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Abstract
System monitoring and anomaly detection is a cru-
cial task in daily operation. With the rapid de-
velopment of cyber-physical systems and IT sys-
tems, multiple sensors get involved to represent
the system state from different perspectives, which
inspires us to detect anomalies considering fea-
ture dependence relationship among sensors in-
stead of focusing on individual sensor’s behavior.
In this paper, we propose a novel Graph Rela-
tional Learning Network (GReLeN) to detect mul-
tivariate time series anomaly from the perspective
of between-sensor dependence relationship learn-
ing. Variational AutoEncoder (VAE) serves as the
overall framework for feature extraction and sys-
tem representation. Graph Neural Network (GNN)
and stochastic graph relational learning strategy
are also imposed to capture the between-sensor
dependence. Then a composite anomaly metric
is established with the learned dependence struc-
ture explicitly. The experiments on four real-world
datasets show our superiority in detection accuracy,
anomaly diagnosis, and model interpretation.

1 Introduction
Time series anomaly detection is an important research topic
and has wide applications. For example, in industry, sensors
are mounted in the system for production line monitoring.
Generally, a system has different sensors to describe its global
state and requires multivariate time series anomaly detection
techniques to trigger system-level alarm [Su et al., 2019].

As sensor dimension increases, dependence relation-
ship between sensors becomes more important for efficient
anomaly detection. For example, Fig.1 plots time series
signals of four sensors in a secure water treatment system
(SWaT). It shows one anomaly happened on sensor LIT-
101. Then sensor FIT-101 and actuator MV-101 follow the
anomaly and drop to low level values, while sensor P-101
remains uninfluenced. Yet from the detection perspective, it
does not mean sensor P-101 is useless, since its dependence
relationship between others is actually changed and will help

∗Corresponding author.

Figure 1: An example of anomaly in multivariate time series for a
secure water treatment system: Signals of four different sensors are
plotted and one anomalous period is highlighted by red block.

detect anomaly. Similarly, the relationship between attacked
sensor and other unattacked sensors will also be the indicator
of anomaly. It motivates that monitoring dependence rela-
tionship would be more powerful in complex systems, com-
pared with merely focusing on monitoring each individual
sensor’s behavior.

So far numerous works have been proposed for multi-
variate time series anomaly detection. Neural networks are
widely used given high data dimension and generally have
better performance than traditional statistical methods. Con-
sidering the anomalies are generally unpredictable with vari-
ous patterns, unsupervised-learning-based methods are more
attractive. The basic framework is to use no-anomaly data to
establish a model describing the normal system pattern. Then
testing data that cannot be well fitted by the pre-trained model
would be regarded as anomalies.

However, most existing methods cannot model the
anomaly from the perspective of multivariate time series de-
pendence relationship. Though there are also some graph
learning based methods considering dependence relationship
in modeling, their intrinsic information loss will consequently
undermine the detection power, which will be illustrated in
Section 4.6.

In this work, we propose a novel anomaly detection frame-
work, called Graph Relational Learning Network (GReLeN),
to fill the gaps mentioned before. Our contributions could be
summarized as follows:

(a) GReLeN utilizes VAE structure to learn a probabilistic
relation graph for multiple sensors, where the latent vari-
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able of VAE is used to capture the dependence relation-
ship between sensors.

(b) We propose to detect anomaly from the perspective of
graph relational learning for the first time. The anomaly
detection score is established based on the explicit de-
pendence relationship learned from model.

(c) The experiments on four real world datasets show that
our proposed model could describe the latent depen-
dence among sensors well and has good interpretabil-
ity corresponding to domain knowledge. Our proposed
model also shows superiority regarding detection accu-
racy and anomaly diagnosis.

2 Related Work
2.1 Multivariate Time Series Anomaly Detection
Considering the quick development of neural network, only
deep-learning based models are reviewed in this subsection.
The current works could be classified as prediction-based
methods and reconstruction-based methods.

(a) Prediction-based models: Prediction-based models uti-
lize advanced deep learning components to capture spatial-
temporal dependence, and use the prediction error as anomaly
score for detection. Well designed modules could achieve
more accurate prediction, and consequently be helpful to de-
tect abnormal ones. [Deng and Hooi, 2021] proposes a GNN
based method to aggregate the information between sensors.
[Zhao et al., 2020] combines feature-oriented Graph Atten-
tion Network (GAT) and time-oriented GAT to handle spatial
dependence and temporal dependence while predicting.

