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Abstract
In few-shot learning, methods are enslaved to the
scarce labeled data, resulting in suboptimal embed-
ding. Recent studies learn the embedding network
by other large-scale labeled data. However, the
trained network may give rise to the distorted em-
bedding of target data. We argue two respects are
required for an unprecedented and promising so-
lution. We call them Better Embedding and More
Shots (BEMS). Suppose we propose to extract
embedding from the embedding network. BE max-
imizes the extraction of general representation and
prevents over-fitting information. For this purpose,
we introduce the topological relation for global re-
construction, avoiding excessive memorizing.MS
maximizes the relevance between the reconstruct-
ed embedding and the target class space. In this
respect, increasing the number of shots is a piv-
otal but intractable strategy. As a creative method,
we derive the bound of information-theory-based
loss function and implicitly achieve infinite shot-
s with negligible cost. A substantial experimen-
tal analysis is carried out to demonstrate the state-
of-the-art performance. Compared to the baseline,
our method improves by up to 10%+. We also
prove that BEMS is suitable for both standard pre-
trained and meta-learning embedded networks.

1 Introduction
The outstanding successes of deep learning are partly ac-
credited to the sheer amount of trainable samples. With the
rapid development of deep learning, few-shot learning con-
ceives a more challenging scenario, where only scarce la-
beled samples exist in each novel class. Under a standard
few-shot learning setting, the embedding network is trained
on substantial labeled data that sampled from base classes,
i.e., no intersection with novel classes. Further, the mod-
el can be fine-tuned on the few-shot labeled data of novel
classes. Recent researchs [Tian et al., 2020] [Hou and Sato,
2021] prove that embedding is the most vital aspect of few-
shot image classification, which is also the focus of this pa-
∗corresponding author

per. The embedding network training paradigm contains stan-
dard supervised pre-training [Chen et al., 2019a] and meta-
learning [Finn et al., 2017]. Either way, we debate that two
problems remain to be solved.

First, the embedding network is not well suited for novel
classes as it is associated with base classes closely. While
we can employ a few labeled samples to fine-tune the embed-
ding in the novel-class space, there is a gamble of over-fitting.
Additionally, the embedding network memorizes overmuch
details specific to base classes, resulting in distorted novel-
class embedding. Although the relevant art [Lee and Chung,
2021] is aimed at preventing over-fitting to the base class-
es via early-stage embedding reconstruction, the embedding
is still not tailored for novel classes. With a more profound
thought, we creatively reconstruct the topological relation in-
stead of the instance similarity. It alleviates the excessive pri-
ority on the original feature space and pays more attention to
global information. Furthermore, we put on the wings of in-
formation theory to make the reconstructed embedding more
in line with the novel-class space. Nonetheless, we still face
a tough nut, which leads us to the second problem.

Second, increasing the number of shots is pivotal but in-
tractable [Cao et al., 2019]. Explicit GANs-based data aug-
mentation techniques [Zhang et al., 2018] [Li et al., 2020]
occur as feasible solutions. Besides, embedding sampling
approaches [Yang et al., 2020] [Chi et al., 2021] generate
pseudo-labeled embedding in metric space. Unsatisfactori-
ly, these remedies introduce much complexity. In this paper,
we unprecedentedly introduce implicit data augmentation in-
to few-shot learning, taking inspiration from ISDA [Wang et
al., 2021]. We abstractly achieve infinite augmentation with
negligible extra computational cost, where the only alteration
reflects in the derived upper bound of the loss function. In
summary, our contributions are:

• This paper argues that two respects are required for
novel-class-specific embedding learning. First, how to
properly reconstruct pre-trained embedding. Second,
how to make the reconstructed embedding fit the novel-
class space better. Together, these two aspects constitute
our Better Embedding and More Shots (BEMS).

• This paper creatively considers topological reconstruc-
tion avoiding excessive memorizing, corresponding to
the Better Embedding (BE). In addition, we make the
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embedding more in accordance with the novel-class s-
pace through the derived upper bound of the loss func-
tion. This bound implicitly achieves infinite shots with
negligible cost, corresponding to the More Shots (MS).
To the best of our knowledge, it is the first work to intro-
duce implicit data augmentation into the few-shot learn-
ing.
• Substantial evaluations and ablation studies prove the

promising performance. We also demonstrate that our
method is appropriate for both standard pre-trained and
meta-learning embedded networks.

