 3 4 5
layer layer
(a) Full FEG (b) Full FES

100 WL

90 SP —4&—
g g
= =
5701 E
< 60 Lﬁ/ <

50 50

12345678 9102050 123456738 9102050
layer layer

(c) Partial FEG (d) Partial FES
Figure 3: Results of graph kernels with various layers on ER_MD

o
S
©
S

GIN —X— GIN —%—
85 | SAGE —4&— 85 [SAGE —4&—
Sgo | W Sgo | W
Z z
875 875
= =
870 870
< <

o)
&
=N
)

=N
S
=N
S

1 2 3 4 5 1 2 3 4 5 10
layer layer

(a) Full FEG (b) Partial FEG
Figure 4: Results of GNNs with various layers on BZR_MD

(more than 10% accuracy gains on ENZYMES). As shown
in Table 2, the results for GNNs are consistent with the re-
sults for graph kernels. These results indicate that our FEG
transformation technique can indeed enhance the expressive
power of graph kernels or GNNSs in distinguishing graphs.

Second, to address Q2, we compare our best method with
the SOTA methods in terms of classification accuracy. The
results for graph kernels and GNNs are also shown in Table 1
and Table 2, respectively. As can be seen, our best method
significantly outperforms all SOTA methods on all datasets
except for BZR_MD. For example, on BZR dataset, our best
algorithm can achieve a 87.4% accuracy, while the accuracy
of the best existing algorithm is 85.8%. Moreover, even on
BZR _MD, our best method is still competitive with the SOTA
method (the accuracy of our best algorithm and the SOTA
algorithm is 76.2 and 76.5 respectively). Likewise, our best
method consistently beats the SOTA GNNs on all datasets, in-
cluding GIN and GraphSNN, as shown in Table 2. The reason
could be that the graph augmented by our FEG transformation
not only preserves the original graph structural features, but
it can also capture the topological feature which may be use-
ful for graph classification. These results further confirm the
superiority of our solution.

Third, to address Q3, we provide the results of different
layers for all base kernels on ER-MD (Fig. 3) and for all
base GNNs on BZR_MD (Fig. 4). The results on the other
datasets are consistent. For graph kernels, the accuracy in-
creases when the number of layers [increases for both full
FEG and full FES as shown in Figs. 3(a-b). When [> 2,
the increasing trend tends to be smooth. However, as shown

1992

Datasets CN CORE RC
MUTAG - 90.6+0.8 88.7+09
_ IMDB-B 773+03 747+06 752+04
g IMDB-M 52.1+05 522%05 51.2+06
e NCI1 859+0.2 85102 857+02
| D&D 80.2+0.5 80.2+02 80.1+0.3
z RDT-B 822+05 828+0.2 855+0.3
RDT-5K 532+02 543+02 534+0.1
PROTEINS 74.8+3.8 745+39 739+4.1
IMDB-B 73.8+3.0 735+3.1 73929
Z IMDB-M 51.0%34 50940 49.1+45
o NCII 793+1.6 788+23 795+1.8
D&D 780+39 768+37 77.1+52

Table 3: Results of different filtration for WL kernel and GIN. CN,
CORE and RC represent common neighbor, core number and ricci-
curvature respectively. ”-”” means no common neighbor in MUTAG.

in Figs. 3(c-d), the accuracy is relatively robust w.r.t. [for
partial FEG and partial FES when [> 2. For GNNs, the ac-
curacy seems to be not very sensitive w.r.t. [for both full and
partial FEG. These results suggest that the hyper-parameter [
in our methods is easy to tune for practical applications.

Finally, to answer Q4, we show the results of three dif-
ferent filtration methods used in FEG transformation for WL
kernel and GIN (Table 3). Similar results can also be ob-
served for the other base graph kernels and GNNs. As re-
ported in Table 3, different filtration methods may affect the
accuracy for both graph kernels and GNNs. For the WL ker-
nel, the core number based filtration generally performs better
than the others. However, for GIN, the core number based fil-
tration is less accurate than the other filtration methods. These
results indicate that the filtration method is important for our
approach to achieve a good classification accuracy. The three
heuristic filtration methods introduced in Section 2 perform
well in practice. An interesting future direction is to seek a
better filtration for FEG transformation by machine learning
methods (like [Hofer et al., 2020]).