(b) Reconstruction-based models: Reconstruction-based
methods hope to find a latent representation for the entire
time series for data reconstruction. Loss function of model
is a common choice for anomaly score. [Li et al., 2019] uses
Long Short-Term Memory (LSTM) as basic cells, and con-
siders the entire variable set concurrently with a Generative
Adversarial Network (GAN) framework. In [Su et al., 2019],
the proposed OmniAnomaly uses stochastic Recurrent Neu-
ral Network (RNN) to find robust representations for multi-
variate time series. [Audibert et al., 2020] proposes an au-
toencoder architecture whose adversarial-style learning is in-
spired by GAN. Recent work [Abdulaal et al., 2021] utilizes
spectral analysis on the latent representation and produces a
synchronized representation for multivariate data. However,
in these works, no dependence relationship between variables
has been considered and modeled explicitly.

2.2 Graph Learning in Multivariate Time Series
GNN is commonly used in multivariate time series predic-
tion, where they regard each single time series as a node and
their dependence as edges in graph. A common assumption
is that the graph structures should be pre-defined based on
domain knowledge. It makes the model very sensitive to the
choice of graph, and loses generality. Recent studies adopt
a data-driven way (i.e. graph learning strategy) to learn the
graph structure between different time series automatically.
In [Shang et al., 2020; Wu et al., 2020], graph structure
learning is used for improving multivariate time series pre-
diction. In [Kipf et al., 2018], a Neural Relational Inference

Figure 2: Proposed structure for anomaly detection with proposed
Graph Relational Learning Network (GReLeN) model.

(NRI) model is used to learn the system dynamics from ob-
servational data based on VAE. However, their node-to-edge
and edge-to-node operations on graph result in heavy com-
putation complexity, which hinders their application in high-
dimensional time series.

[Deng and Hooi, 2021] is the most similar work to ours.
It uses node embedding to learn graph structure and do
prediction-based detection. However, its learning strategy as-
sumes the graph structure should be determined in advance
instead of automatically learned, which may lead to low
model robustness. Besides, it assumes the graph structure is
sparse and unchanged over time, which leads to information
loss. Furthermore, its learned graph structure only acts as an
intermediate module to improve prediction, but is not used to
indicate any anomaly explicitly. More comparisons will be
explained in Section 4.6.

3 Proposed Model
3.1 Problem Formulation
Consider a system with N sensors, our sequential data col-
lected over T timestamps could be denoted as X ∈ RN×T .
We denote the data collected at each sensor i and each times-
tamp t by using subscript and superscript respectively. That
is, Xi = Xi,:, Xt = X:,t. In our unsupervised assumption,
the system operates in normal condition during the first Ttrain
timestamps, which could be regarded as training data. Our
task here is to identify potential anomaly in the following
timestamps t > Ttrain. All the data coming after Ttrain will
be regarded as testing set.

A sliding window w is used for constructing the sam-
ples: St = Xt−w+1:t. The task of our anomaly detection
model f is to provide a set of binary labels indicating whether
there’s any anomaly for certain timestamp of the testing set:
yt = f(St), yt ∈ {0, 1} , 1 ≤ t ≤ Ttest. The mathematical
notations are shown in Table 1.

3.2 Anomaly Detection Process
As shown in Fig.2, our proposed anomaly detection struc-
ture is composed of an offline training module and an on-
line testing module. The offline training phase uses normal
training data to learn the normal sensor dependence relation-
ship together with the data reconstruction mechanism. Nor-
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Figure 3: Proposed Graph Relational Learning Network (GReLeN) for multivariate time-series anomaly detection with graph relational
inference.

Indices

N,T Number of sensors and timestamps in collected data
Xi, X

t Data collected at sensor i and timestamp t
w Length of sliding window to generate sample
St Sliding windowed sample data at timestamp t
h0 Number of types of dependence relationship we hope

to learn
Θt Probability parameters for dependence relationship
Zt Practical dependence relationship.
µt
i, σ Parameters of Gaussian distribution while reconstruct-

ing
p̃tk, q̃k Learned and prior probability to fall into dependence

type k

Table 1: Notations

mal pattern of time-varying multivariate system and the pre-
trained model could be obtained. In the online testing phase,
the model is used for testing data stream without additional
training. By monitoring the sensor dependence relationship
of the testing data, anomaly detection and diagnosis could be
achieved.