2 Related Work
Both the embedding network and downstream module can
obtain better embedding. The cross-entropy-based pre-
trained methods are the most common for the embedding
network. Other strategies, such as self-supervised learn-
ing [Chen et al., 2021] and mixup [Mangla et al., 2020], are
available for the more general-purpose embedded feature. For
the downstream module, one tends to improve the metric s-
pace of the embedding. BD-CSPN [Liu et al., 2020] recti-
fies the prototype based on intra-class and inter-class biases.
S2M2R [Mangla et al., 2020] adopts the manifold mixup for
robust general-purpose representation. This paper focuses on
the downstream module. We reveal that proper reconstruction
is beneficial for better embedding.

Most methods explicitly accomplish more shots augmen-
tation in sample or embedding space. MetaGAN [Zhang et
al., 2018] generates non-perfect samples to help the classifier
identify much tighter decision boundaries based on genera-
tive adversarial networks. Similarly, AFHN [Li et al., 2020]
takes the few labeled samples as the conditional context to
synthesize fake features. MVT [Park et al., 2020] gener-
ates virtual embedding to boost the target space. Howev-
er, it is still an explicit sampling process needing addition-
al regularization. Instead of synthesizing image instances,
TriNet [Chen et al., 2019b] proposes to synthesize embed-
ding directly. Distribution Calibration [Yang et al., 2020] and
Learning2Capture [Chi et al., 2021] generate pseudo-labeled
embedding based on the similarity relation. All of these meth-
ods introduce additional complex modules, while the modifi-
cation in our method is only reflected in the loss function,
which is more straightforward and more efficient.

3 Method
3.1 Notation
The few-shot problem is represented by the data in novel
class Cn. With xi as the embedded D-dimension represen-
tation and yi as its label, the consuetudinary naming, the N-
way K-shot task sampled from Cn denotes the support set
S = {xi, yi}N×K

i=1 , with N classes and each has K labeled
samples. Corresponding with the S , the unlabeled query set
is defined as Q = {xi, yi}N×K+T

i=N×K+1, where T means the vol-
ume. In this paper, we utilize the vector and matrix forms
flexibly. For example, we also use (X ∈ RT×D, Y ∈ RT×N)
to represent data pairs inQ. To obtain embedding, an embed-
ding network fΦ(·) is trained on a large-scale labeled dataset

 !

Base-class Space Novel-class Space

More ShotsBetter Embedding

support set

query set

implicitly augmented data

semantic direction

Figure 1: Overview of our method. Different colored circles indi-
cate different categories of embedding. By and large, we reconstruct
the embedding from Cb space to Cn space based on two aspects. The
topological reconstruction leads to better embedding, and the im-
plicit augmentation achieves more shots.

belonging to the base class Cb, where Cb ∩ Cn = ∅. Typically,
the embedding network can be standard pre-trained [Wang et
al., 2019] or meta-learning model [Liu et al., 2019].

3.2 Overview

Figure 1 gives a general description of our method. Given
the embedding xi and our topological reconstruction network
gΘ(·), we implement Better Embedding (BE) based on topo-
logical reconstruction (Section 3.3), and More Shots (MS)
by implicit augmentation (Section 3.4). Finally, the trained
network provides Cn-specific embedding: zi = gΘ(xi).

3.3 Better Embedding

We introduce that two steps lead to better embedding. Sup-
pose we propose to extract the embedding by fΦ(·). The first
step is to maximize extraction of general representation and
minimize extraction of Cb-specific information. As we have
discussed in Section 2, one may utilize pre-training trick-
s [Chen et al., 2021] to make fΦ(·) more general or stop
the embedding reconstruction in time [Lee and Chung, 2021]
to prevent Cb-specific information. Instead of reconstructing
the embedding directly, we rebuild the topological relation
learned by fΦ(·). It makes the gΘ(·) pay more attention to the
global information, avoiding over reconstruction. Formally,
we have:

LBE(X; Θ) =
∥∥XTX − ZTZ

∥∥2

F
, (1)

where Z = gΘ(X) and F denotes the Frobenius norm. We
gingerly strike their trade-off balance for S and Q. Because
S often acts as the precious supervised prototype [Liu et al.,
2020], andQ provides more samples. Specifically, we obtain
better embedding by:

LBE = λ1LSBE + λ2LQBE , (2)

where λ1 and λ2 balance the contribution between S and Q.
LBE achieves the purpose of the first step, i.e., appropriate
information extraction. Next, we move on to step two.
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3.4 More Shots
In BE , the reconstructed embedding is still stuck in the Cb
space. Ideally, the second step is to maximize the relevance
between the reconstructed embedding and the Cn space. This
inspiration can be depicted as:

maxR(Z, Cn), (3)
where R(·, ·) represents the relevance. Nevertheless, scarce
labeled data in Cn are not up to this challenge. Fortunately,
we propose that distribution capture is a sound thought, where
more or even infinite shots can be sampled. Once we have
captured the class-conditional distribution, we can perform
the following sampling:

z̃i ∼ N (zi, αΣyi), (4)
where Σyi is the class-conditional covariance matrix, and α
is a positive coefficient that controls the strength. Implement-
ing such seemingly trivial sampling requires complex explicit
methods, such as metric learning [Chi et al., 2021] and GAN-
s [Li et al., 2020]. Nonetheless, this paper presents straight-
forward implicit data augmentation without introducing addi-
tional modules.

We primarily expand from Q. It is critical to secure accu-
rately estimated distribution for the unlabeled ones, as oth-
erwise, it will cast a catastrophic impact. Consequently, we
embrace the prevalent prototypical classifier to acquire pseu-
do distribution:

pij =
d
(
zi,µj

)∑N
k d (zi,µk)

, (5)

where d(·, ·) can be any distance function. The prototype
µj is calculated by the average of j-class S , mathematical-
ly, µj = Ez∼Sj [z]. According to these pseudo distributions,
we can compute Σyi , where yi = arg min

j∈N
d(zi,µj). Cor-

respondingly, we identify the meaningful semantic directions
and proceed to sampling.

Assume we train the gΘ(·) with the weight matrix W and
corresponding bias b. With M times sampling, we maximize
R(Z, Cn) via minimizing the LQR :

LQR = 1
T

T∑
i=1

N∑
j=1

pij
1
M

M∑
m=1
− log( e

wTj z̃mi +bj∑N
k=1 e

wT
k

z̃m
i

+bk
). (6)

Based on it, the reconstructed embedding leans toward the
pseudo Cn distributions. Covetously, when M → ∞, we
rewrite Equation (6) in an expectation form:

LQR = 1
T

T∑
i=1

N∑
j=1

pijEz̃i

[
log(

∑N
k=1 e

vTkj z̃i+bk−bj )
]
, (7)

where vkj = wk − wj . The above formula, however, is
hard to apply. We show the possibility to derive an easy-to-
compute upper bound, achieving this unattainable goal.
Theorem 1. The upper bound of LQR is given by [Wang et al.,
2021]:

LQR ≤
1

T

T∑
i=1

N∑
j=1

pij log

(∑N

k=1
ev

T
kjzi+bk−bj+α

2 vTkjΣyivkj

)
∆
= LQMS .

Proof. According to Jensen’s inequality E [logX] ≤
log E [X], we derive:

LQR ≤
1
T

T∑
i=1

N∑
j=1

pij log
(∑N

k=1 Ez̃i

[
ev

T
kj z̃i+bk−bj

])
.

(8)
According to the moment-generating function E

[
etX
]

=

etµ+ 1
2σ

2t2 , where X ∼ N (µ, σ2), we have:

Ez̃i

[
ev

T
kj z̃i+bk−bj

]
= ev

T
kjzi+bk−bj+vTkjΣyivkj . (9)

Thus, the upper bound of LQR is derived:

LQR ≤
1
T

T∑
i=1

N∑
j=1

pij log
(∑N

k=1 e
vTkjzi+bk−bj+α

2 vTkjΣyivkj
)
,

(10)
where α is the positive hyper-parameter. Finally, we derive
the final loss function LQMS .

So far, we have implicitly carried out infinite sampling
based on the unlabeled Q. In a similar spirit, we apply the
upper bound of cross-entropy loss function for the labeled S .

