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Abstract

Federated learning (FL) is a promising approach
for learning a shared global model on decentralized
data owned by multiple clients without exposing
their privacy. In real-world scenarios, data accu-
mulated at the client-side varies in distribution over
time. As a consequence, the global model tends to
forget the knowledge obtained from previous tasks
while learning new tasks, showing signs of “catas-
trophic forgetting”. Previous studies in centralized
learning use techniques such as data replay and pa-
rameter regularization to mitigate catastrophic for-
getting. Unfortunately, these techniques cannot ad-
equately solve the non-trivial problem in FL. We
propose Continual Federated Learning with Distil-
lation (CFeD) to address catastrophic forgetting un-
der FL. CFeD performs knowledge distillation on
both the clients and the server, with each party in-
dependently having an unlabeled surrogate dataset,
to mitigate forgetting. Moreover, CFeD assigns dif-
ferent learning objectives, namely learning the new
task and reviewing old tasks, to different clients,
aiming to improve the learning ability of the model.
The results show that our method performs well
in mitigating catastrophic forgetting and achieves
a good trade-off between the two objectives.

1 Introduction

Federated Learning (FL) [McMabhan e al., 2017] is proposed
as a solution to learn a shared model using decentralized data
owned by multiple clients without disclosing their private
data. Figure 1 illustrates an example of a FL task to infer
the usage habits of mobile device users. The sensitive data,
namely a stream of the temporal histogram of screen time,
is collected on mobile devices (clients) and used to train a
local model. Meanwhile, a global model is built on a cen-
tral server, which leverages the local models submitted by the
clients without accessing any client’s private data. During
each round of training, the server first broadcasts the global
model to clients. Then, each client independently uses its lo-
cal data to update the model and submits the model update
to the server. Finally, the server aggregates these updates to
produce a new global model for the next round.
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Figure 1: (a) An overview of a FL system to predicate the usage
habits on mobile device. (b) Distribution of screen time in two
weeks for a specific user. (c) Local update suffers catastrophic for-
getting while learning from new data.

Although FL can protect data privacy well, its performance
is at risk in practice due to the following issues. First, clients
participating in one round of training may become unavail-
able in the next round due to network failure, causing vari-
ation in the training data distribution between consecutive
rounds. Second, the data accumulated at the client-side may
vary over time, and can even be considered as a new task with
different data distribution or different labels, which poses sig-
nificant challenges to the adaptability of the model. Further-
more, due to the inaccessibility of the raw data, minimiz-
ing the loss on the new task may increase the loss on old
tasks. These issues all lead to underperformance of the global
model, a phenomenon known as “catastrophic forgetting”.

Specifically, catastrophic forgetting in FL. system is ob-
served in two main categories, namely intra-task forgetting
and inter-task forgetting. (1) Intra-task forgetting occurs
when two different subsets of clients are involved in two con-
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secutive rounds. In Fig. 1(a), since a client does not partic-
ipate in a training round, the new global model may forget
knowledge obtained from this client in previous rounds and
thus performs poorly on its local data. (2) Inter-task forget-
ting occurs when clients accumulate new data with different
domains or different labels. As shown in Fig. 1(c), due to the
different distribution of the screen time data in week 2, the
performance of the new global model on week 1 data is de-
graded. It should be noted that the Non-IID issue brings more
challenges to both kinds of forgetting.

Catastrophic forgetting in FL is a non-trivial problem be-
cause the conventional approaches to catastrophic forgetting,
namely Continual Learning (CL), cannot be easily applied
in FL due to privacy and resource constraints. Some re-
cent attempts on this topic, such as [Shoham et al., 2019;
Usmanova et al., 20211, do not solve the problem adequately
since they are designed to address either intra-task forgetting
or inter-task forgetting.

In this paper, we propose a framework called Continual
Federated Learning with Distillation (CFeD) to mitigate
catastrophic forgetting on both intra-task and inter-task cate-
gories when learning new tasks. Specifically, CFeD leverages
knowledge distillation in two ways based on unlabeled public
datasets called the surrogate datasets. First, while learning
the new task, each client transfers the knowledge of old tasks
from the model converged on the last task into the new model
via its own surrogate dataset to mitigate inter-task forget-
ting. Meanwhile, CFeD assigns the two objectives to differ-
ent clients to improve the performance, called clients division
mechanism. Second, the server also maintains another inde-
pendent surrogate dataset to fine-tune the aggregated model
in each round by distilling the knowledge learned in the cur-
rent and last rounds into the new aggregated one, called server
distillation.