3.3 Model Overview
The overall architecture of our model GReLeN is shown in
Fig.3. GReLeN follows the main structure of VAE. In partic-
ular, three sub-modules are contained in our proposed frame-
work.

(a) Encoder: In the encoder part, we use linear layers to
extract temporal features for each time series input. Self-
attention-based [Vaswani et al., 2017] mechanism would
be applied for efficient high-level feature capturing and
dependence relationship inference.

(b) Latent variable with sampling: The output of encoder
is used to parameterize the distribution of dependence
relationship among different time series. Reparametriza-
tion trick would be used for enabling backpropagation.

(c) Decoder: In the decoder part, our goal is to recon-
struct the input series recurrently. A spatial-temporal
cell would be applied here based on the relational graph
we have sampled by latent variable.

3.4 Encoder
The input of encoder is a sample series St generated by slid-
ing window w. The target of encoder is to learn the distri-
bution qϕ that the latent dependence relationship Zt|St fol-
lows. In particular, we can denote that qϕ is parameterized by
Θt = {θti,j , i, j = 1, . . . , N}.

We first use a linear layer to extract temporal feature Ht

from the raw input series, where Wl ∈ RT×c1 is the learnable
parameters and c1 is the dimension of high-level extracted
temporal features: Ht = StWl.

Self-attention-based mechanism would be applied to cal-
culate Θt based on Ht = {hti, i = 1, . . . , N}. More spe-
cific, high-level extracted feature will be projected into la-
tent query, key subspace Qt,Kt with learnable parameters
Wq,Wk. Then the dependence relationship distribution pa-
rameters can be obtained by dot-product attention:

Qt = HtWq,K
t = HtWk,Θ

t = QtKtT =
[
θti,j

]
1≤i,j≤N

Further, it is natural to extend the multi-head attention strat-
egy here to learn multiple types of dependence and improve
the representation ability of latent variables. For the attention
with h0 heads, we can get Θt as follows:
Θt = Softmax (Concat (head1, ..., headh0

)) =
[
θti,j

]
1≤i,j≤N

Qt
h = HtWq,h,K

t
h = HtWk,h, headh = Qt

hK
t
h
T
, 1 ≤ h ≤ h0

where Wq,h and Wk,h are learnable parameters of the hth

head, Θt ∈ Rh0×N×N .
Here, each pair-wise parameter θti,j is a vector with length

h0, since it means we have h0 types of dependence in total.
It’s intuitive that we assume θti,j is the parameter for categori-
cal distribution (e.g. multinomial distribution). Therefore, we
use the softmax function to guarantee the sum of the proba-
bility of all these types equals 1.
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3.5 Sampling
The above encoder formulates the distribution qϕ to generate
latent variable ztij ∈ Rh0 , which is supposed to be a one-
hot vector indicating which type of dependence it belongs to.
However, the discretization of ztij hampers backpropagation
and brings additional trouble in the training process.

A recent solution is to use Gumbel-Softmax categorical
reparameterization trick [Jang et al., 2017]. It utilizes the
continuous variable approximation to make backpropagation
possible by

ztij = softmax
(
θtij + g

τ

)
where g is a h0 dimension vector of i.i.d. samples drawn
from a Gumbel(0,1) distribution and the continuous distribu-
tion converges to expected one-hot samples if we have tem-
perature parameter τ → 0.

3.6 Decoder
The decoder is designed to reconstruct the original input se-
ries with the guidance of learned dependence relationship.
Recall that zti,j is an h0 dimension vector. Furthermore,
Zt ∈ Rh0×N×N could be considered as the concatenation
of all the h0 graph adjacency matrices. We model the re-
construction module by following a Gaussian distribution as-
sumption:

pψ

(
Xt′+1|Xt′ , ..., Xt−w+1,Zt

)
= N

(
µt

′+1,σ2I
)

(1)

for t′ = t − w + 1, . . . , t − 1. We divide the h0 types of
learned dependence into two parts. One of the graphs will
be treated as ”null dependence”, which aims to guarantee the
sparsity via prior setting. The other h0 − 1 graphs denote
different relationship structures, which will be used as graph
adjacency matrix in Diffusion Convolutional Gated Recurrent
Unit (DCGRU)[Li et al., 2018] to do the recurrent reconstruc-
tion. All the outputs from different graphs will be summed up
to obtain the final output.