Theorem 2. Similar to Theorem 1, we derive the upper
bound of the cross-entropy loss [Wang et al., 2021]. For
zi ∈ S , we have:

LSR ≤ 1
T

T∑
i=1

log
(∑N

k=1 e
vTkyi

zi+bk−bj+α
2 vTkyi

Σyivkyi

)
∆
= LSMS .

(11)

Proof. Similar to the proof of Theorem 1, we have the fol-
lowing derivation based on Jensen’s inequality and moment-
generating function.

LSR =
1

T

T∑
i=1

Ez̃i

[
log(

∑N

k=1
ev

T
kyi

z̃i+bk−bj )

]

≤ 1

T

T∑
i=1

log(
∑N

k=1
Ez̃i

[
ev

T
kyi

z̃i+bk−bj
]
)

=
1

T

T∑
i=1

log(
∑N

k=1
ev

T
kyi

zi+bk−bj+α
2 vTkyi

Σyivkyi ).

3.5 Overall Objective Function
In the mass, we minimize the overall objective given by:

LBEMS = λ1LSBE + λ2LQBE︸ ︷︷ ︸
LBE

+LSMS + LQMS︸ ︷︷ ︸
LMS

. (12)

When K = 1, LSMS is reduced to LSR. In brief, the first two
terms work for BE and the last two terms work forMS . They
provide the Cn-specific embedding together.
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4 Experiments
4.1 Experimental Settings
Datasets. We perform evaluations on three popular dataset-
s. The miniImageNet [Vinyals et al., 2016] and
tieredImageNet [Ren et al., 2018] are the subsets of Ima-
geNet. CUB-200-2011 [Wah et al., 2011] is a fine-grained
bird classification dataset. All images are resized to 84× 84.
More details are depicted in Table 1.

Evaluation Protocol. We report the average accuracy and
95% confidence interval on random sampled 600 tasks. Each
task contains 15 query samples of each class, i.e., T=15×N.
For reported results, the number in bold means the best
performance and underline means the second. All our re-
implemented algorithms, as indicated by the superscript†,
adopt the unified trained embedding network for fairer com-
parisons.

4.2 Implementation Details
Embedding Networks. We train our embedding network-
s using the standard cross-entropy loss on Cb based on three
backbones: ConvNet, ResNet-18, and WideResNet. ConvNet
comprises four blocks. Each block contains a 64-filter 3 ×
3 convolution, a batch normalization layer, a ReLU activa-
tion and a 2 × 2 max-pooling layer. ResNet-18 we used is
a standard 18-layer residual network that removed the first t-
wo down-sampling layers. WideResNet is the wide residual
network with 28 convolutional layers and 10 widening fac-
tors. For WideResNet training, we set the label-smoothing
parameter as 0.1. We use SGD optimizer and 128 mini-batch
sizes. Referring to [Ziko et al., 2020], we use early stopping
by prototypical classifier on the validation set. For ConvNet
and ResNet-18 training, we adopt the source code provided
by [Wang et al., 2019]. In addition, we extend our appli-
cability to meta-learning in Section 4.7. This section train-
s all re-implemented methods with Adam optimizer and an
initial learning rate of 0.001. We cut the learning rate in
half every 10,000 and 25,000 episodes for miniImageNet and
tieredImageNet, respectively.

Reconstruction Training. We use 2-layer fully connected
layers with ReLU function and a 0.5 dropout as our recon-
struction module. The first layer reduces the dimension to
half the input dimension, and the second layer restores the di-
mension. We conduct 200 training iterations. For optimizer,
we use Adam with 0.001 learning rate and 0.01 weight decay.

Preprocessing. The output of the penultimate layer of the
embedding network is extracted as the embedding feature.
The centering and L2-normalization are used as preprocess-
ing tools. For centering, we first calculate the average val-
ue of the embedded features in Cb: µ = Ex∼Cb [x]. Then
x ← x − µ, where x ∈ Cn. For L2-normalization, we com-
pute: x← x

‖x‖2
.

Hyper-parameters. The hyper-parameters are tuned by
validation set. We set α = t× iter

ITER , where iter and ITER
are the current and total iterations, respectively. We tune t
in {0.01, 0.1, 0.25, 1, 10}. For λ1 and λ2, we tune them in
{0.01, 0.02, 0.1, 0.5, 1}.

