
RoboGNN: Robustifying Node Classification under Link Perturbation

Sheng Guan , Hanchao Ma , Yinghui Wu
Case Western Reserve University

{sxg967,hxm382,yxw1650}@case.edu

Abstract

Graph neural networks (GNNs) have emerged
as powerful approaches for graph representation
learning and node classification. Nevertheless, they
can be vulnerable (sensitive) to link perturbations
due to structural noise or adversarial attacks. This
paper introduces RoboGNN, a novel framework
that simultaneously robustifies an input classifier to
a counterpart with certifiable robustness, and sug-
gests desired graph representation with auxiliary
links to ensure the robustness guarantee. (1) We in-
troduce (p, θ)-robustness, which characterizes the
robustness guarantee of a GNN-based classifier if
its performance is insensitive for at least θ frac-
tion of a targeted set of nodes, under any pertur-
bation of a set of vulnerable links up to a bounded
size p. (2) We present a co-learning framework
that interacts model learning with graph structural
learning to robustify an input model M to a (p, θ)-
robustness counterpart. The framework also out-
puts the desired graph structures that ensure the
robustness. Using real-world benchmark graphs,
we experimentally verify that RoboGNN can effec-
tively robustify representative GNNs with guaran-
teed robustness, and desirable gains on accuracy.

1 Introduction
Graph neural networks (GNNs) [Gori et al., 2005] have
shown good performance for graph representation learning
and downstream tasks. GNNs adopt a label propagation archi-
tecture to learn discriminative node embeddings with graph
convolutional layers. In each layer, the embedding of a node
is updated by aggregating its counterparts from neighbors.

GNNs learning assume and rely on complete and accurate
link structures from an underlying graph G. Having this said,
they are often sensitive and vulnerable to even small link
perturbations (e.g., adding or removing edges) due to noisy
links [Tran et al., 2017; Paulheim, 2017] or malicious ad-
versarial attacks [Dai et al., 2018; Zügner and Günnemann,
2019]. For example, a GNN-based classifier M can be sensi-
tive under a set of link perturbations posed to graph G where
M is trained on, if its output label of a same node changes as

G is modified accordingly at training time. It is thus often de-
sirable if (1) the robustness is ensured for designated targeted
nodes of interests, (2) a small set of auxiliary links ∆L that
should be “protected”, are derived to suggest how to mitigate
the negative impact of the perturbations. This calls for proper
modeling to improve the robustness of pretrained GNNs.

We consider a novel and practical problem as follows.
• Input: a (perturbed) graph G, an input model M , a set

of targeted nodes VT , a set of “vulnerable” links Ep that
may be perturbed, and a budget p;

• Output: a triple (G′,M ′,∆L), such that M ′ is insen-
sitive to a desirable amount (θ fraction) of nodes in VT ,
for any perturbation of at most p links in Ep \∆L.

In a nutshell, the problem aims to (1) “robustify” M to
a counterpart M ′ such that M ′ ensures robust performance
for a desired amount of designated target nodes, and (2) also
generate, in accordance, a proper graph representationG′ and
a small set of links ∆L ⊆ Ep to be “protected” from attacks
to ensure the robustness. In addition, the size |∆L| reflects
“defense effort” (e.g., cost to the protection of social links or
communication networks) and should be minimized.

The above problem has its components in prior work and
is of both theoretical and practical interest. (1) Certifying ro-
bustness over entire node set [Bojchevski and Günnemann,
2019] (which requires the predicated label is insensitive to
perturbations) can be an overkill for models with desirable
guarantees. We introduce a configurable robustness in terms
of a threshold θ over designated target nodes, enabling flex-
ible robustification scenarios. (2) The generated auxiliary
structures ∆L and graph representation G′ can be readily
used to (explicitly) “recover” the graphs or directly applied
to learn other GNN-based models.

Contribution. This paper introduces RoboGNN, a co-
learning framework to robustify GNN-based classification
with desirable, configurable robustness guarantees.
(1) We introduce a notion of (p, θ)-robustness to character-
ize the robustness of GNNs (Section 2). Given graph G and
classifier M , a pair (G,M) is (p, θ)-robust w.r.t. Ep and VT ,
if the output of M is insensitive for at least θ% of VT un-
der any manipulation of at most p links in Ep. We formal-
ize (p, θ) verification and robustification problems, establish
their hardness, and introduce an algorithm to verify the (p, θ)-
robustness for a pair (G,M) w.r.t. Ep and VT . Our goal aims

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3029

to refine G to G′ and robustify M to M ′ w.r.t. Ep and VT ,
such that (G′,M ′) is (p, θ)-robust.
(2) We investigate the impact of changes of Ep to the robust-
ness, and establish a monotonicity property, which states that
the (p, θ)-robustness of a model M w.r.t. Ep and VT remains
intact on any subset of Ep. Based on the property, we study
an optimization problem that aims to compute a smallest set
of links ∆L ⊆ Ep such that (G,M) is (p, θ)-robust over
Ep \∆L (Section 3). While finding the smallest ∆L remains
intractable, we present a fast heuristic strategy to compute a
small protection set ∆L, which dynamically ranks VT based
on the likelihood that the model is robust at one single node,
and incrementally augment ∆L following efficient traversal.
(3) Based on the verification and minimality condition, we
present RoboGNN, a framework to robustify an input model
with guaranteed robustness. RoboGNN learns the graph rep-
resentation and GNNs iteratively towards (p, θ) robustness
with a goal to minimize |∆L|. The learning process is guided
by minimizing a combination of robust hinge loss and the dis-
tance between perturbed and original adjacency matrix.