The main contributions of this paper are as follows:

* We extend continual learning to the federated learning
scenario and define Continual Federated Learning (CFL)
to address catastrophic forgetting when learning a series
of tasks. (Section 3)

We propose a CFL framework called CFeD, which em-
ploys knowledge distillation based on surrogate datasets
to mitigate catastrophic forgetting both at the server-side
and client-side. In each round, the inter-task forgetting
is mitigated by assigning clients to learning the new task
or to reviewing the old tasks. The intra-task forgetting is
mitigated by applying a distillation scheme at the server-
side. (Section 4)

We evaluate two scenarios of CFL by varying the data
distribution and adding categories on text and image
classification datasets. CFeD outperforms existing FL
methods in overcoming forgetting without sacrificing
the ability to learn new tasks. (Section 5)

2 Related Work

2.1 Continual Learning

Continual Learning (CL) aims to solve stability-plasticity
dilemma when learning a sequence of tasks [Delange et al.,
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2021]. Models with strong stability forget little but perform
poorly on the new task. In contrast, models with better plas-
ticity can adapt quickly to the new task but tend to forget old
ones. Existing CL methods can generally be divided into
three categories: data replay, parameter separation and pa-
rameter regularization.

The core idea of data replay methods [Chaudhry ef al.,
2018] is to store and replay raw data from old tasks to mit-
igate forgetting. However, storing old data directly violates
privacy and storage restrictions. Parameter separation meth-
ods [Hung et al., 2019] overcome catastrophic forgetting by
assigning different subsets of the model parameters to dealing
with each task. However, separation methods will result in an
infinite increase of parameters with the arrival of new tasks,
which can quickly become unacceptable in FL.

The regularization-based methods limit the updating pro-
cess by punish the updates on important parameters [Kirk-
patrick et al., 2017] or adding knowledge distillation [Hin-
ton et al., 2015] loss to the objective function [Li and Hoiem,
2017; Lee et al., 2019; Zhang et al., 2020] to learn the knowl-
edge from the old model. However, the importance is difficult
to be precisely evaluated. Some distillation-based methods
perform distillation based on the new task data, but its ef-
ficacy drops significantly when domains vary greatly. The
others that leverage unlabeled external data solve difficul-
ties above. CFeD adopts knowledge distillation with public
datasets and proposes a client division mechanism to reduce
the cost of time and computation.

2.2 Federated Learning

Recent studies have considered introducing Continual Learn-
ing into FL to improve the performance of models under Non-
IID data [Shoham et al., 2019]. [Yoon et al., 2021] proposed
Federated Continual Learning and focused on multiple con-
tinual learning agents that use each other’s indirect experi-
ence to enhance the continual learning performance of their
local models, rather than to jointly train a better global model.
Therefore, the purpose of their study is to obtain a collection
of local models for the participating clients. While our work
looks literally similar, our research problem is very different,
as we aim at learning a better global model. Thus we decide
not to compare with it in our experiment study.

Based on FedAvg, [Jeong et al., 2018] proposed Feder-
ated Distillation framework to enhance communication effi-
ciency without comprising performance. There are also sev-
eral works leveraging additional datasets constructed from
public dataset [Li and Wang, 2019; Lin et al., 2020] or orig-
inal local data [Itahara et al., 2020] to aid distillation. Com-
pared with the above works, our proposed method to mit-
igate catastrophic forgetting is orthogonal and could work
with them together.

3 Problem Definition

In FL, a central server and K clients cooperate to train a
model on task 7 through R rounds of communication. The
optimization objective can be written as follows:
Kon
. k k.
mgnZ—[,(T ;0) (1)

k=1 n(L
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where T refers to a collection of ny, training samples at k-th
client and n,, is the sum of all ny.

Here we define Continual Federated Learning (CFL),
which aims to train a global model via iterative communi-
cation between the server and clients on a series of tasks
{T1, T2, T3, - - } accumulated at the client-side.

When the ¢-th task arrives, data of previous tasks will be-
come unavailable for training. We define the global model
parameters obtained from the previous task as 0;_1, and the
new task as 7; = (Jp_, 7,*, where T;* contains newly col-
lected data at each client.

