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Abstract

Partial label learning (PLL) is to learn a discrimi-
native model under incomplete supervision, where
each instance is annotated with a candidate label
set. The basic principle of PLL is that the un-
known correct label y of an instance x resides in
its candidate label set s, i.e., P(y € s|z) = 1.
On which basis, current researches either directly
model P(y|x) under different data generation as-
sumptions or propose various surrogate multiclass
losses, which all aim to encourage the model-based
Py(y € s|&) — 1 implicitly. In this work, in-
stead, we explicitly construct a binary classification
task toward P(y € s|x) based on the discriminative
model, that is to predict whether the model-output
label of x is one of its candidate labels. We for-
mulate a novel risk estimator with estimation error
bound for the proposed PLL binary classification
risk. By applying logit adjustment based on disam-
biguation strategy, the practical approach directly
maximizes Py(y € s|z) while implicitly disam-
biguating the correct one from candidate labels si-
multaneously. Thorough experiments validate that
the proposed approach achieves competitive perfor-
mance against the state-of-the-art PLL methods.

1 Introduction

Trained with precisely annotated data, recent applications of
machine learning have achieved extraordinary success in var-
ious real-world scenarios. However, collecting large datasets
with high-quality annotation is expensive and almost unre-
alistic. In comparison, it is more feasible to learn under
incomplete supervision. In this paper, we consider an im-
portant weakly supervised setting called partial label learn-
ing (PLL), where each instance is annotated with a set of can-
didate labels containing the ground-truth label, while other
irrelevant labels are treat as non-candidate labels. The origi-
nal label space is divided coarsely into the positive part con-
taining the candidate labels and the negative part containing
the non-candidate labels. PLL has been successfully applied
to different application domains [Liu and Dietterich, 2012;
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Figure 1: The learning steps of PLL in different orders. The Sur-
rogate step represents replacing 0-1 loss with a surrogate loss, and
the Approximation step represents modifying the risk from standard
distribution to partial distribution.

Zeng et al., 2013] and it has attracted considerable attention
of researchers, especially when generalizing to the modern
deep learning [Yan and Guo, 2020; Seo and Huh, 2021].

The pioneering work proposed to minimize the KL diver-
gence between the model-based distribution and the given
class prior [Jin and Ghahramani, 2002]. Following this, nu-
merous studies proposed to add some constraints to the ob-
jective function, and the model parameters are optimized by
utilizing EM algorithm [Feng and An, 2018; Feng and An,
2019]. Besides, some previous studies focused on adapt-
ing widely-used learning techniques to PLL, such as maxi-
mum margin [Nguyen and Caruana, 2008], k-nearest neigh-
bors [Hiillermeier and Beringer, 2006] and so on. How-
ever, the optimization-constrained objectives of these classi-
cal methods can not be compatible with deep neural networks.

The focus of recent studies in PLL is summarized in Fig-
ure 1. Researchers define the partial 0-1 risk Rﬁ“l to upper-
bound the 0-1 risk R%* [Cour et al., 2011] and minimize
the partial surrogate risk Rﬁ through the middle learning
steps [Lv et al., 2020; Seo and Huh, 2021]. Furthermore,
by modeling the generative relationship between P(y|x) and
P(s|z), the surrogate risk R can be reformulated as RY% for
the partial distribution through the top learning steps [Feng et
al., 2020; Wen et al., 2021]. In summary, most researchers
have been working on training a discriminative model to-
ward P(y|x) following the multiclass-based risk minimiza-
tion principle, which seems the only promising solution to
solve PLL problem. One related research [Liu and Dietterich,
2014] proposed the little-noticed notion of binary classifica-
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tion task derived from the PLL task, which provides us an
alternative through the bottom learning steps, namely, PLL

binary classification (PLL-BC) risk R}@ estimator. In this
manner, a binary classifier is induced from the original mul-
ticlass classifier to estimate whether the predicted label of an
instance is inside of its candidate label set, which is explicitly
modeling P(y € s|x). However, limited theoretical analysis
is not comprehensive since it naturally raises an equally im-
portant question: how to design a surrogate PLL-BC loss to
recover the solution of the original multiclass problem under
the guidance of theoretical results?