Using real-world benchmark datasets, our results confirm
that RoboGNN effectively improves the robustness and accu-
racy of GNN-based classification, provides configurable ro-
bustness guarantees, and can explicitly suggest only small
amount of links to be protected.

Related Work. Certifiable robustness is introduced in [Bo-
jchevski and Günnemann, 2019]. A node is certifiably robust
if its label predicted by a model is not sensitive to pertur-
bations to a set of fragile edges. Models can be improved
by training that minimizes a hinge loss penalty. We study
(p, θ)-robustness that extends certifiable robustness with con-
figurable p and θ to support the need for robustification.

GCN-Jaccard [Wu et al., 2019] removes malicious links
added to nodes with dissimilar features measured by Jaccard
similarity. GCN-SVD [Entezari et al., 2020] assumes an at-
tack model [Zügner et al., 2018] that affects high-rank singu-
lar components of the graph and performs the low-rank ap-
proximation for graph reconstruction to mitigate the effects.
Edge dithering [Ioannidis and Giannakis, 2019] generates
auxiliary graphs with edge insertions and deletions against
adversarial perturbations to facilitate robust learning. Graph
sanitation [Xu et al., 2021] solves a bilevel optimization prob-
lem that aims to modify perturbed graphs to improve under-
lying semi-supervised learning. Pro-GNN [Jin et al., 2020]
integrates graph properties e.g., sparsity, low rank, and fea-
ture smoothness to its loss function and learns to clean graph.

In contrast to prior work, our approach takes a different
strategy that aims to find protection sets and jointly learns
better graph representation to ensure (p, θ)-robustness of tar-
geted nodes that can be specified by users. Robustifying node
classification with (a) a configurable robustness guarantee,
and (b) both useful auxiliary structures and links that should
be protected, is not discussed in prior work.

2 Model Robustness: A Characterization
Graphs. A graph G = (V,E) has a finite set of nodes V
and edges E. The representation of G is a pair (X,A), where
X is a feature matrix (X ∈ R|V |×d) that records a feature

vector xv ∈ Rd for each node v ∈ V (obtained by embedding
functions [Harris and Harris, 2010]); and A is the adjacency
matrix of G. A link in G is a node pair (v, v′) ∈ V × V .

A perturbation of a link (v, v′) in G is either a deletion of
an edge (v, v′) ∈ E, or insertion of a link (v, v′) 6∈ E. A
vulnerable set Ep ⊆ V × V of G refers to a set of links to
which an adversarial perturbation may occur. We remark that
Ep records the “original” status of links: if (v, v′) ∈ Ep is an
edge in E (resp. a node pair not in E), an (adversarial) per-
turbation (“a flip”) removes (v, v′) from (resp. inserts (v, v′)
to)G. We use (v, v′) to denote a perturbation of a link (v, v′).
Node classification. Given a graph G = (V,E) and a set of
labeled training nodes VT ⊆ V , node classification is to learn
a model M to infer the labels of a set of unlabeled test nodes.

We consider GNN-based classifiers. A GNN [Wu et al.,
2020] transforms (X,A) to proper representation (logits) for
downstream tasks. A GNN with n layers iteratively gathers
and aggregates information from neighbors of a node v to
compute node embedding of v. Denote the output features hiv
(with v ranges over V) at layer i as hi. A GNN computes hi

as hi = δ(‖nj=c Ãjh
i−1Wi

j), where ‖ denotes the horizontal
concatenation operation, Wi

j refers to the learnable weight
matrix of order j in layer i, δ(·) is an activation, and Ã is
a normalized adjacency matrix. Notable GNN variants are
GCN and GraphSage [Hamilton et al., 2017] that samples
fixed-size neighbors (c=0,n=1) and GAT [Veličković et al.,
2017] that incorporates self-attention for neighbors. Specif-
ically, we make case for GNNs that leverages personalized
PageRank, which mitigates over-smoothing [Cai and Wang,
2020]. In such models, Z = Πhn, where Π is a PageRank
matrix, hn is the output from the last layer of the GNN.

A GNN-based classifier M outputs logits Z ∈ R|V |×|L|
that are fed to a softmax layer and transformed to Z ′ that
encodes the probabilities of assigning a class label to a node.
The training of M minimizes a loss function LCE(Z,A) =
−
∑
v∈VT

Yv lnZ ′v , where Yv is the label of a training node
v ∈ VT , and Z ′v is the embedding of a training node v in VT .
L can also be specified to minimize a task-specific loss.