The goal is to train a global model with a minimized loss
on the new task 7; as well as old tasks {7, -+ ,7¢—1}. The
optimization objective is achieved by minimizing the losses
of K clients on all local tasks up to time ¢ through iterative
server-client communication. The global model parameters
can be obtained as follows:

0, = argmmz - Zﬁ 2

= i=1

The global model at task 7; is expected to achieve no
higher loss on historical tasks than that at time ¢ — 1. That
i, 32071 L(T3:600) < 0021 £(Tii 04-1)-

However, in real-world scenarios, due to the limitation on
accessing previous data, CFL suffers catastrophic forgetting
at “intra-task” and “inter-task” levels. Formally, intra-task
forgetting means that after the updates of r-th round, the
global model gets a higher loss than the (r-1)-th round on the
local dataset of k-th client: £(7%;80;,) > L(TF;:0:, 1),
especially when the distribution across clients is Non-IID.
And then, inter-task forgetting is that the loss of the model
at time ¢ on old tasks is higher than that at time ¢ — 1:

ST L(TF00) > ST L(TF:0,-1).

4 Proposed Method

To tackle the catastrophic forgetting in FL, we propose a
framework named CFeD (Continual Federated learning with
Distillation). As shown in Figure 2, the core idea is to use
the model of the last task to predict the surrogate dataset, and
treat the outputs as pseudo-labels to perform knowledge dis-
tillation to review the knowledge of unavailable data. To im-
prove the learning ability of the global model and fully utilize
computation resources, learning the new task and reviewing
old tasks can be assigned to different clients and those clients
without enough new task data could only review the old tasks.
Moreover, a server distillation mechanism is proposed to mit-
igate the intra-task forgetting in Non-IID data. The aggre-
gated global model is finetuned to mimic the outputs of the
global model on the last round and local models on the cur-
rent round.

The surrogate dataset should be collected from public
datasets for privacy and cover as many features as possible or
be similar to the old tasks to ensure the effectiveness of dis-
tillation. Since the model parameters do not increase, there is
no additional communication cost compared with FedAvg.
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Figure 2: Continual federated learning with knowledge distillation.

4.1 Clients Distillation

The distillation process of CFeD assumes that there is a surro-
gate dataset X" at the k-th client. For each sample x, € X5,
its label at time ¢ is ys; = f(xs; 0:—1). Thus we obtain a per-
client set of sample pairs SF = {(xs,¥s1),Vxs € X} A
distillation term £4(SF; 0) is added to approximate the loss
on old tasks Y'_} ! L(T*: 6). For a specific surrogate sample
pair (Xs,ys,¢) at tlme t, the distillation loss can be formalized
as a modified version of cross-entropy loss:

l
La((x4,¥51):0) = — > 3} log g 3)

i=1
where [ is the number of target classes, yi(z) is the modified
surrogate label, and g};(z ) is the modified output of the model
on surrogate sample x. The latter two are defined as:

(i) (ys(,))l/T NOEE ( s(l))l/T

s,t T 1 s,t 1 ( ) (4)

)" G
S T S @I
(1) -

where g ;' is the i-th element of f(xs; €), T is the temperature
of distillation and a greater 1" value could amplify minor log-
its so as to increase the information provided by the teacher
model.

Based on the above notions, CFeD computes the total loss
on all clients at time ¢ by substituting the unknown losses on
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old tasks in Equation 2 with the distillation losses on the per-
client surrogate datasets. Formally, the total loss is:

t—1
Z (L(TF:0)+ > L(TF
=1 =1
. 5)
OCZTT@ (T 0) + XaLa(SF; 9))

=1

where )y (default 0.1) is a pre-defined parameter to weight
the distillation loss.

4.2 Clients Division Mechanism

In real-world scenarios, different clients accumulate data at
different speeds. While some clients are ready to learn a new
task, others may not have gained enough data for the new task
and thus cannot be effectively utilized in learning it.

To leverage the under-utilized computation resources,
CFeD treats learning the new task and reviewing old tasks as
two individual objectives. The framework assigns one of the
two objectives to each client so that some clients can only per-
form reviewing. Further, this kind of division may improve
the exploration of the model on different objectives and help
the model depart from previous local minima. Formally, re-
garding the division mechanism, Equation 5 can be expanded
and rewritten as:

N K

S ruskho+ Y e ©
Ng a

k=1 k=N+1

where N = [aK],a € [0,1]. We introduce a factor « to
describe the proportion of clients involved in reviewing per
round.