This paper gives a positive answer to this question through
a theoretical and empirical analysis. The basic principle of
PLL highly motivates us to directly estimate P(y € s|z) from
the discriminative model’s output, which naturally leads to
the binary classification task. Accordingly, we first investi-
gate the feasibility of the proposed PLL-BC task based on
0-1 loss and then derive a novel risk estimator with estima-
tion error bound, which means learning in the context of par-
tial labels is consistent and practical. Different from existing
multiclass loss approaches, the proposed PLL-BC loss is for-
mulated by logit adjustment based on classical disambigua-
tion strategy, i.e., identification-based strategy. Concretely, a
useful weight normalization strategy on logits is introduced
to dynamically reassign label weights during each training
iteration, which encourages the model to implicitly identify
the correct label. Finally, experimental results on a variety of
datasets show that our approach achieves competitive perfor-
mance against the state-of-the-art approaches.

2 Background

This section reviews the formulations of multiclass classifica-
tion and partial label learning, and we briefly introduce some
recent developments for each.

2.1 Multiclass Classification

Given £ € R? (d is the dimensionality) as the input ran-
dom variable in the feature space X and y € R as the out-
put random variable in the label space Y = [k] (with k
classes) where [k] := {1,2,...,k}, we assume that each ex-
ample (x,y) is sampled independently and identically from
an unknown joint data distribution over X x ) with prob-
ability density p(x,y). The task of multiclass classification
is to learn a classifier g : X — RE. Formally, we denote
gi(x) is the estimate of P(y=t|x) and Zle gi(x)=1. The
0-1 risk is typically of the following form:

R@m (g) = Ep(m,y) [EOI (g(w)7 ey)] (1)

where £o; =1 (arg max;cy g;(x) # y) is the 0-1 loss (stan-
dard classification error), and e¥ € {0, 1}* is the one-hot vec-
tor, i.e., the y-element in e¥ is one and others are zero. Be-
sides, one surrogate expression of Eq. (1) is defined as

k
Re(g) = Ep(a:,y) [Zf (gi<w)7 63)] ) ()

where e} is the i-th element of e¥" and / is some decompos-
able continuous non-negative loss.

2.2 Partial Label Learning

Different from traditional explicit supervision, partial label
is a kind of ambiguous label information. Each instance is
given a set of candidate labels, among which only one is the
ground truth label while others are false positives. Given a
partially labeled dataset {(x;, s;)};_, , where the candidate
labels set (s;);,, € S and S = {2Y\P\V} is the space of
closed subsets of ), the target of PLL is to learn a discrimina-
tive model which identifies the ground-truth label of unseen
data. Formally, we assume that each random variable (x, )
is drawn from an unknown data distribution with the margin
density p(x, s) of p(x, y, s), and the ground-truth label y for
an instance (x,s) is not directly accessible during training
phase but exists in the candidate label set, which is defined as
P(y € s|x) = 1. The partial 0-1 risk is defined as

RPN (9) = Ep(a.s) [0 (9(),5)], 3)

where ¢o1 = I(argmax;cy g;(x) ¢ s) is the partial O-
1 loss (partial classification error). In front of big data,
the above-mentioned classical studies may be inefficient be-
cause of the high time complexity and objectives optimiza-
tion problems. Hence, many deep PLL methods have been
proposed. [Zhang er al., 2020; Seo and Huh, 2021].

Note that the ECOC-based algorithm proposed by [Zhang
et al., 2017] and the One-vs-One-based algorithm proposed
by [Wu and Zhang, 2018] are both binary decomposition
methods for inducing the predictive model while our work fo-
cuses on training a discriminative model by minimizing sur-
rogate PLL binary classification risk. Another related study
is the surrogate complementary loss framework [Chou et al.,
2020], which focuses on the negative risk and overfitting ef-
fects derived from Complementary Label Learning problem
while our work is derived in a totally different manner.

3 Methodology

In this section, we first demonstrate the feasibility analysis of
the proposed PLL-BC task, and then represent a simple risk
estimator for the PLL-BC risk. Next, we introduce logit ad-
justment strategy to design the PLL-BC loss and theoretically
derive an estimation error bound for the proposed method.