2.1 Robustness of GNN-based Classifier
We start with a characterization of robustness that extends
certifiable robustness [Bojchevski and Günnemann, 2019],
which verifies if predicted labels can be changed by a per-
turbation of size up to p.
(p,θ)-robustness. Given G = (V,E), a GNN-based classi-
fier M with logits Z, a set of targeted nodes VT ⊆ V , a
number p, and a vulnerable set Ep ⊆ (V ×V), a pair (G,M)
is robust at a node v ∈ VT and Ep, if a “worst-case margin”
m∗yt,∗(v) = minc 6=yt m

∗
yt,c(v) > 0, where yt is the true la-

bel of v, and c is any other label (c 6= yt). Here m∗yt,c(v) is
defined as:

m∗yt,c(v) = min
G̃∈G∪Ep

myt,c(v)

= min
G̃∈G∪Ep

πG̃ (v)
T (
Z{:,yt} − Z{:,c}

)
where G̃ ranges over all the possible graphs obtained by

applying perturbation of up to p links from the vulnerable

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3030

set Ep, and πG̃ (v) = Πv,: is the PageRank vector of node
v in the PageRank matrix Π = (1 − α)(IN − αD−1A)−1.
HereD is the diagonal matrix of node out-degrees withDii =∑
j Aij , IN is an identity matrix, andα is teleport probability.
By verifying m∗yt,∗(v) > 0 (i.e., m∗yt,c(v) > 0 for any

c ∈ L(v) other than the correct label of v), it indicates that
under any links manipulation of size p over Ep, M always
predicts the label of node v as yt w.r.t. the logits Z.

We say (G,M) is (p, θ)-robust w.r.t. VT andEp, if (G,M)
is robust for at least θ fraction of VT (θ ∈ [0, 1]) under any
perturbations of size at most p over Ep (p ≤ |Ep|).
Verification Given a pair (G,M), vulnerable set Ep, target
nodes VT and p, the (p, θ)-verification problem is to decide if
(G,M) is (p, θ)-robust w.r.t. Ep and VT .

Lemma 1: The (p, θ)-verification problem is NP-hard even
for fixed θ and Ep. 2

Proof sketch: We can show that it is already NP-hard to
verify a special case when θ = 1 and p = |Ep|. The lower
bound of the latter follows from a reduction from the link
building problem [Bojchevski and Günnemann, 2019; Olsen
et al., 2012], which maximizes the PageRank of a given target
node in a graph by adding k new links. 2

We outline an algorithm to verify the (p, θ)-robustness of a
pair (G,M). The algorithm verifies if (G,M) is robust at up
to θ fraction of the nodes in VT given Ep. Specifically, it in-
vokes a policy iteration [Bojchevski and Günnemann, 2019]
to compute a set of optimal linksWk from Ep such that mini-
mizes m∗yt,∗(v) if perturbed. Each policy induces a perturbed
graph. For any pair of labels c1,c2 of node v and Ep, it greed-
ily selects edges that improve the policy (lower the robust-
ness of node v) and converge to Wk that forms Ḡ, such that
minḠ∈G∪Ep

πḠ (v)
T (
Z{:,yt} − Z{:,c}

)
is obtained.

Monotonicity property. We next show a monotonicity prop-
erty of (p, θ)-robustness in terms of the vulnerable set Ep.

Theorem 2: A (p, θ)-robust pair (G,M) w.r.t. Ep and VT
remains to be (p, θ)-robust for VT and any E′p ⊆ Ep. 2

Proof sketch: We prove the result by contradiction. As-
sume (G,M) is not robust at v over E′p, then there is a spe-
cific label cv 6= yt (yt is the predicted label of v), and a per-
turbed graph G′ obtained by perturbing at most p links in E′p,
such that (a) m∗yt,∗(v) = m∗yt,cv (v) ≤ 0, and (b) πG′ (v)

T(
Z{:,yt} − Z{:,cv}

)
≤ 0. For each such G′, we can construct

a perturbed graph G′′ which bear a perturbation that leads to
the change of the label of v over Ep, which contradicts that
(G,M) is robust at v w.r.t. Ep. As (G,M) is robust for at
least θ fraction of VT w.r.t. Ep, it remains (p, θ)-robust w.r.t.
VT and any E′p ⊆ Ep (detailed proof in [Guan et al., 2022]).

2

2.2 Robustification Problem
Theorem 2 tells us that it is desirable to compute a smallest
set of links ∆L ⊂ Ep that should be “protected” from the
vulnerable set, up to a point that (G,M) becomes robust for

a desirable fraction of targeted nodes over Ep \∆L. Indeed,
(1) protecting any set larger than ∆L will not be necessary
(unless a new threshold θ′ > θ is required by user); and (2)
ensuring robustness for entire VT can be an overkill for find-
ing models that are “robust enough”, and may cause expen-
sive defending cost, even if (p, 1)-robustness is achievable.

We formalize a pragmatic optimization problem, called
(p, θ)-robustification as follows.

• Input: a pair (G,M), target nodes VT ⊆ V , vulnerable
set Ep, constants p and θ (p ≤ |Ep|; θ ∈ [0, 1]).

• Output: a triple (G′,M ′,∆L), such that (1) (G′,M ′)
is (p, θ)-robust w.r.t. VT and Ep \ ∆L; and (2)∆L is a
smallest subset of Ep that ensures (1).

Although desirable, the problem is nontrivial (NP-hard)
even whenM and Ep are fixed, given the hardness of the ver-
ification problem. We next introduce (1) a feasible algorithm
to compute a small protection set ∆L such that (G,M) is
(p, θ) robust w.r.t. Ep \∆L, and (2) a co-learning framework
that incorporates protection set computation, verification, and
robust learning to robustify (G,M) to (G′,M ′).