Dataset Classes Images Train/Val/Test

miniImageNet 100 60000 64/16/20
tieredImageNet 608 779165 351/97/160
CUB 200 11788 100/50/50

Table 1: Details of datasets.

4.3 Improvement by our Method
We utilize the prototypical classifier as our baseline to inves-
tigate the improvement by our method. Concretely, it makes
inference of Q by matching the nearest prototype, where Eu-
clidean distance is adopted. Results of three backbones and
two datasets are reported in Table 2. All backbones yield
satisfactory results. The most remarkable performance is the
10%+ accuracy gain at most on 1-shot evaluation. Compar-
atively, 5-shot evaluation also gets a maximum 5.11% im-
provement. In addition, the performance gap between 1-shot
and 5-shot results is significantly narrowed, which will be fur-
ther proved in Section 4.8.

4.4 Comparison with Relevant Methods
We also report the performance of relevant methods in Ta-
ble 2. (1) In comparison with the explicit data augmenta-
tion methods: Distribution Calibration, Learning2Capture,
TriNet, MVT, and AFHN, our BEMS perform a signifi-
cant improvement in a lighter augmentation manner. On al-
l datasets and backbones, we averagely lead by 6.81% and
3.01% on 1-shot and 5-shot scenarios, respectively. (2) In
comparison with the embedding adaptation methods: BD-
CSPN and ESFR, we surpass them by 2.18% and 0.97% av-
eragely on 1-shot and 5-shot scenarios, respectively, because
our approach pays more attention to the topological struc-
ture and alleviates the over-fitting risk on Cb. ESFR avoids
the over-memorizing of Cb, which is similar to our motiva-
tion. Differently, our MS further brings the reconstructed
embedding closer to Cn. (3) In comparison with the infor-
mation theory based AWGIM, our BEMS leads by as much
as 12.26% on miniImageNet and 12.74% on tieredImageNet.
AWGIM maximizes the mutual information between generat-
ed weights and S as well asQ to retain information within the
task, while our utilization is essential for better embedding.

4.5 Cross-domain Evaluation
We conduct further evaluations on CUB and cross-domain s-
cenario, i.e., miniImageNet→ CUB. Results are shown in Ta-
ble 3. We also compare the most relevant algorithms, and our
method still maintains the top performance. In cross-domain
problems, our BEMS is second only to Learning2Capture,
which uses explicit data augmentation.

4.6 Significance of Better Embedding and More
Shots

First, we take our core components apart for ablation in Fig-
ure 2(Left). In this evaluation, we fix t = 10. We analyze the
following alterations:

• Baseline denotes we directly make predictions through
pre-trained embedding and prototypical classifier.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2877



Methods Backbone miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

MVT [Park et al., 2020]

ConvNet

- 67.67 ± 0.70 - -
LaplacianShot [Ziko et al., 2020] 55.70 ± 0.85 68.04 ± 0.65 57.04 ± 0.99 71.37 ± 0.68
Learning2Capture† [Chi et al., 2021] 51.18 ± 0.85 66.29 ± 0.69 51.60 ± 0.97 66.60 ± 0.79
BD-CSPN† [Liu et al., 2020] 52.35 ± 0.87 68.51 ± 0.64 55.15 ± 0.90 71.87 ± 0.71

Prototypical Classifier†
ConvNet

50.70 ± 0.79 66.15 ± 0.70 50.73 ± 0.79 69.51 ± 0.70
+ESFR† [Lee and Chung, 2021] 52.92 ± 0.89 68.91 ± 0.71 55.86 ± 0.98 71.72 ± 0.77
+BEMS (Ours) 56.11 ± 1.05 71.26 ± 0.74 56.87 ± 1.16 72.68 ± 0.74
TriNet [Chen et al., 2019b]