3.1 Binary Classification Task of PLL

We start with the PLL-BC task by constructing a binary clas-
sification task from the PLL setting. Following [Liu and Diet-
terich, 2014], the binary classifier f : X — R* — R2 builds
on the standard multiclass classifier g, which is denoted as

f(.’B,S): [fo(x7§)7f1(m78)]’ 4)

where 5 is the non-candidate label set, f; is manually treat
as the estimate of P(y € s|x) and fo + f1 = 1. The re-
constructed label space is defined as § = [0,1]. With only
accessing the ambiguous supervision, the next-best option of
[ is to estimate whether the predicted label from g is inside of
the candidate label set, i.e., fi = P(arg max;cy g;(x) € s).
Semantically, this inducing relation is a surjection from the
original multiclass classification hypothesis space G to the bi-
nary classification hypothesis space F. Then, the PLL binary
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classification error is exactly the partial classification error,
ie., R?;‘”(g) & R}[Qm(f), as shown in Figure 1. Next, we
revisit the theoretical study on the learnability of PLL. The
ambiguity degree is defined as
v = sup P(y € s), 5)
(zy)~p(,y),§EY,s~p(s|®,y), 57y
which represents the maximum probability of a negative label
1y co-occurs with the correct label y. Then, we can derive the
learnability of PLL relates to the ambiguity degree.

Proposition 1. (Summarized from [Cour et al., 2011; Liu
and Dietterich, 2014]) When the ambiguity degree satisfies
0 <~ < 1, for the multiclass classifier g and the proposed bi-
nary classifier f, the following comparison inequality holds:

1
RS R 9) < g RE" ().
This proposition allows us to bound the risk of the original
multiclass problem with the risk measured with the partial
loss, that is to approximately minimize the standard loss with
access only to the PLL-BC one.

3.2 PLL Binary Classification Risk Estimator

Correspondingly, we propose the PLL-BC loss trained with
DNNs. Formally, we learn a deep model by parametrizing
the embeddings h (x;6) : X — R* of a DNN, which maps
each data point  to k£ real-valued numbers known as out-
put logits. Traditionally, these output logits are used to pa-
rameterize a predictive categorical distribution py (y|x) by us-
ing the softmax function. In standard discriminative setting,
the label with maximum logit is selected as the predicted la-
bel, i.e., arg max;cy h;(x;0). If an instance (x, s) is drawn
from the complete distribution with density p(x,y, s), then
P(y € s|lz) = 1 holds. According to this basic setting for
PLL, the virtual label e} is always the ground-truth predic-
tion for f. The optimization direction of the binary classifier
is to increase the predictive gap between f; and f. Capturing
this idea, the surrogate PLL-BC Loss is defined as

U(f(,s),e") = U fi(z,s),e]) + U fo(x,5),¢]), (6)

where £ is similar with the standard loss ¢, i.e., £(7},7) = 0
only when 7 = 7. Note that the above equation is derived
from the standard binary classification loss while the only
difference is that f is induced from the original multiclass
model. The novel risk estimator for PLL-BC is defined as

Riﬁ’(f) = Ep(m,s) [ﬂ’(f(% 8)7 eﬂ)} 5 (7)
and the empirical risk estimator is rewritten as follows:
~ 1 <& _
RN =+ D [V(F (@i, s).e")] (8)
i=1

3.3 Predictive Probability via Logit Adjustment
Next, we propose logit adjustment strategy to induce the bi-
nary classifier toward P(y € s|z). Commonly, the output
logits can be treat as an intuitive metric to measure the la-
bel confidence, which means the output logit regarding label
1 is positively correlated to its model-based conditional prob-
ability: h;(x;6) x Py(y = i|x) [Grathwohl et al., 2020].
Following the classical disambiguation strategies, we propose
two baselines and a generalization of them.
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Average-based Strategy

Based on the principle of maximum entropy, a natural as-
sumption is that each candidate label makes equal contribu-
tions to the discriminative model. If the average logit of can-
didate labels is larger than that of non-candidates, a reason-
able prospect is that the multiclass classifier tends to predict
the potential correct label from candidates. We define

exp (f 3 hil))

b (1 % hi(@)) +exp (& 3 (@)

(ASE] JES

S, s) = ©)

as the model-based positive probability output at the logit
level, where h(x; 0) is abbreviated to h(x). Note that f; can
be formulated as 1 — f;. Intuitively, Eq. (9) is parametrized
by a softmax normalization and the virtual positive logit is
defined as the mean value of candidate logits. However, this
strategy alone does not guarantee that the label regarding the
maximum logit is one of the candidate labels, which goes
against our desideratum.