3 Computing Protection Set
We first develop an algorithm with a goal to compute a small-
est protection set ∆L ⊆ Ep such that (G,M) is (p, θ)-robust
w.r.t. VT and Ep \ ∆L. An exact algorithm that enumerates
subsets of Ep and verifies the model robustness (Section 2.1)
is expensive when G is large. We introduce a fast heuristic
optimized by a traversal-based greedy selection strategy.

Algorithm. The algorithm, denoted as minProtect and il-
lustrated in Algorithm 1, keeps track of the following auxil-
iary structures: (1) a set Vu ⊆ VT , which contains the target
nodes at which (G,M) is currently not robust, (2) a vector
M∗yt,∗, where each of its entry records m∗yt,∗(vu) for each
node vu ∈ Vu, and (3) the current fraction θ′ = 1 − |Vu|

|VT | .
In addition, each node vu has a Boolean flag that indicates
whether it is inspected by PrioritizeT. It initializes ∆L and
Vu (line 1), and iteratively performs three major steps.

• Target prioritization (procedure PrioritizeT) estimates
and selects a next target node v in Vu at which (G,M)
is most likely to be robust upon augmenting ∆L with
small amount of links (line 8);

• Protection augmentation (procedure UpdateL) aug-
ments ∆L with a set of new links in Ep, computed by
traversing from the selected target node vu (line 9);

• Verification (procedure VerifyM), that verifies (p, θ) ro-
bustness of (G,M) (line 3).

The above process repeats until a protection set ∆L is iden-
tified that enable a (p, θ)-robust pair (G,M) (Theorem 2), or
∆L = Ep (line 2). As UpdateL may make (G,M) robust
at multiple nodes in VT , minProtect early terminates once
VerifyM asserts the desired (p, θ) robustness (lines 5-6).

We next introduce the three procedures.
Procedure VerifyM. Procedure VerifyM nontrivially op-
timizes the policy iteration procedure [Bojchevski and

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3031

Algorithm 1 minProtect

Input: pair (G,M), vulnerable set Ep, target nodes VT ,
constants p and θ;
Output: a protection set ∆L;

1: set ∆L := ∅; θ′ := 0; list Vu:= ∅;
2: while θ′ < θ and ∆L 6= Ep do
3: θ′ := VerifyM ((G,M), Ep, p,∆L));
4: Vu := {vu|vu ∈ VT and (G,M) is not robust at vu};
5: if (θ′ ≥ θ) then
6: return ∆L;
7: while there is an unvisited node in Vu do
8: v := PrioritizeT (M∗yt,∗, Vu);
9: ∆L := ∆L ∪ UpdateL (v, (G,M), Ep, p,∆L);

10: return ∆L;

Procedure: UpdateL (vu, (G,M), Ep, p,∆L)
1: set Nd(vu) := ∅; set ∆L′:=∅; heap vu.H := ∅;
2: while there is an unvisited link (u, u′) ∈

Nd(vu)∩{Ep \∆L} do
3: initializes vu.H with (u, u′);
4: updates worst-case margin m∗yt,∗(vu);
5: set ∆L′ as all links (u, u′) in vu.H that ensures

a maximum worst-case margin.
6: return ∆L′;

Günnemann, 2019] to test if (G,M) is (p, θ)-robust at current
Ep\∆L. (1) It first computes a valuem∗c1,c2(v) for each node
v ∈ VT and derives a set of optimal linksWk (|Wk| ≤ p) over
Ep \∆L and for any pair of labels c1 and c2, such that Wk is
most likely to minimize the worst-case margin of node v. It
returns K×K pairs of Wk, where K is the size of label set.
(2) For each node vu ∈ Vu and its predicted label yt by M
(often set as the true label), it computes m∗yt,c(vu) and up-
dates the PageRank vector πG̃(v) over G̃. Here G̃ is obtained
by flipping all pairs (v, v′) ∈ Wk. If m∗yt,∗(vu) = minc6=yt
m∗yt,c(vu) ≤ 0, it asserts that (G,M) is not robust at vu. It
then updates Vu, and returns θ′ = 1 − |Vu|

|VT | . If θ′ ≥ θ, then
(G,M) is (p, θ)-robust w.r.t. Ep \∆L and VT .
Procedure PrioritizeT. PrioritizeT consults the values
m∗yt,∗(·) (obtained from procedure VerifyM) of each node
vu ∈ Vu, dynamically reranks Vu following the descending
order of m∗yt,∗(·), and selects the next node v with the current
largest m∗yt,∗(v) (m∗yt,∗(v) <0 for any v ∈ Vu). Intuitively, it
indicates that v is likely to be the next node at which (G,M)
becomes robust as more links are protected to the current ∆L.
Procedure UpdateL. Given a target node vu ∈ Vu, UpdateL
augments ∆L with new links to be “protected”, such that
(G,M) is likely to be robust at vu. Our idea is to “rehearse”
the protection of single links near vu, and greedily augment
∆L with (u, u′) whose protection best mitigates the impact
against a “worst case” perturbation (obtained by perturbing
all Ep \ ∆L but (u, u′)). This can be achieved by ranking
the links following a descending order of their resulting worst
marginm∗yt,∗(v) of vus. Intuitively, “protecting” (u, u′) max-
imally improves the worst margin of vu (hence likely to make
M robust at vu), thus (u, u′) should be selected.