ResNet-18

58.12 ± 1.37 76.92 ± 0.69
AFHN [Li et al., 2020] 62.38 ± 0.72 78.16 ± 0.56
Baseline [Chen et al., 2019a] 51.75 ± 0.80 74.27 ± 0.63 - -
Baseline++ [Chen et al., 2019a] 51.87 ± 0.77 75.68 ± 0.63 - -
LaplacianShot [Ziko et al., 2020] 72.11 ± 0.19 82.31 ± 0.14 78.98 ± 0.21 86.39 ± 0.16
Learning2Capture† [Chi et al., 2021] 67.38 ± 0.97 81.04 ± 0.61 76.55 ± 0.95 85.26 ± 0.63
BD-CSPN† [Liu et al., 2020] 69.81 ± 0.95 82.32 ± 0.59 78.13 ± 0.94 86.88 ± 0.60

Prototypical Classifier†
ResNet-18

63.82 ± 0.82 79.71 ± 0.59 69.53 ± 0.89 85.32 ± 0.57
+ESFR† [Lee and Chung, 2021] 71.92 ± 0.92 82.27 ± 0.57 78.26 ± 0.98 85.83 ± 0.68
+BEMS (Ours) 73.63 ± 1.08 82.76 ± 0.64 80.36 ± 0.99 87.04 ± 0.61
Distribution Calibration [Yang et al., 2020]

WideResNet

68.57 ± 0.55 82.30 ± 0.34 78.19 ± 0.25 89.90 ± 0.41
AWGIM [Guo and Cheung, 2020] 63.12 ± 0.08 78.40 ± 0.11 67.69 ± 0.11 82.82 ± 0.13
LaplacianShot [Ziko et al., 2020] 74.86 ± 0.19 84.13 ± 0.14 80.18 ± 0.21 87.56 ± 0.15
Learning2Capture† [Chi et al., 2021] 68.65 ± 0.92 81.92 ± 0.60 75.09 ± 0.96 86.14 ± 0.64
BD-CSPN† [Liu et al., 2020] 72.55 ± 0.91 84.02 ± 0.55 79.56 ± 0.94 88.36 ± 0.59

Prototypical Classifier†
WideResNet

65.95 ± 0.90 81.76 ± 0.56 71.16 ± 0.89 86.32 ± 0.56
+ESFR† [Lee and Chung, 2021] 73.06 ± 0.91 82.80 ± 0.55 79.87 ± 0.94 87.14 ± 0.64
+BEMS (Ours) 75.38 ± 1.03 84.25 ± 0.53 80.43 ± 1.04 88.16 ± 0.58

Table 2: Comparison with our baseline and relevant approaches.

Methods CUB mini→ CUB1-shot 5-shot

TriNet [Chen et al., 2019b] 69.61 84.10 -
baseline [Chen et al., 2019a] 65.51 82.85 64.80
baseline++ [Chen et al., 2019a] 67.02 83.58 62.04
LaplacianShot [Ziko et al., 2020] 80.96 88.68 66.33
Learning2Capture† [Chi et al., 2021] 76.53 87.50 69.06
BD-CSPN† [Liu et al., 2020] 78.70 88.74 65.99

Prototypical Classifier† 70.31 86.44 65.85
+ESFR† [Lee and Chung, 2021] 79.94 88.24 65.00
+BEMS 82.74 89.12 67.34

Table 3: The classification accuracy (%) on CUB and mini → CUB
(5-shot). ResNet-18 is used as the backbone.
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Figure 2: miniImageNet ablation based on ResNet-18. (Left) The
effectiveness of each component. (Right) The influence of α in MS.

• +LSR denotes we only optimize gΘ(·) by LSR;

• +BE and +MS denote we use the LBE and LMS terms

in Equation (12), respectively;

• +ESFR denotes we take it as a contrast to BE ;

• +BES denotes the loss function withoutMS: LBES =
λ1LSBE + λ2LQBE + LSR + LQR ;

• +LBEMS denotes the complete version.

As we have mentioned in Section 4.3, our BEMS narrows
the accuracy gap between different shot numbers, which is
more intuitive in the line chart. The proposed BE substantial-
ly reconstructs better embedding. The proposedMS implic-
itly provides infinite data volume, blurring the shot disparity
and boosting the performance. Taking ESFR as a reference
for reconstruction problems, BE performs better on the 1-shot
setting. In addition, ESFR further supports ourMS perspec-
tive that embedding should get close to Cn space on the ba-
sis of Cb information reconstructing. Although MS shows
a slightly negative effect on the 5-shot scenario, it improves
significantly on the 1-shot setting. Finally, the BEMS con-
sistently achieves the highest accuracy.