4.3 Server Distillation

Although the clients division mechanism allows spare com-
puting resources to be utilized, we must note that some active
clients are not learning the new task now. This may harm
the performance on the new task and lead to severe intra-task
forgetting, especially in the Non-IID scenario. The reason
is that, since the labels of the data on different clients may
not intersect each other, the global model fitting one client
(learning the new task) may easily exhibit forgetting in an-
other (reviewing the old tasks, or learning the new task on
data of different labels).

To mitigate such performance degradation on the new task,
a client may take a naive solution to increase its local training
iterations. However, increasing the number of epochs of local
updates on Non-IID data could easily cause overfitting and
unstablize the performance of the global model.

Motivated by the paradigm of mini-batch iterative updates
in centralized training [Toneva et al., 2018], we propose
Server Distillation (SD) to mitigate the intra-task forgetting
and stabilize the performance of the aggregated model at
the server-side. In our approach, the server also maintains
a lightweight, unlabeled public dataset X, similar to the
surrogate datasets on the clients. After the r-th round of
aggregating the K local models collected from the clients,
the server divides X, into K + 1 batches, assigns K of
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them to the received local models and one to the global
model of the last round, and collects outputs )A/S,T of above-
mentioned models on their assigned batches to construct a
labeled set of sample pairs for the server distillation, denoted
as Sy = {(Xs,¥s.r), VX5 € X, }. Next, the aggregated global
model 8, will be iteratively updated with a distillation loss
‘cd (SH 9)

With server distillation, the global model is able to further
retrieve the knowledge from the local models and the previ-
ous global model, thus to mitigate intra-task forgetting.

5 Experiments

In this section, we evaluate CFeD and baseline approaches
extended from traditional continual learning methods on text
and image classification tasks.

5.1 Datasets and Tasks

We consider both text and image classification datasets:
THUCNews [Li et al., 2006] contains 14 categories of Chi-
nese news data collected from Sina News RSS between 2005
and 2011. SogouCS [SogouLabs, 2012] contains 18 cate-
gories of 511218 Chinese news data in 2012. Sina2019 con-
tains 30533 Chinese news data in 2019 crawled from the
Sina News by ourselves. NLPIR Weibo Corpus [NLPIR,
2017] consists of 230000 samples obtained from Sina Weibo
and Tencent Weibo, two Chinese social media sites. We
use it as a surrogate dataset across different tasks. CIFAR-
10[Krizhevsky, 2009] contains 60000 images with 10 classes.
CIFAR-100[Krizhevsky, 2009] contains 60000 images with
100 classes. Caltech-256[Griffin et al., 2007] contains 30608
images with 256 classes as the surrogate dataset in image
classification. !

We design task sequences to be learned in two different
scenarios: Domain-IL indicates the case where the input dis-
tributions continually vary in the sequence; Class-IL indicates
the case where new classes incrementally emerge in the se-
quence. Tasks on the text dataset are denoted by ‘Tx’ while
those on the image dataset are denoted by ‘Ix’, where ‘x’ is
the task sequence ID. Most task sequences in the experiments
are short, containing two or three classification tasks.

5.2 Compared Methods

We choose the following approaches for evaluation:

(1) Finetuning: A naive method that trains the model on
tasks sequentially. (2) FedAvg: A FL method that each client
learns tasks in sequence and the server aggregates local mod-
els from clients. (3) MultiHead: A CL method training indi-
vidual classifiers for each task, requiring task labels to spec-
ify the output during the inferring phase. FedMultiHead de-
notes FedAvg with MultiHead applied to clients. (4) EWC:
a regularization-based method [Kirkpatrick et al., 2017] that
uses Fisher information matrix to estimate the importance of
parameters. FedEWC denotes FedAvg with EWC applied
to clients. (5) LwF: A distillation-based method. Instead
of unlabeled data, LWF leverages new task data to perform

'Our code and datasets are publicly available at https:/github.
com/lianziqt/CFeD.
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Domain-IL scenario