We say a link (v, v′) is in d-hop neighborhood (d ≥ 1)
of a node vu (denoted as (v, v′) ∈ Nd(vu)) if there is a se-
quence of d links (v0, v1),. . . (vd−1, vd), such that vu = v0,
vd−1 = v, vd = v′, and (vi, vi+1) ∈ Ep for i ∈ [0, d− 1]. For
each vu ∈ Vu, UpdateL maintains a heap vu.H . Each en-
try in vu.H contains (a) a link (v, v′) ∈ Nd(vu), (b) a graph
GEp\(v,v′)∪∆L, obtained by perturbing all links in Ep \ ∆L
but (v, v′), and (c) the worst-case margin m∗yt,∗(v) deter-
mined by GEp\(v,v′)∪∆L (Section 2.1).

Given a node vu ∈ Vu selected by PrioritizeT, UpdateL
starts a breadth first traversal and explores up to Nd(vu) (d
is set as the smallest integer value such that Nd(vu) ∩ {Ep \
∆L} 6= ∅ by default). During the traversal, it dynamically
inserts unvisited link (v, v′) ∈ Nd(vu). For each visited
(v, v′), it initializes the entry vu.H , and computes the worst-
case margin. For all the links in Nd(vu), it selects the link
(v, v′) with the largest worst-case margin in vu.H and adds it
to ∆L. This process repeats until no new links can be found.
Analysis. Algorithm minProtect correctly returns a protect
set ∆L that either ensures (p, θ)-robust pair (G,M) w.r.t.
Ep \∆L and VT , or a counterpart that ensures a largest frac-
tion θ′ of VT at which (G,M) is robust when terminates. This
is ensured by several invariants below. (1) VerifyM performs
policy iteration [Bojchevski and Günnemann, 2019] that con-
verges to optimal perturbations over Ep \ ∆L and correctly
computes m∗yt,c(v) to verify model robustness. (2) UpdateL
augments ∆L in a non-decreasing manner, which ensures the
termination of minProtect (Theorem 2). (3) PrioritizeT does
not miss nodes at which (G,M) is not robust.
Optimization. A main bottleneck is the computation of the
matrix inverse operation [Ma et al., 2021]), for comput-
ing m∗c1,c2(v) (VerifyM, line 3 of minProtect) and m∗yt,∗(v)
(UpdateL). To reduce the cost, we leverage approximate
computation [Bojchevski et al., 2020] to approximate the dy-
namically maintained adjacency matrix A′ with a sparse ma-
trix Πε that approaches (1−α)(IN−αD−1A′)−1 (see [Guan
et al., 2022] for details).

4 RoboGNN: A Co-learning Framework
We next present RoboGNN, a co-learning framework to ro-
bustify (G,M) towards (p, θ)-robustness. RoboGNN (illus-
trated in Algorithm 2) generates a triple (<S′,A′>,M ′, ∆L),
where S′ is a learned graph structure representation ofG′ and
A′ is the “recovered” adjacency matrix of G′.

The framework RoboGNN iteratively improves (G,M) by
interleaving two processes, consistently towards improved ro-
bustness: (1) For a fixed graph A′ (initialized as A), comput-
ing ∆L to refineEp (lines 5-8) as in (“invoking”) minProtect,
and (2) Jointly improves structure representation <S′,A′>
(lines 9-11) and M (lines 12-13) in the “context” of current
vulnerable set Ep \ ∆L. Before fixing graph structure and
alternating updating model parameters, RoboGNN updates
G′ in UpdateA (line 11) by fixing the inconsistency between
the adjacency matrix A′ of G′ and ∆L (e.g., if (u, u′) is an
edge in ∆L but not in A′, RoboGNN inserts (u, u′) to A′). It
eventually verifies the modified M ′ over Ep \ ∆L (line 14),
and returns the triple (<S′,A′>, M ′, ∆L) whenever (p, θ)-
robustness is achieved, or no link can be added to ∆L (line 4).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3032

Algorithm 2 RoboGNN

Input: pair (G,M), vulnerable set Ep, target nodes VT ,
constants p and θ;
Output: triple (<S′,A′>, M ′, ∆L);

1: Initialize <S′,A′>:=<A,A>; θ′:=0, M ′:=M , ∆L:=∅;
2: θ′ := VerifyM ((G′,M ′), Ep, p,∆L));
3: Vu := {vu|vu ∈ VT and (G′,M ′) is not robust at vu};
4: while θ′ < θ and |∆L| < |Ep| do
5: update Vu and visiting status of nodes in Vu;
6: while there is an unvisited node in Vu do
7: v := PrioritizeT (M∗yt,∗, Vu);
8: ∆L := ∆L∪ UpdateL (v, (G′,M ′), Ep, p,∆L);
9: for i =1 to ς do

10: S′ := S′ − η∇S′(‖ S′ −A‖2F + λL);
11: A′ := UpdateA(A′,∆L);
12: for i =1 to τ do
13: M ′ :=M ′ − η′∇M ′L;
14: θ′ := VerifyM ((G′,M ′), Ep, p,∆L));
15: return (<S′,A′>, M ′, ∆L);