Mathematically and formally, for any graph dependence
structure with adjacency matrix A, DCGRU combines GRU
temporal cell and diffusion convolutional GNN:

Rt
′
= sigmoid

(
WR ⋆A

[
Xt′∥Ht′−1

g

]
+ bR

)
,

Ct′ = tanh
(
WC ⋆A

[
Xt′∥

(
Rt

′ ⊙Ht′−1
g

)]
+ bC

)
,

U t′ = sigmoid
(
WU ⋆A

[
Xt′∥Ht′−1

g

]
+ bU

)
,

Ht′

g = U t′ ⊙Ht′−1
g +

(
1− U t′

)
⊙ Ct′

where the graph convolution operation ⋆A is defined as:

WQ ⋆A Y =

K∑
k=0

(
wQk,1

(
D−1
O A

)k
+ wQk,2

(
D−1
I AT

)k)
Y

Here, DO and DI are the out-degree and in-degree ma-
trix of graph. ∥ denotes concatenation. For Q = R,U,C,
wQk,1, w

Q
k,2, bQ are learnable parameters and K is the hyper-

parameter reprensenting the diffusion degree while convolu-
tion. At each time step t′, the hidden state Ht′

g serves as our
final reconstruction µt

′+1.

3.7 Objective Function and Training
As a VAE-based model, the objective function could be max-
imizing the evidence lower bound (ELBO) of VAE:

L = Eqϕ(Zt|St)

[
logpψ

(
St|Zt

)]
−KL

[
qϕ

(
Zt|St

)
∥pψ

(
Zt

)]
The first term Eqϕ(Zt|St) [logpψ (St|Zt)] is the so-called re-
construction loss and KL [qϕ (Zt|St) ∥pψ (Zt)] indicates the
Kullback-Leibler (KL) divergence loss.

In the decoder, we could decompose the first term in a re-
current way:

pψ
(
St|Zt

)
= Πt−1

t′=t−w+1pψ

(
Xt′+1|Xt′ , ..., Xt−w+1,Zt

)
(2)

Combining Equation (1) and (2), for each sample St, the total
reconstruction loss could be estimated by

L1 = −
N∑
i=1

t∑
t′=t−w+2

||xt′i − µt
′

i ||2

2σ2

The second term in L, i.e., the KL divergence loss, measures
how well the dependence relationship we learn from encoder
matches the prior distribution.

Given each sensor has influence or could be influenced by
only a small proportion of others, we would assume that the
dependence relationship is sparse among all these sensors.
Therefore, the type denoting ”null dependence” should have
a larger prior. Among all these h0 graphs, only h0 − 1 graphs
will be used in decoder for reconstruction. The graph which
has not been used while decoding would be regarded as ”null
structure”. If two series have connections in ”null structure”,
they will not have dependence in practical because of the dis-
carding.

Denote our prior multinomial distribution parameters as
q̃ = (q̃1, q̃2, ..., q̃h0). Mathematically, the KL divergence loss
could be computed by

L2 = KL
[
qϕ

(
Zt|St

)
∥pψ

(
Zt

)]
=

h0∑
k=1

p̃tk log

(
p̃tk
q̃k

)
where p̃tk =

∑N
i=1

∑N
j=1 z

t
i,j(k) is the sum of probability

that the learned dependence between sensor i and sensor j
belongs to type k.

4 Experiments
4.1 Datasets

Datasets Name SWaT WADI SMD PSM
Training size 496800 1048571 708377 129784
Testing size 449919 172801 708393 87851

Number of Sensors 51 112 38 26
Number of Attacks 41 (36) 15 327 72
Anomaly Durations 100 ∼ 34208 87 ∼ 1740 2∼3161 1∼8861
Anomaly rate(%) 11.97 5.99 4.16 27.76

Table 2: Detailed characteristics of the four real-world datasets.