Identification-based Strategy

Note that the task of PLL is to identify the label with the
highest relevant degree. Ideally, the label confidence of the
ground-truth label should be larger than others. Accordingly,
the logits of other candidate labels do not need to be large,
and that of the non-candidate labels should be as small as
possible. Thus, our key observation in this work is

max P(y = i|z) > max P(y = j|z). (10)
ASE] JES

This inequality is simple and explicable. Firstly, the condi-
tional probability of the potential correct label should account
for the largest proportion of the candidate label set. Secondly,
each non-candidate label is definitely not the correct label,
which means the label confidence of non-candidates should
be considerably small. One may see that from the perspective
of decision boundary, the margin-based algorithm proposed
by [Nguyen and Caruana, 2008] can be treat as one specific
implementation based on this inequality. Let us define

exp (max fi(x))

fi(zss) = , (1

exp (mgx hi(x)) + exp (rr,lg,X hi(z))
€S JES

which focuses on only two most representative logits: the po-
tential ground-truth logit and the semantically similar neg-
ative logit. Maximizing Eq. (11) will encourage the model
to increase the predictive confidence of the potential ground-
truth label while reducing that of non-candidate labels. With
this aggressive selection, the original multiclass model will be
forced to output the candidate label regarding maximum logit.
Following this constructing idea, we establish the estimation
error bound for the proposed method under mild assumptions.

To begin with, suppose ¢(gx (), €}) = £(gr(x), e}) satis-
fies £ (1 — gi(x),1 —€}) < £(gr(x),e}) for each variable,
i.e., MSE loss. The classifiers g and f are calculated through
the same normalization function, i.e., softmax function. Let
the Rademacher complexity of G over p(x) with sample size
n be defined as R,,(G) [Mohri et al., 2012]. Let f* be the
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Algorithm 1 PLL via Partial Binary Classification Loss

Input:

D: the partially labeled dataset D = {(x;, s;) }1 4
Parameter:

T: the number of epochs

A:  the scale coefficient

Output:

6: the model parameters for h (x; 6)

1: Initialize model parameters 6;

2: fort =0to T do

3:  Calculate original output logits by h (x; 6);

4:  Calculate f(x,s) through logit adjustment strategy,
i.e., Eq. (15);

5:  Compute empirical risk by Eq. (8);

6:  Update 0 by optimizer;

7: end for

optimal classifier and f be the empirical risk classifier. We
use M and L, to represent the upper bound and Lipschitz
constant of the original loss function £ respectively. Next, we
derive the following estimation error bound.

Theorem 1. For any § > 0, with probability at least 1 — 6,

log(2/6

2n

This theorem guarantees that in context of partial labels,
learning with PLL-BC loss is consistent for all parametric
models: as . — 00, R, (Gr) — 0, then RU(f) — RE(f7)
with convergence rate O(1/+/n).

RE(F) — RU(F) < ALR,(Gr) + 2M

Weight Normalization Strategy

Both disambiguation strategies are intuitively clear but still
have their shortcomings. When handling the outliers, the
average-based strategy is robust under mild assumptions on
the domination of correct labels. However, the ground-truth
label might be overwhelmed by the false-positive labels dur-
ing model training. For the identification-based strategy, the
progressive identification puts more emphasis on the poten-
tial correct logit, which is crucial for aligning with the cor-
rect one. However, the output logits of DNNs are sensitive,
especially when the predictive information is inaccurate in
the initial stage of model training, which leads the surro-
gate loss to be unreliable. To exploit the benefits of both,
we replace the max operator of Eq. (11) with a weight nor-
malization function. Consider a standard maximum function
max (21, .. ., 2k), we denote

max z; &~ max E qiZi, (13)
i gEA =
1

where q € R¥ is an unknown probability distribution, and
A = {q|>>,9 =1,Vi,q; > 0} denotes the simplex vec-
tor. In this way, the maximum logit is converted into a lin-
ear combination of k arguments. According to [Qian et al.,
2019], we obtain the closed form solution of the distribution
q by adding the entropy regularizer to g, which is defined as
g = exp(32)/ 2521 exp(42;), where X is a trade-off hy-
perparameter. Instead of assigning fixed values, updating la-
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bel weights in each training epoch is a practical way to grad-
ually approximate the ground-truth label weights [Lv et al.,
2020]. Specifically, for each candidate label i € s, we define
its corresponding label weight as