Cora Citeseer Pubmed
Nodes 2,708 3,327 19717
Edges 5,429 4,732 44338

Features per Node 1,433 3,703 500
Classes 7 6 3

Training Nodes 140 120 60
Validation Nodes 500 500 500

Test Nodes 1,000 1,000 1000
|Ep| 1650 1200 376
(p, θ) (177,0.95) (848,0.95) (370,1.0)

Table 1: Settings: Datasets, training, and robustification

Robust cross-entropy loss. RoboGNN co-learns S′ and M ′

by consistently minimizing a hinge loss penalty, which aims
to enforce (S′,M ′), w.r.t. current vulnerable set Ep \∆L), to
be robust at the nodes by ensuring a margin of at least positive
threshold m. Specifically, the robust loss is defined as:

L =
∑
v∈VT

[LCE(y∗v , πG̃(v)TZ)+

∑
c∈L(v),c 6=y∗v

max(0,m−m∗yv,c(v))].

It then learns S′ by minimizing a weighted combination of L
and feature difference (lines 9-10), and M ′ by minimizing L.

5 Experiments
We next experimentally verify the effectiveness of RoboGNN
on improving the robustness and accuracy of GNN-based
classification, the learning cost, and the impact of parameters.
Experiment Setting. We use three real-world datasets:
Cora [McCallum et al., 2000], Citeseer [Giles et al., 1998]
and Pubmed [Sen et al., 2008]. Each node has features de-
rived from a bag-of-words representation of the document it
refers to, and a class label denoting topic area (see Table 1).
Generation of graphs G. We adopt a mixture of adver-
sarial strategies, including non-targeted attacks [Zügner and
Günnemann, 2019], random perturbation [Yuan et al., 2017],

and property-preserving link attacks(that aim to maintain de-
gree distribution) [Zügner et al., 2018]. These attacks are de-
signed under the same principle to minimize the probability
of correct class prediction. For each dataset, we manipulate
at most 30% edges to produce a graph G as input graph for
RoboGNN. This suffices to cause performance degradation
of GNNs if learned from G [Zügner and Günnemann, 2019].

We generate vulnerable sets Ep with random-walk based
sampling [Guan et al., 2022]. The generation of Ep and
RoboGNN learning do not assume prior knowledge.
Generate classifiers M . We use the following GNN-based
classifiers as input. (1) GCN [Kipf and Welling, 2016], (2
) GAT [Veličković et al., 2017], and (3) π-PPNP, a class
of GNNs that decouples feature transformation from fea-
ture aggregation to optimize classification [Bojchevski and
Günnemann, 2019]. We compare the accuracy and robust-
ness of an input model M and its robustified counterpart M ′.

We also evaluate RoboGNN as an “end-to-end” frame-
work, which directly learns a robust model from scratch (i.e.,
generate (G′,M ′) given (G, ∅)), with the following base-
lines. (1) certPPNP [Bojchevski and Günnemann, 2019]
learns a more robust counterpart of π-PPNP by robust
training [Bojchevski and Günnemann, 2019]; and (2) Pro-
GNN [Jin et al., 2020], which learns graph representations
and GNNs from scratch. In addition, we develop a variant as
U RoboGNN, by removing the optimization on pagerank.
Configuration. We train a two-layer network for all the input
models with the same set of hyper-parameters settings (e.g.,
dropout rate, number of hidden units). The training epoch
number is set as 300. For each dataset, we fix the learning
rate for Pro-GNN, certPPNP, and RoboGNN. The config-
uration of input GCN, GAT and Pro-GNN are calibrated to
yield consistent and best performance over benchmark met-
rics as in [Kipf and Welling, 2016; Veličković et al., 2017;
Jin et al., 2020]. we report the average accuracy (acc.) for
multiclass classification. All Experiments are executed on a
Unix environment with GPU Nvidia P-100.

The source code and datasets are available1.

Experimental Results. We next present our findings.
Exp-1: Effectiveness of Robustification. We first evaluate
RoboGNN on improving the accuracy of input models. Ta-
ble 3 reports the results using GCN and π-PPNP. Here
RoboGNN (GCN) and RoboGNN (π-PPNP) shows the coun-
terparts M ′ over G for the same set of test nodes. (1) During
the co-learning, RoboGNN ensures an increasing robustness
of the improved model compared with a previous counter-
part, in all cases (not shown). (2) The improved robustness
in turn significantly improves the accuracy of input models
over test nodes. For example, RoboGNN achieves on average
45.3% (resp. 31%) gains on F1 for GCN (resp. π-PPNP). We
find that the robustified M ′ over G′ yields more consistent
label prediction, and better approaches to the performance of
“yardstick” models learned from original (unknown) graphs
that are not perturbed. ([Guan et al., 2022] for more analysis).
Impact of factors. We next evaluate the impact of perturbation
size and configurations of robustness to the effectivenes. We