5 Conclusion

In this paper, we proposed a filtration-enhanced graph (FEG)
transformation technique which enables a general approach
to enhance the expressive power of graph kernels and GNNss.
We prove that our FEG based approaches have strictly better
expressive power over the original graph based solutions for
graph classification tasks. A nice feature of our technique is
that it is a plug-in method and it can be used to any graph
kernel and GNN to enhance their expressiveness. Moreover,
the FEG transformation can be computed in linear time using
linear space. Extensive experiments over several benchmark
datasets indicate that our solutions significantly outperform
all the SOTA methods for graph classification tasks.

Acknowledgments

This work was partially supported by (i) National
Key Research and Development Program of China
2020AAA0108503, (ii) NSFC Grants 62072034 and
U1809206, (iii) "Research on Key Technologies of trusted
data sharing under the integration of blockchain and IPFS”
Project in 2021 of SIT under Grant 2111010, Guang-
dong Philosophy and Social Sciences Planning Project
(GD21CYJ21). Rong-Hua Li is the corresponding author of
this paper.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

References

[Abboud er al., 2021] Ralph Abboud, Ismail Tlkan Ceylan, Martin
Grohe, and Thomas Lukasiewicz. The surprising power of graph
neural networks with random node initialization. In IJCAI, 2021.

[Borgwardt and Kriegel, 2005] Karsten M. Borgwardt and Hans-
Peter Kriegel. Shortest-path kernels on graphs. In /ICDM, 2005.

[Bouritsas et al., 2020] Giorgos Bouritsas, Fabrizio Frasca, Ste-
fanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting.
CoRR, abs/2006.09252, 2020.

[Chiba and Nishizeki, 1985] Norishige Chiba and Takao Nishizeki.
Arboricity and subgraph listing algorithms. SIAM Journal on
computing, 14(1):210-223, 1985.

[Du et al., 2019] Simon S. Du, Kangcheng Hou, Ruslan Salakhut-
dinov, Barnabds Péczos, Ruosong Wang, and Keyulu Xu. Graph
neural tangent kernel: Fusing graph neural networks with graph
kernels. In NeurIPS, 2019.

[Edelsbrunner et al., 2002] Herbert Edelsbrunner, David Letscher,
and Afra Zomorodian. Topological persistence and simplifica-
tion. Discret. Comput. Geom., 28(4):511-533, 2002.

[Errica et al., 2020] Federico Errica, Marco Podda, Davide Bacciu,
and Alessio Micheli. A fair comparison of graph neural networks
for graph classification. In /CLR, 2020.

[Hamilton er al., 2017] William L. Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large graphs. In
NIPS, 2017.

[Hofer et al., 2020] Christoph D. Hofer, Florian Graf, Bastian
Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In /ICML, 2020.

[Horvéth et al., 2004] Taméas Horvath, Thomas Girtner, and Stefan
Wrobel. Cyclic pattern kernels for predictive graph mining. In
KDD, 2004.

[Kondor and Pan, 2016] Risi Kondor and Horace Pan. The multi-
scale laplacian graph kernel. In NIPS, 2016.

[Kriege and Mutzel, 2012] Nils M. Kriege and Petra Mutzel. Sub-
graph matching kernels for attributed graphs. In ICML, 2012.

[Kriege er al., 2016] Nils M. Kriege, Pierre-Louis Giscard, and
Richard C. Wilson. On valid optimal assignment kernels and
applications to graph classification. In NIPS, 2016.

[Kriege er al., 2020] Nils M Kriege, Fredrik D Johansson, and
Christopher Morris. A survey on graph kernels. Applied Net-
work Science, 5(1):1-42, 2020.

[Lee er al., 2019] Junhyun Lee, Inyeop Lee, and Jaewoo Kang.
Self-attention graph pooling. In /ICML, 2019.