@ _ _ e (3hi(@)) (14)

Wi 5
> jes exp(5hy()®)

where t denotes the ¢-th epoch in model training. Hence, the
positive predictive probability is defined as

exp (> wl(t)hi(w))
’ _ 1€ES s 15
fi(z,s) exp (Y wl(t)hi(ac))—l—exp(Zw§t)hj(x)) "
€8 jEs

where 3o w;t) =land} wgt) = 1 respectively. This
update strategy relaxes the max operator to a label weights
combination. In particular, we treat the label weights as con-
stant coefficients with respect to the parameters for backprop-
agation while manually updating their values during the train-
ing stage. When A # 1, this can be seen as the temperature

scaling applied to the label weights.

3.4 Learn with PLL-BC Loss

In implementation, the original output logits are calculated
from the multiclass DNN’s latent space embeddings and the
binary output is calculated by Eq. (15). Then we adopt Eq. (6)
as the empirical loss function to calculate the error informa-
tion. The key steps of our method are outlined in Algorithm 1.
After the completion of the model training process, the pre-
dicted label is given by arg max;cy h;(x).

4 Experiments

In this section, we verify the effectiveness of the proposed
algorithm with extensive experiments on synthetic datasets
and real-world datasets respectively. The best results among
all methods are highlighted in bold and we use e to represent
that the proposed method is significantly better than the other
baselines by using paired t-test at 5% significance level.

4.1 Datasets

We present experimental results on three widely-used bench-
mark datasets, i.e., MNIST [LeCun et al, 1998], Fash-
ion [Xiao et al., 2017] and Kuzushiji [Clanuwat et al., 2018].
We follow the problem settings in [Lv et al., 2020] and the
synthetic datasets are generated by a binomial flipping strat-
egy or a pair flipping strategy. We construct a class transition
matrix to artificially corrupt labels by a flipping probability
q which denotes the probability to be selected as the candi-
date labels. In this paper, we consider ¢ € {0.2,0.5}. By
definition, we use only partially labeled data, while unlabeled
data are ruled out. Furthermore, five real-world datasets are
used from various application domains, including Lost [Cour
et al., 2009], MSRCv2 [Liu and Dietterich, 2012], Bird-
Song [Briggs et al., 20121, Soccer Player [Zeng et al., 2013]
and Yahoo! News [Guillaumin et al., 2010].
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Data Generation: Binomial Flipping Strategy

Dataset q | PLL-BC | RC CcC PRODEN DPNL LWS
MNIST 0.2 | 98.76+0.09 | 98.66+0.05 98.56+0.05¢ 98.564+0.07¢ 98.66+0.02  98.52+0.02e
0.5 | 98.44+0.05 | 98.33+0.06 98.27+0.07¢  98.3440.16 98.144+0.37  98.06+0.02e
Fashion 0.2 | 89.84+0.23 | 89.30+0.24e 88.78+0.47¢  89.82+0.24 89.55+0.43 89.80+0.15
0.5 | 88.954+0.25 | 88.53+0.06e 88.36+0.13¢  88.87+0.13  88.42+0.30e  88.73+0.22
Kuzushiji 0.2 | 93.43+0.12 | 92.10+£0.63¢ 91.72+0.36e 92.9940.34e 92.73+0.39e¢  92.714+0.87
0.5 | 91.41+0.19 | 91.20+0.26 90.81+0.18¢ 90.644+0.36e  90.63+1.25 90.82+0.18e