1https://github.com/CWRU-DB-Group/robognn

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3033

dataset Cora Citeseer Pubmed
metrics acc. F1 acc. F1 acc. F1.
GCN (A) 71.3% 71.42% 51.0% 48.80% 64.1% 63.19%
GCN(A’) 73.1% 72.83% 56.1% 53.79% 65.0% 63.99%
GAT (A) 74.8% 73.68% 65.0% 61.06% 63.7% 62.79%
GAT(A’) 76.7% 76.69% 65.3% 62.05% 63.7% 62.79%

Table 2: Improved graph structure A′ benefits GNN learning. Bold: models learned with A′ from scratch.

dataset Cora Citeseer Pubmed
metrics acc. F1 acc. F1 acc. F1.
GCN 44.1% 44.89% 39.7% 38.80% 49.7% 48.49%

RoboGNN(GCN) 76.7% 75.65% 54.0% 51.66% 65.4% 63.99%
π-PPNP 43.0% 43.64% 50.0% 48.48% 40.8% 34.03%

RoboGNN(π-PPNP) 75.9% 74.95% 56.9% 54.58% 43.9% 36.18%
Table 3: Robustify GNN models with RoboGNN framework. Bold: robustified models.

 50

 51

 52

 53

 54

 55

 56

 57

20 40 60 80 100

A
cc

ur
ac

y(
%

)

Robo(GCN)
Robo(π-PPNP)

(a) Varying |∆L|

 45

 50

 55

 60

 65

 70

65% 70% 75% 80% 85%

A
cc

ur
ac

y(
%

)

Robo(GCN)
Robo(π-PPNP)

(b) Varying θ

 52

 52.5

 53

 53.5

 54

 54.5

 55

 55.5

 56

1500 1600 1700 1800 1900

A
cc

ur
ac

y(
%

)

Robo(GCN)
Robo(π-PPNP)

(c) Varying |Ep|

 100

 200

 300

 400

 500

10 20 30 40 50

T
im

e
(s

ec
on

ds
)

Robo(GCN)
U_Robo(GCN)

(d) Varying |∆L|

 100

 150

 200

 250

 300

 350

1500 1550 1600 1650 1700

T
im

e
(s

ec
on

ds
)

Robo(GCN)
U_Robo(GCN)

(e) Varying |Ep|

 50

 55

 60

 65

 70

 75

 80

Pr=10% Pr=15% Pr=20%

A
cc

ur
ac

y(
%

)

Robo(GCN)
Pro-GNN
certPPNP

(f) Varying Pr (end-to-end)

Figure 1: Performance: accuracy and efficiency

report the results over Cora. The results from other datasets
are consistent (see [Guan et al., 2022] for details).
Impact of |∆L|. Using the default setting in Table 1, we vary
the size of allowed protection set from 20 to 100, and termi-
nate RoboGNN whenever ∆L reaches a certain size. Fig. 1(a)
tells us that RoboGNN (1) can effectively improve the accu-
racy of input models (from 51% to 57%) as more links are
protected, (2) ensures a desirable (p, θ)-robustness, and to
achieve these, (3) explicitly suggests only a small set (≤ 100,
10% of vulnerable set) of links to be protected.
Impact of θ. Fixing other parameters as default, we vary θ
from 65% to 85% (Fig. 1(b)). (1) Ensuring robustness at
more target nodes improves the accuracy, which is consistent
with our observation in Fig. 1(a). (2) RoboGNN effectively
responses to different robustness requirements. It improves

the accuracy of π-PPNP from 45% to 65% by ensuring a
(150, 85%)-robust model from a (150, 65%) counterpart.
Impact of |Ep|.Fixing other parameters, we vary the size of
vulnerable set from 1500 to 1900. Fig. 1(c) shows that it be-
comes more difficult for RoboGNN to maintain the robust-
ness. Indeed, larger Ep indicates more adversarial perturba-
tions to prevent robustness for the target nodes. On the other
hand, its performance is not very sensitive, due to its ability
to co-learn both models and graph representations that better
mitigate the impact of perturbations.
Efficiency. Using the same default setting as Fig. 1(a) (resp.
Fig. 1(c)), Fig. 1(d) (resp. Fig. 1(e)) verifies that RoboGNN
takes more time to learn robustified models and graph repre-
sentation with larger |∆L| (resp. |Ep|). On the other hand,
(1) optimization reduces the learning cost by 67% on average,
and (2) the learning is less sensitive to |Ep| given the early
termination of minProtect as it augments ∆L (Theorem 2).
Exp-2: End-to-end performance. RoboGNN supports “end-
to-end” learning of a robust model with desired robustness.
When generating graph G, we vary the perturbation rate Pr,
e.g., the ratio of changed edges, from 10% to 20%, Fig. 1(f)
shows that RoboGNN achieves best performance improve-
ment due to robustness guarantees, among all baselines.
Exp-3: Usability of protection set. We also evaluate how ∆L
can be used to suggest “corrections” of adjacency matrixA to
improve GNNs. Given an original graph G, we first perform
adversarial perturbation and derive a perturbed adjacency ma-
trix A. We then use RoboGNN to obtain ∆L over a robusti-
fied counterpart (G′,M ′). Table 2 verifies that ∆L can ef-
fectively suggest “recovered’ adjacency matrix which directly
leads to the training of more accurate models. This indicates
the application of RoboGNN in explicit link correction.