[Lin et al., 2011] Yong Lin, Linyuan Lu, and Shing-Tung Yau.
Ricci curvature of graphs. Tohoku Mathematical Journal, Sec-
ond Series, 63(4):605-627, 2011.

[Matula and Beck, 1983] David W. Matula and Leland L. Beck.
Smallest-last ordering and clustering and graph coloring algo-
rithms. J. ACM, 30(3):417-427, 1983.

[Morris et al., 2017] Christopher Morris, Kristian Kersting, and Pe-
tra Mutzel. Glocalized weisfeiler-lehman graph kernels: Global-
local feature maps of graphs. In ICDM, 2017.

[Morris et al., 2020] Christopher Morris, Gaurav Rattan, and Pe-
tra Mutzel. Weisfeiler and leman go sparse: Towards scalable
higher-order graph embeddings. In NeurIPS, 2020.

[Nikolentzos et al., 2017a] Giannis Nikolentzos, Polykarpos Mela-
dianos, Francois Rousseau, Yannis Stavrakas, and Michalis
Vazirgiannis. Shortest-path graph kernels for document similar-
ity. In EMNLP, 2017.

1993

[Nikolentzos et al., 2017b] Giannis Nikolentzos, Polykarpos Mela-
dianos, and Michalis Vazirgiannis. Matching node embeddings
for graph similarity. In AAAI, 2017.

[O’Bray et al., 2021] Leslie O’Bray, Bastian Rieck, and Karsten
Borgwardt. Filtration curves for graph representation. In KDD,
2021.

[Sato et al., 2021] Ryoma Sato, Makoto Yamada, and Hisashi
Kashima. Random features strengthen graph neural networks.
In SDM, 2021.

[Seidman, 1983] Stephen B Seidman. Network structure and mini-
mum degree. Social networks, 5(3):269-287, 1983.

[Shervashidze et al., 2009] Nino Shervashidze, S. V. N. Vish-
wanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M. Borg-
wardt. Efficient graphlet kernels for large graph comparison. In
AISTATS, 2009.

[Shervashidze et al., 2011] Nino Shervashidze, Pascal Schweitzer,
Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borg-
wardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res.,
12:2539-2561, 2011.

[Siglidis et al., 2020] Giannis Siglidis, Giannis Nikolentzos, Stratis
Limnios, Christos Giatsidis, Konstantinos Skianis, and Michalis
Vazirgiannis. Grakel: A graph kernel library in python. Journal
of Machine Learning Research, 21(54):1-5, 2020.

[Weisfeiler and Leman, 1968] Boris Weisfeiler and A. A. Leman.
A reduction of a graph to a canonical form and an algebra aris-
ing during this reduction. Nauchno-Technicheskaya Informat-
siya, 2(9):12-16, 1968.

[Wijesinghe and Wang, 2022] Asiri Wijesinghe and Qing Wang.
A new perspective on "how graph neural networks go beyond
weisfeiler-lehman?”. In International Conference on Learning
Representations, 2022.

[Xu et al., 2019] Keyulu Xu, Weihua Hu, Jure Leskovec, and Ste-
fanie Jegelka. How powerful are graph neural networks? In
ICLR, 2019.

[Yanardag and Vishwanathan, 2015] Pinar Yanardag and S. V. N.
Vishwanathan. Deep graph kernels. In KDD, 2015.

[You et al., 2021] Jiaxuan You, Jonathan M. Gomes-Selman, Rex
Ying, and Jure Leskovec. Identity-aware graph neural networks.
In AAAL 2021.

[Zhang et al., 2018] Zhen Zhang, Mianzhi Wang, Yijian Xiang,
Yan Huang, and Arye Nehorai. Retgk: Graph kernels based on
return probabilities of random walks. In NeurIPS, 2018.

[Zhao and Wang, 2019] Qi Zhao and Yusu Wang. Learning met-
rics for persistence-based summaries and applications for graph
classification. In NeurIPS, 2019.

	Introduction
	Preliminaries
	The Proposed Method
	Filtration-enhanced Graph Transformation
	Expressiveness
	Complexity Analysis
	Base Graph Kernels and GNNs

	Experiments
	Experimental Results

	Conclusion