Second, we report the sensitivity of t in Figure 2(Right).
In this evaluation, we fix the λ1 = λ2 = 0.1 and λ1 =
0.01, λ2 = 0.02. We observe that MS works positively in
most t values. The overall trends show that the parameter
sensitivity ofMS is affected by BE , which is reflected in the
different effects of t on performance under different λ1 and
λ2. This is because BE and MS have a latent antagonistic
relationship.MS makes embedding tend to Cn space, which
interferes with the reconstruction in BE to some extent.
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Methods miniImageNet tieredImageNet

ProtoNet† [Snell et al., 2017] 50.70 50.56
+BEMS 54.10 52.30

TPN† [Liu et al., 2019] 53.80 56.42
+BEMS 55.24 56.95

Table 4: Meta-learning methods based on ConvNet. The 1-shot per-
formances are reported.

Methods miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

w/o
LQ

MS 73.33 81.98 79.48 86.89
LQ

BE 60.15 80.72 62.89 86.56
Q 64.79 64.79 70.81 85.69

w/o
LS

MS 72.79 79.96 79.18 85.16
LS

BE 54.94 28.64 60.22 29.06
S 72.56 79.38 78.72 85.16

Prototypical Classifier 63.82 79.71 69.53 85.32

FeatRec 64.54 78.21 69.35 83.96

BEMS 73.63 82.76 79.44 87.04

Table 5: More detailed ablation studies based on ResNet-18

4.7 Meta-learning Embedding
As an extension study, we explore the enhancement effect of
BEMS on meta-learning-based embedding. We select two
representative meta-learning methods, ProtoNet [Snell et al.,
2017] and TPN [Liu et al., 2019], for evaluations. Concrete-
ly, we use BEMS to boost the test phase of two algorithms,
making the meta-knowledge transfer to the Cn better. Results
in Table 4 strongly prove that our method also significantly
improves meta-learning embedding.

4.8 Ablation Study
Based on the overall loss function, Equation (12), we conduc-
t more detailed ablations in Table 5. We fix λ1 = λ2 = 0.1
and t = 10 in this evaluation. (1) Considering the relevant
methods [Park et al., 2020] [Lee and Chung, 2021], we also
try the feature reconstruction. Accordingly, FeatRec denotes
we change our topological reconstruction to ‖X − gΘ(X)‖2F .
The results show feature reconstruction plays a negative role
in our approach, except for the 1-shot miniImageNet. (2) w/o
denotes we drop the corresponding component in the loss
function. Six results report the S and Q ablations. We ob-
serve that the reconstructions of both S and Q are indispens-
able, especially for S . The MS of S and Q have a steady
performance improvement. When the S component is entire-
ly absent, there is a certain negative impact on performance.
When we drop all Q components, the performance degrada-
tion is more significant.
Parameter Sensitivity Analysis. We conduct the parame-
ter sensitivity analysis in Figure 3. We observe higher λ1

and λ2 lead to better performances, where this phenomenon
is more sensitive to λ2. Sensitivity analysis shows that our
method is stable and effective when the LBE occupies a high
proportion in the overall loss function.

Figure 3: Parameter sensitivity analysis based on ResNet-18.

72%→85%

67%→81%

Support sample

Query sample

Figure 4: 5-way 5-shot T-SNE visualization on miniImageNet. The
ResNet-18 is utilized as the backbone.

Visualization. We use T-SNE to visualize the original and
reconstructed embedding in Figure 4. The original embed-
ding is distorted, which is reflected in poor inter-class and
intra-class relations. Exhilaratingly, our BEMS solves the
problem well, i.e., sharper boundaries. Notably, the unla-
beled Q is brilliantly reconstructed under the guidance of the
implicit augmentation.

5 Conclusion
In this paper, we first reconstruct the topological relation of
embedding, and then pioneer implicit more shots augmenta-
tion. We show significant improvement in different evalu-
ations. In ablation studies, we discuss why BEMS work-
s. Scarce labeled data is the fundamental problem of few-
shot learning. Our approach implicitly alleviates this problem
while introducing only negligible complexity, which is very
promising.
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