Data Generation: Pair Flipping Strategy

Dataset q \ PLL-BC \ RC CC PRODEN DPNL LWS
MNIST 0.2 | 98.78+0.09 | 98.74+0.02 98.714+0.03 98.734+0.15 98.68+0.20 98.714+0.06
0.5 | 98.69+0.12 | 98.44+0.08¢ 98.39+0.03e¢  98.65+0.12 98.61+0.14 98.64+0.10
Fashion 0.2 | 90.484+0.16 | 90.11+0.18¢ 90.164+0.14e¢  90.35+0.30 90.2440.06e¢  90.3640.19
0.5 | 90.27+0.16 | 90.15+0.12 89.99+0.11e¢  90.10+0.31 90.134+0.28 90.26+0.12
Kuzushiji 0.2 \ 94.02+0.21 \ 93.4240.12¢ 93.36+0.17¢ 93.59+0.47¢ 93.324+0.34e¢  93.9640.29
0.5 93.87+0.22 93.36+0.11e¢ 9291+0.15¢ 93.204+0.12¢  93.33+0.45 93.69+0.26

Table 1: Test accuracy (mean+std) on the synthetic datasets (in %).

4.2 Baselines

For synthetic datasets, we compare the proposed method
to five SOTA DNN based methods from PRODEN [Lv et
al., 2020], DNPL [Seo and Huh, 2021], LWS [Wen et al.,
2021] and RC&CC [Feng et al., 2020]. For real-world
datasets, we further compare our method with four classi-
cal PLL methods: IPAL [Zhang and Yu, 2015], PL-SVM
[Nguyen and Caruana, 20081, PL-ECOC [Zhang et al., 2017]
and PL-KNN [Hiillermeier and Beringer, 2006]. We use
PLL-BC to denote the proposed method where 1) is the bi-
nary cross entropy loss and f is constructed according to
Eq. (15). For our method, the best hyperparameters are se-
lected through grid search on a validation set, where learn-
ing rate I € {0.001,0.005,0.01,0.05,0.1}, weight decay
wd € {107°,...,1073}, and the temperature coefficient
A € {0.5,...1.0}, with the learning rate decays halved per 50
epochs. For other methods, all hyper-parameters are searched
according to the suggested parameter settings. We employ
two base models, including linear model and 5-layer percep-
tron (MLP), and use SGD as the optimizer with a momentum
of 0.9. The number of epoch is set as 250 and the mini-batch
size is set as 256 for synthetic datasets and 128 for real-world
datasets respectively. The implementations are based on Py-
Torch [Paszke et al., 2019] and experiments are conducted
with NVIDIA RTX 2080 Ti GPUs. More detailed descrip-
tions of experiments are shown in Appendix.

4.3 Results on Synthetic Datasets

We report the mean values and standard error of test accuracy
out of 5 trials. Table 1 reports the classification performance
of each algorithm in the binomial case and pair case respec-
tively. All deep PLL methods are trained with the same MLP
model. Based on the results in Table 1, we clearly see that un-
der the same base model, the proposed method achieves com-
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petitive performance against the state-of-the-art deep PLL ap-
proaches, showing that label disambiguation is accomplished
with high quality on different synthetic datasets in different
data generation cases. Collectively, the PLL-BC loss serves
as an effective way for learning with partially labeled data,
which matches its theory.

4.4 Results on Real-world Datasets

Means and standard deviations of each baseline are mea-
sured over 10-fold cross-validation, as shown in Table 2.
For a fair comparison, all deep PLL methods employ a lin-
ear model. Compared to the deep PLL methods, PLL-BC
loss overall achieves comparable or better performance on all
datasets. Compared to the classical PLL methods, all deep
PLL methods are at a competitive disadvantage on Birdsong
and MSRCv2 datasets. It is reasonable that we adopt the lin-
ear model, and the representation ability of DNNs has not yet
been fully exploited. Besides, we observe that there might be
some extreme cases with large ambiguity degree in real-world
datasets, then the proposed method would achieve mediocre
performance. It is noteworthy that PLL-BC achieves supe-
rior performance against PL-KNN, where both methods are
differently implemented but have similar functionality based
on Eq. (10). We perform logit adjustment on the classifier to
encourage a large relative margin between the output logits
of candidates versus that of non-candidates while PL-KNN
focuses on the minimum distance to the decision boundary.
These results indicate the advantage of the logit margin-based
formulation against other baselines.