6 Conclusion
We have proposed a novel framework, RoboGNN, that can
improve the robustness of GNN-based classification and also
suggest desired graph structures under link perturbations.
Our experimental study confirms that RoboGNN achieves
such effects. A future topic is to enable RoboGNN for link
repairing to improve downstream GNN-based tasks.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3034

Acknowledgments
This work is supported by NSF under CNS-1932574, OIA-
1937143, ECCS-1933279, CNS-2028748, OAC-2104007
and DoE under DE-EE0009353.

References
[Bojchevski and Günnemann, 2019] Aleksandar Bojchevski

and Stephan Günnemann. Certifiable robustness to graph
perturbations. In NeurIPS, 2019.

[Bojchevski et al., 2020] Aleksandar Bojchevski, Johannes
Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais,
Benedek Rózemberczki, Michal Lukasik, and Stephan
Günnemann. Scaling graph neural networks with approx-
imate pagerank. In KDD, 2020.

[Cai and Wang, 2020] Chen Cai and Yusu Wang. A note on
over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

[Dai et al., 2018] Hanjun Dai, Hui Li, Tian Tian, Xin Huang,
Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. arXiv preprint arXiv:1806.02371,
2018.

[Entezari et al., 2020] Negin Entezari, Saba A Al-Sayouri,
Amirali Darvishzadeh, and Evangelos E Papalexakis. All
you need is low (rank) defending against adversarial at-
tacks on graphs. In WSDM, 2020.

[Giles et al., 1998] C. Lee Giles, Kurt D. Bollacker, and
Steve Lawrence. Citeseer: An automatic citation index-
ing system. In Proceedings of the Third ACM Conference
on Digital Libraries, 1998.

[Gori et al., 2005] Marco Gori, Gabriele Monfardini, and
Franco Scarselli. A new model for learning in graph do-
mains. In Proceedings. 2005 IEEE international joint con-
ference on neural networks, volume 2, pages 729–734,
2005.

[Guan et al., 2022] Sheng Guan, Hanchao Ma, and Yinghui
Wu. Robognn: Robustifying node classification un-
der link perturbation, full version. https://github.com/
CWRU-DB-Group/robognn/blob/main/full.pdf, 2022.
Accessed: 2022-06-08.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing
Systems, 2017.

[Harris and Harris, 2010] David Harris and Sarah Harris.
Digital design and computer architecture. Morgan Kauf-
mann, 2010.

[Ioannidis and Giannakis, 2019] Vassilis N Ioannidis and
Georgios B Giannakis. Edge dithering for robust
adaptive graph convolutional networks. arXiv preprint
arXiv:1910.09590, 2019.

[Jin et al., 2020] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng
Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. KDD, 2020.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Ma et al., 2021] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen
Liu, Jiliang Tang, and Neil Shah. A unified view on graph
neural networks as graph signal denoising. In CIKM, 2021.

[McCallum et al., 2000] Andrew Kachites McCallum, Ka-
mal Nigam, Jason Rennie, and Kristie Seymore. Automat-
ing the construction of internet portals with machine learn-
ing. Information Retrieval, 2000.

[Olsen et al., 2012] Martin Olsen, Anastasios Viglas, and
Ilia Zvedeniouk. An approximation algorithm for the link
building problem. arXiv preprint arXiv:1204.1369, 2012.

[Paulheim, 2017] Heiko Paulheim. Knowledge graph refine-
ment: A survey of approaches and evaluation methods. Se-
mantic web, 2017.

[Sen et al., 2008] Prithviraj Sen, Galileo Namata, Mustafa
Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine,
2008.

[Tran et al., 2017] Cong Tran, Won-Yong Shin, and Andreas
Spitz. Community detection in partially observable social
networks. arXiv preprint arXiv:1801.00132, 2017.

[Veličković et al., 2017] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[Wu et al., 2019] Huijun Wu, Chen Wang, Yuriy Tyshetskiy,
Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples on graph data: Deep insights into attack and de-
fense. IJCAI, 2019.

[Wu et al., 2020] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and S Yu Philip. A com-
prehensive survey on graph neural networks. NeurIPS,
2020.

[Xu et al., 2021] Zhe Xu, Boxin Du, and Hanghang Tong.
Graph sanitation with application to node classification.
arXiv preprint arXiv:2105.09384, 2021.

[Yuan et al., 2017] Xiaoyong Yuan, Pan He, Qile Zhu, Ra-
jendra Rana Bhat, and Xiaolin Li. Adversarial ex-
amples: Attacks and defenses for deep learning. corr
abs/1712.07107 (2017). arXiv preprint arXiv:1712.07107,
2017.

[Zügner and Günnemann, 2019] Daniel Zügner and Stephan
Günnemann. Adversarial attacks on graph neural networks
via meta learning. ICLR, 2019.

[Zügner et al., 2018] Daniel Zügner, Amir Akbarnejad, and
Stephan Günnemann. Adversarial attacks on neural net-
works for graph data. In KDD, 2018.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3035

https://github.com/CWRU-DB-Group/robognn/blob/main/full.pdf
https://github.com/CWRU-DB-Group/robognn/blob/main/full.pdf

	Introduction
	Model Robustness: A Characterization
	Robustness of GNN-based Classifier
	Robustification Problem

	Computing Protection Set
	RoboGNN: A Co-learning Framework
	Experiments
	Conclusion