Class-IL scenario

Domain-T1 Domain-T2 Class-T1 Class-T2 Class-I1  Class-12
MultiHead* 94.66 93.40 95.84 95.66 51.81 57.04
Finetuing 85.96 91.32 48.00 32.43 36.74 30.58
EWC 87.42 91.98 47.96 32.42 36.35 30.72
LwF 90.58 92.01 48.59 39.10 35.31 26.32
DMC - - 48.37 41.92 37.81 27.37
CFeD(CO)ji=1c-6 82.48 83.20 71.21 63.45 37.88 28.36
CFeD(C)ji=1e3 94.49 92.95 62.22 34.26 33.75 22.21
FedMultiHead* 81.83 91.04 96.26 96.07 56.97 60.43
FedAvg 86.50 92.60 48.25 32.61 32.53 29.28
FedEWC 84.76 92.06 48.24 32.51 30.37 28.62
FedLwF 87.35 92.41 59.39 44.76 33.97 23.46
FedDMC - - 46.58 10.46 16.50 8.33
FedDMCqyy - - 56.95 50.87 40.13 29.18
CFeD 92.34 94.15 85.81 83.80 40.51 32.33

Table 1: The average accuracy on learned tasks (%) of different methods (global models for FL). The top 7 rows are from centralized
methods, while the bottom 7 rows are from FL methods. * indicates methods with additional information (task labels). DMC is only suitable

for the Class-IL scenario.

distillation. FedLwF denotes FedAvg with LwF applied to
clients. (6) DMC: Deep Model Consolidation [Zhang et al.,
20201, a Class-IL CL method that first trains a separate model
only for the new task, and then leverages an unlabeled public
dataset to distill the knowledge of the old tasks and the new
task to obtain a new combined model. FedDMC denotes Fe-
dAvg with DMC applied to clients. (7) CFeD: our method
and CFeD(C) denotes the centralized version of our method
CFeD.

Note that MultiHead and FedMultiHead require task labels
during inference to know which task the current input belongs
to. Moreover, multiple classifiers inevitably bring more pa-
rameters in the Domain-IL scenario. Owing to these addi-
tional information, their performance can be seen as a target
for other methods.

5.3 Experimental Settings

We use TextCNN [Kim, 2014] or ResNet-18 [He et al., 2016]
followed by fully-connected layers for classification. Each
task trains the model for R = 20 rounds. For the local updat-
ing in each client, the learning epoch is 10 in Domain-IL or
40 in Class-IL. Unless otherwise stated, the constraint factor
A of the EWC method is set to 100000. The temperature of
distillation is set to 2 as default.

For the configuration of FL, we assume that there are 100
clients, and only random 10% clients are sampled to partic-
ipate in each training round. The training dataset and surro-
gate dataset are both divided into 200 shards randomly (IID)
or sorted by the category (Non-IID). In each experiment, ev-
ery client selects two shards of data on each task as the local
dataset and also two shards of the surrogate dataset as the lo-
cal surrogate. In particular, the server also selects two shards
for server distillation in the Non-IID distribution. All above
selections are conducted randomly.

For each task, we select 70% of data as the training set,
10% as the validation set and the rest as the test set. The
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global model is evaluated on the test set at the end of each
training round. All experiments are repeated for 3 runs with
different random seeds.

5.4 Experimental Results

Effect on Mitigating Inter-task Forgetting

We evaluate all methods in both centralized and FL scenarios.
Table 1 summarizes the average accuracy on ever learned task
after the model learns the second and third tasks sequentially,
both in Domain-IL (left) and Class-IL (right). By compar-
ing the results of different methods, it can be seen that CFeD
exceeds other baselines on average accuracy.

In Domain-IL scenario (left half of Table 1), CFeD exceeds
FedAvg, FedLwF, FedEWC and FedDMC methods on the
average accuracy, being close to FedMultiHead. Moreover,
the average accuracy of all methods improves after the model
continually learns the Domain-T2. The result implies that
the new task of Domain-T2 may cover some features of old
tasks, which help the models review the old knowledge, and
notably, CFeD still outperforms the other baselines.

In the Class-IL scenario (right half of Table 1), we can see
that the average accuracy of FedAvg and FedEWC both drop
significantly. The reason is that the labels of the old task are
not available, and the model quickly overfits the new task.
In contrast, CFeD outperforms other baselines, indicating the
benefit of leveraging the surrogate dataset to get reasonable
soft labels for old tasks.