We conduct our proposed model on four real-word
datasets: SWaT (Secure Water Treatment Testbed) [Goh et
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Method SWAT WADI SMD PSM Average
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 F1

ADD 98.0±0.17 63.4±0.24 77.0±0.19 89.0±0.34 40.3±0.44 55.5±0.47 99.8±0.93 40.9±0.56 58.1±0.62 82.3±1.04 41.5±0.40 55.2±0.40 61.4
IF 80.3±0.17 35.6±0.27 49.4±0.25 99.3±0.24 24.1±1.29 38.9±1.68 99.7±0.36 47.6±0.63 64.5±0.59 75.9±0.81 57.3±0.86 65.3±0.85 54.5

LSTM-VAE 96.1±0.83 59.3±0.91 73.4±0.74 87.4±0.63 13.6±0.71 23.5±1.08 87.0±0.94 79.4±0.74 83.0±0.82 81.0±0.58 58.2±0.88 67.7±0.59 61.9
MAD-GAN 97.3±0.56 64.6±0.49 77.7±0.43 41.0±0.60 34.2±0.67 37.3±0.46 17.5±0.43 92.9±0.80 29.5±0.59 43.4±0.83 63.7±0.35 51.6±0.57 49.1

OmniAnomly 71.7±0.78 96.3±0.76 82.2±0.40 26.9±0.73 98.2±0.86 42.2±0.91 97.8±1.07 94.3±0.70 96.0±0.61 96.0±0.39 80.9±0.68 87.8±0.48 77.1
USAD 97.9±0.20 72.7±0.67 83.4±0.43 64.4±0.68 31.6±0.69 42.3±0.63 93.6±0.46 95.5±0.70 94.6±0.57 92.1±1.07 57.6±1.00 70.9±0.81 72.9
GDN 98.2±0.16 67.3±0.41 79.8±0.27 98.2±0.32 39.9±1.11 56.7±1.10 58.1±0.93 56.6±0.41 57.3±0.54 43.4±1.03 76.0±0.61 55.2±0.81 62.3

RCoders 90.1±0.32 76.8±0.71 82.9±0.53 64.5±0.48 33.5±0.53 44.1±0.53 81.2±0.67 80.0±0.82 80.6±0.61 98.9±0.40 87.3±0.32 92.7±0.25 75.1
GReLeN Loss 77.8±0.35 78.0±0.27 77.9±0.08 80.8±0.97 37.4±0.74 51.1±0.82 79.4±0.85 79.1±1.03 79.2±0.36 58.2±0.37 96.5±0.41 72.6±0.21 70.3
GReLeN Topk 91.0±0.32 80.9±0.14 85.7±0.12 79.3±0.52 48.2±0.91 59.9±0.70 88.2±0.61 86.3±0.64 87.2±0.21 95.8±0.98 77.3±0.49 85.6±0.49 79.6

GReLeN Degree 95.6±1.04 83.5±0.51 89.1±0.21 77.3±1.43 61.3±0.34 68.2±0.74 88.2±1.03 95.1±0.90 91.5±0.91 94.2±1.22 92.1±1.12 93.1±0.63 85.5

Table 3: Performance comparison on real-world datasets with 5 runs. Best F1 score is highlighted by bold style.

al., 2016], WADI (Water Distribution Testbed) [Ahmed et al.,
2017], SMD (Server Machine Dataset) [Su et al., 2019], and
PSM (Pooled Server Metrics) [Abdulaal et al., 2021]. Normal
data would be divided into training data (80%) and validation
data (20%). Training data is used for model training, and val-
idation helps model selection. Anomaly only lies in testing
data. More descriptions about datasets are shown in Table 2.

In particular, SWaT, WADI and PSM have only one entity
to be monitored. SMD has 28 different entities, where each
entity has 38 sensors. Different entities need to be trained and
tested independently.

4.2 Baselines and Evaluation Metrics
To illustrate the superiority and effectiveness of our proposed
model, we compare our model with the following traditional
methods IF: Isolated Forest [Liu et al., 2008]; AAD: Active
Anomaly Discovery [Das et al., 2016], and deep-learning-
based state-of-the-art baselines: LSTM-VAE [Park et al.,
2018]; MAD-GAN [Li et al., 2019]; OmniAnomaly [Su et
al., 2019]; USAD [Audibert et al., 2020]; GDN [Deng and
Hooi, 2021]; RCoders [Abdulaal et al., 2021].