4.5 Empirical Understandings

We conduct comprehensive experiments, on the key compo-
nents introduced into the proposed approach. Specifically,
experiments analysis is conducted on the Lost dataset and the
Kuzushiji dataset in binomial case with ¢ = 0.5.
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Lost Birdsong MSRCv2 Soccer Player Yahoo! News

PLL-BC ‘ 79.41+3.47 71.9742.06 44.66+4.87 57.43+1.52 67.96+0.79

PRODEN 76.11+£4.63¢ 71.81£2.18 44.5443.94 56.42+1.48e 67.40£0.73e

DNPL 75.67+£3.400 71.79+£2.20 44.034+4.40 54.84+1.22e 67.27+1.85

RC 78.70+4.55 71.65+2.29 47.38+4.27 56.75+0.97 67.904+0.91

CC 77.72+£4.13e 71.85+£2.04 45.2242.59 56.32+0.89e 67.91+0.71

LWS 78.974+3.74 65.07+£2.06e 39.48+2.51e 51.56+1.71e 46.414+3.77e

PL-KNN 34.14+4.17e 64.37+2.13¢ 43.2945.29¢ 49.23+1.46e 41.30£1.25e

PL-SVM 71.74+£4.53e 45.40+3.58e 31.46£3.02e 38.56t4.37e 51.56+1.54¢

PL-ECOC 67.38+t4.27e 74.15+1.94 46.53+3.22 29.49+6.15e 61.814+1.09¢

IPAL 73.08+4.37e 71.2742.06e 52.39+4.29 55.01+1.01e 66.76+0.90e

Table 2: Test accuracy (meanzstd) on the real-world datasets (in %).
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Figure 2: Study of the logit adjustment strategy.

Effectiveness Analysis of Logit Adjustment

By applying logit adjustment, the binary classifier is con-
structed from the original multiclass classifier. We compare
the performance under different logit adjustment strategies.
Furthermore, the multiclass-based minimal loss (Naive) is
used as baseline, which simply selects the maximum logit as
the correct one [Lv ef al., 2020]. We use BC-Avg, BC-Max
and BC-WN to represent the PLL-BC loss implemented with
Eq. (9), (11) and (15) respectively. As shown in Figure 2, we
first observe that the BC-Max loss substantially outperforms
the minimal loss and even achieves competitive performance
against the BC-WN loss on Kuzushiji datasets. This phe-
nomenon empirically verifies that by exploiting the current
predictive information, there is no guarantee that the maxi-
mum logit is the ground-truth one. Once we select the false-
positive label as the correct one, our binary loss for updating
the logits can avoid error accumulation to some extent. Be-
sides, the average-based loss shows mediocre performance,
since it aggregates the candidate logits without discrimina-
tion. Overall, the weight normalization strategy improves the
robustness and generalization of the proposed method.

Sensitivity Analysis of Temperature Coefficient

The temperature coefficient is introduced to balance the
weight contribution among labels. Figure 3 illustrates the per-
formance of model under different settings. For Lost dataset,
one can see that increasing A leads a natural drop in accuracy.
The reason is that the proposed weight normalization strat-
egy gradually becomes the average-based one when \ > 1,

Epoch
(a) Lost, Linear

Epoch
(b) Kmnist, MLP

Figure 3: Study of the temperature coefficient in PLL-BC loss.

of which the shortcomings have been analyzed above. For
Kuzushiji dataset, the performance is relatively robust to this
hyperparameter in most cases, and increasing A properly will
reduce variance to get a more stable performance but affect
accuracy. In general, this strategy can be viewed as a general-
ization of those two classical strategies and fine-tuning A can
boost the model performance to some extent.

5 Conclusion

In this paper, we focused on the problem of learning with
partially labeled data. Specifically, based on the PLL setting,
we proposed a PLL binary classification loss and derived a
novel estimator with estimation error bound. Furthermore,
we proposed different logit adjustment methods for construct-
ing the binary classifier, whose idea is directly encouraging
Py(y € s|l¢) — 1. And we demonstrated the effectiveness of
our algorithm in practice on both benchmark and real-world
datasets. In most realistic cases, there is no guarantee that the
ground-truth label of training examples must be one of their
candidate labels, which motivates us to consider the robust
partial loss, and we leave this for future work.
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