We notice that the performance of FedDMC drops signif-
icantly in Class-IL. Since the model consolidation of DMC
only uses surrogate data for distillation, i.e. no new task data,
to learn new tasks and review old tasks, its performance is
significantly limited by the surrogate dataset size (in our case,
each client only has 2300 surrogate samples). To verify this,
we construct a variant FedDMCy,; where every client has
access to the entire surrogate dataset. Under such a set-
ting, FedDMCyy) achieves considerable improvement as each
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Figure 3: The performance of FedAVG(blue), CFeD(green) and
CFeD+SD(red) on both the Domain-IL and Class-IL scenarios un-
der Non-IID distribution

Class-T1 Class-T2
Avg New Avg New
CFeD(O)j=1e6 7121 5940 63.45 66.60
CFeD(C)j=1e.3  62.22 93.90 34.26 93.34
CFeDj—1c6 85.81 95.30 83.80 97.22

Table 2: The average accuracy on learned tasks (Avg, %) and test
accuracy on the new task (New, %) under different learning rates.

client has more data. However, our approach still outperforms
it, showing the robustness of CFeD to the surrogate dataset
size.

Effect on Mitigating Intra-task Forgetting

To illustrate the effect of our proposed approach against intra-
task forgetting, we compare three methods: FedAVG, CFeD,
and CFeD with Server Distillation (namely CFeD+SD) both
in Domain-IL and Class-IL scenarios with Non-IID distri-
bution. Figure 3 shows the accuracy on new tasks and the
average accuracy on learned tasks of the model during the
learning process. The results show that CFeD+SD improves
the performance on mitigating without sacrificing the abil-
ity to learn the new task. Moreover, the performance of all
methods in Non-IID distribution degrades significantly, but
CFeD+SD is more stable than the other two methods. Owing
to clients division and server distillation, CFeD+SD achieves
higher average accuracy without sacrificing plasticity.

Clients Division Mechanism

To evaluate the effect of the clients division mechanism, Ta-
ble 2 shows more detailed results of both the accuracy on
new tasks and the average accuracy to illustrate the trade-off
of CFeD between stability and plasticity (See Section 2.1).
It can be seen that, in Class-IL, CFeD(C) also suffers the
dilemma between plasticity and stability: CFeD(C)j;=1c.¢ can-
not learn well on the new tasks and CFeD(C)y=1.3 performs
poorly on the average accuracy. In contrast, CFeD strikes
a good balance between plasticity and stability owing to the
clients division mechanism.

Varying Surrogate Data Size
To see how the surrogate data size affects the performance of
CFeD, we vary the number of shards (8) of surrogate data
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Figure 4: Results of varying surrogate-ratio (8 denotes the number
of selected shards)

assigned to each client from 2 (default) to 40. To reduce the
experiment time, we set the local number of epochs to 10.

The experiment results are shown in Figure 4. Gener-
ally, the performance on new tasks reduces when [ increases.
However, it is not the case for the old tasks. When varying
B from 2 to 40, the performance on old tasks improves first
and then decreases. The optimal value is around 10 for T1
and 20 for T2. It is worth noting that when 3 is small, the
average accuracy of both tasks reaches a peak value and then
diminishes slowly as learning proceeds (bottom left subfig-
ure). This indicates that the model learns the new task quickly
(reaching the peak) and then gradually forgets the old tasks,
which offsets the performance gained from the new task. The
forgetting is apparently postponed in task sequence T1 when
we enlarge 3. But the effect of postponing is not obvious due
to the large number of tasks in T2.

6 Conclusions

In this paper, we tackle the problem of catastrophic forgetting
in federated learning of a series of tasks. We proposed a Con-
tinual Federated Learning framework named CFeD, which
leverages knowledge distillation based on surrogate datasets,
to address the problem. Our approach allows clients to re-
view the knowledge learned in the old model by optimizing
the distillation loss based on their own surrogate datasets. The
server also performs distillation to mitigate intra-task forget-
ting. To further improve the learning ability of the model,
the clients could be assigned to either learning the new task
or reviewing the old tasks separately. The experiment results
showed that our proposed approach outperforms baselines in
mitigating catastrophic forgetting and achieves a good trade-
off between stability and plasticity. For future work, we will
further enhance our approach to overcome the intra-task for-
getting in Non-IID data and reduce its training costs.
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