The evaluation metrics we consider here include Preci-
sion, Recall and F1 Score (F1). A commonly used point
adjustment strategy [Su et al., 2019; Deng and Hooi, 2021;
Audibert et al., 2020] is involved to assure that if at any
timestamp of an anomaly’s occurring period the anomaly is
detected, we regard it as an accurate detection.

4.3 Experimental Setup
In our experiments, we set c1 = 64, h0 = 4 and all the hid-
den dimension in DCGRU cell equal to 64. The number of
DCRNN layers is 2 in SWaT and 1 in other datasets. The
batch size is 32. The method is implemented by Pytorch
using the Adam [Kingma and Ba, 2015] optimizer with the
learning rate 1 × 10−3. All the samples are generated with
a sliding window w = 30. 100 epochs are used for train-
ing. Our prior multinomial distribution parameters setting is
q̃ = [0.91, 0.03, 0.03, 0.03].

4.4 Anomaly Score Establishment
We compare two ways of anomaly score establishment in
this work. First we utilize the loss function, a common type
of anomaly score regarding reconstruction-based methods.
More specifically, we use KL divergence loss L2 here (de-
noted by GReLeN Loss). By experiments we find that L2 is
more stable and comprehensive than reconstruction loss L1.

Figure 4: Distribution for dependence relationship in abnormal case,
expected prior and normal case (experiments for SWAT).

However, the KL divergence loss mainly focuses on global
deviation of the dependence structure from its prior distribu-
tion. As mentioned before, the specific dependence relation-
ship between sensors also reveals the anomaly and includes
more local information. Therefore, in dependence graphs,
we use the sum of all the sensors’ in/out degree as another
anomaly score (denoted by GReLeN Degree). Consider only
sudden changes should be detected as anomaly, while the
gradual shift is acceptable for normal operation, we use a
moving average filter strategy for noise smoothing. By ex-
periments, we find that the sudden, anomalous changes could
be enlarged and the gradual, noisy shift could be removed via
this strategy.

Mathematically we have, GReLeN Loss = L2, GRe-
LeN Degree =

∑N
i=1 d

in
i + douti . Here, dini , douti are moving

filtered in/out degree of node i in the learned graph respec-
tively. In our composite score, we consider the bi-direction
dependence changes for all the time series. We believe that
our anomaly score could provide a comprehensive metric to
reveal the changes in the state of system.

4.5 Results
We evaluate our proposed model with 5 runs. Consistent with
[Audibert et al., 2020; Abdulaal et al., 2021; Su et al., 2019],
we use grid search to get possible anomaly thresholds for ev-
ery model and report the results with the highest F1 score.

As shown in Table 3, our proposed GReLeN model
achieves the best F1 performance on average, with the high-
est F1 on three datasets and comparable results on SMD.
Comparing with other SOTA baselines, GReLeN has better
and more balanced performance between Precision and Re-
call. Furthermore, WADI has low anomaly rate and conse-
quently bring large challenges to other works. Yet our GRe-
LeN could still achieve a high Recall performance with low
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Figure 5: Adjacency matrix for graph relational learning results (SWAT). (a). Average learned structure by using training data and SWaT
process diagram. (b). Learned graph on testing data without anomaly. (c). Learned graph on testing data with anomaly.

missing alarm. Also, our model achieves balanced perfor-
mance on all these datasets, which illustrates the model ro-
bustness.

Unsatisfactory performance in other reconstructed-based
models (LSTM-VAE, MAD-GAN, OmniAnomaly, USAD)
highlights our superiority to involve explicit dependence re-
lationship inference in data reconstruction. As to prediction-
based GDN, it uses node embedding and GAT to model node
correlation, and improves the prediction performance. Yet
it has intrinsic limitation due to only using naive prediction
error to be anomaly detection metric. For our GReLeN mod-
els, though GReLeN Loss could detect potential anomaly, its
global loss based anomaly score is too coarse to detect mi-
nor anomaly. In contrast, our designed dependence relation-
ship structure based anomaly score (GReLeN Degree) is more
powerful to describe and capture system anomaly.

4.6 Effect of Graph Relational Learning
We further demonstrate the superiority of our dependence re-
lationship learning strategy compared with previous similar
work GDN [Deng and Hooi, 2021]. They claim to use ex-
plicit graph to capture spatial correlation, but only ”top-k”
neighbors have be retained. Consequently its GAT can only
provide dynamic weights to the retained neighbors. In this
way, if two nodes’ dependence relationship is not that intense
and get discarded while training, they cannot provide further
information in testing phase.

In contrast, our proposed GReLeN will retain all the po-
tential neighbors, and use a proper prior to help control the
sparsity of learned graph in a data-driven way. Hence it can
avoid the information loss occurred in ”top-k” sparsity.

We validate the above discussions by a comparison, where

we retain only ”top-k” neighbors for GReLeN. The sparsity
parameter k is 15, 30, 10, 8, which is consistent with the set-
tings in GDN experiments. As shown in Table 3, comparing
GReLeN Degree and GReLeN Topk, a better F1 and Recall
performance comes from our GReLeN Degree model.

Meanwhile, as mentioned in Section 3.5, we use the
Gumbel-Softmax categorical reparameterization trick to gen-
erate the discrete latent variables. Fig.4 shows the reparame-
terized probability of the dependence relationship not belong-
ing to ”null structure”. The middle figure of Fig.4 shows the
expected results of the prior, while the other two plots show
the latent variables learned in abnormal and normal cases. We
find that the anomaly could be detected by comparing the la-
tent variables. First, since in the normal case, we assume all
the dependence relationships of nodes are sparse, hence we
can see besides the ”null structure”, all the other learnt graph
structures are quite sparse. However, in the abnormal case,
we can observe that the dependence structure of nodes is no
longer sparse due to the right tail in the top figure, which
means the system with anomaly tends to have more intensive
dependencies.

4.7 Model Interpretability and Anomaly Diagnosis
The dependence structure we learned by latent variable makes
our proposed model have better interpretability. In this sub-
section, we discuss the relational learning and anomaly diag-
nosis ability.

Fig.5(a) shows the relational graph adjacency matrix
learned on SWaT training data, which could be partly in-
terpreted by human knowledge. Three types of graphs are
involved to capture different views of dependence relation-
ships. According to the second type of graph, one may con-
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clude the first four sensors have strong dependence with other
sensors. Referring to the process diagram of this water treat-
ment system [Goh et al., 2016], the first four sensors consist
of the first treatment process phase P1 and should be consid-
ered as the fundamental elements of system, which leads to
much closer relationship with other sensors. The third type
of graph indicates that a small group of sensors have strong
dependence among each other. In fact, the sensors circled
in purple belong to the same treatment process phase P3. It
is also acceptable that these sensors have strong dependence
because of their same process phase. In Fig.5(b), the system
in normal condition shows similar graph pattern to what we
have learned in the training phase, while anomaly may lead
to a totally different structure (Fig.5(c)).

Our model is also helpful for model diagnosis. A closer
look at Fig.5(c) finds two significant abnormal hubs as high-
lighted by rectangles. The abnormal hub in block1 shows an
actuator has an anomalous setting, which has been recorded
in the operation log. The abnormal hubs in block2 lies in pro-
cess stage P5, i.e., the downstream process of the attacked
point in block1. It indicates that our method can not only de-
tect the recorded anomaly, but could also report the relative
anomalies happening on downstream process beyond the op-
eration log.

Fig.6 shows a case study for WADI. The WADI system has
three sub-processes. The sub-process that each sensor be-
longs to is marked by the first number of the sensor’s name.
The two most suspicious sensors, whose anomaly scores are
exhibited in Fig.6(c)(d), are consistent with the ground-truth
operation log. The dependence graph learned in normal con-
dition (Fig.6(a)) has sparse connections for sensors. But in
the anomalous state, the attacked sensors(shown in orange
color) have much intenser connections with other sensors in
the same sub-process, which is consistent with our domain
knowledge.

The above case studies show our model is powerful to diag-
nose anomaly, and can provide crucial information and guid-
ance for daily operation.

5 Conclusion
In our work, we proposed to detect anomaly in multivariate
time series from the perspective of graph relational learning.
Our Graph Relational Learning Network (GReLeN) model
combines VAE structure as well as a graph dependence struc-
ture learning strategy for anomaly detection in multivariate
time series in a reconstructed way. The latent variable in
VAE captures the dependence relationships between sensors
explicitly, based on which a well-designed anomaly score is
constructed. The experiments show our superiority over both
prediction-based and reconstruction-based methods. The in-
terpretability helps us with anomaly diagnosis and provides
in-time guidance to daily operation.
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