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Abstract

Most recent graph clustering methods rely on pre-
training graph auto-encoders using self-supervision
techniques (pretext task) and fine-tuning based on
pseudo-supervision (main task). However, the tran-
sition from self-supervision to pseudo-supervision
has never been studied from a geometric perspec-
tive. Herein, we establish the first systematic ex-
ploration of the latent manifolds’ geometry under
the deep clustering paradigm; we study the evolu-
tion of their intrinsic dimension and linear intrinsic
dimension. We find that the embedded manifolds
undergo coarse geometric transformation under the
transition regime: from curved low-dimensional to
flattened higher-dimensional. Moreover, we find
that this inappropriate flattening leads to clustering
deterioration by twisting the curved structures. To
address this problem, which we call Feature Twist,
we propose a variational graph auto-encoder that
can smooth the local curves before gradually flat-
tening the global structures. Our results show a
notable improvement over multiple state-of-the-art
approaches by escaping Feature Twist.

1 Introduction
The past few years have witnessed the emergence of deep
clustering as a promising paradigm for clustering large-scale,
high-dimensional, and high-semantic datasets. In essence, it
amounts to performing joint clustering and feature learning
using neural networks. Recent improvements in deep clus-
tering can be mainly attributed to the seminal advances in
self-supervision [Liu et al., 2021] and pseudo-supervision
[Mrabah et al., 2020]. On the one hand, self-supervision
involves solving a pretext task, which requires a high-level
understanding of the data semantics. For instance, random
walk [Perozzi et al., 2014], adjacency reconstruction [Kipf
and Welling, 2016], and mutual information between local
and global representations [Veličković et al., 2019] are among
the most relevant self-supervision tasks for graph representa-
tion learning. On the other hand, pseudo-supervision aims at
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solving the primary task by jointly learning pseudo-labels us-
ing a clustering algorithm, and supplying these pseudo-labels
as a supervisory signal to learn clustering-oriented features.

Most existing deep clustering models follow a two-step
strategy to make up for the absence of supervisory signals.
They pretrain using a self-supervision loss, namely, the pre-
training phase, and fine-tune using pseudo-supervision or
a linear combination between pseudo-supervision and self-
supervision, namely, the clustering phase. In a recent work,
Mrabah et al. [2021] studied the relationship between self-
supervision and pseudo-supervision in the clustering phase.
They have shown that this relation is governed by the trade-
off between Feature Randomness and Feature Drift. Further-
more, they have proved that the graph convolutional opera-
tion strengthens the effect of Feature Drift. Nevertheless, the
transition from pretraining to clustering has never been stud-
ied. Particularly, it is important to understand this transition
from a geometric perspective to identify potential deteriora-
tion (e.g., twisted manifolds) to the learned structures.

Among the principal ways to assess the geometric configu-
ration of the latent representations is to compute their Intrin-
sic Dimension (ID) and Linear Intrinsic Dimension (LID).
Practically, the ID metric measures the dimension of the
embedded manifolds, and LID measures the dimension of
the best subspace (minimal rank) that can enclose the latent
manifolds. However, curved manifolds with non-uniformly
distributed points render the ID estimation a challenging
task. To solve this problem, Facco et al. [2017] have pro-
posed TwoNN, an efficient estimator that requires two nearest
neighbours of each point to assess ID. In a recent work, An-
suini et al. [2019] capitalized on this estimator and proposed
an estimator for LID based on PCA (Principal Component
Analysis) to show that training a neural network supervisedly
gives birth to low-dimensional and curved latent manifolds.

We investigate the evolution of ID and LID for graph auto-
encoders under the deep clustering paradigm. The results
of this investigation are available in Appendix A (all ap-
pendices are provided in the Supplementary Material†). We
find that the pretraining phase gives birth to low-dimensional
and curved latent manifolds. However, introducing pseudo-
supervision in the clustering phase coarsely flattens and raises
the ID of the latent structures. Additionally, we find that the

†https://github.com/nairouz/FT-VGAE
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coarse flattening of the latent manifolds under the transition
regime twists the curved structures, and hence degrades the
clustering results. We call this problem Feature Twist (FT).

We propose a variational graph auto-encoder model trained
in three phases to avoid the coarse transition from pretrain-
ing to clustering. We start by minimizing the vanilla recon-
struction cost in the first phase, similar to previous variational
auto-encoder methods [Kipf and Welling, 2016], [Hui et al.,
2020]. The second training phase flattens the local curva-
tures while emphasizing the globally curved shape. Finally,
the third training phase gradually flattens the global struc-
tures while preserving local configurations. We derive the
objective functions of the three phases in a principled way
following the variational framework. Thus, each optimized
objective constitutes a lower bound of the input graph log-
likelihood. Moreover, our edge decoding strategies exploit
the neighbourhood-level and the cluster-level information.

Contributions. (i) We establish a systematic exploration
of the deep clustering paradigm from a geometric perspective.
We focus on the transition regime from self-supervision to
pseudo-supervision, and we shed the light on Feature Twist,
a problem that has never been tackled by existent deep clus-
tering methods. (ii) We introduce a variational auto-encoder
trained in three phases to circumvent the coarse geometric
transition from pretraining to clustering. More precisely, we
flatten the local curvatures of the latent manifolds before
gradually flattening the global structures. Our decoding strat-
egy exploits the neighbourhood-level and the cluster-level in-
formation. (iii) We conduct various experiments to validate
the contributions of the proposed approach. The obtained
results provide strong evidence that our model can improve
the clustering performance over several state-of-the-art deep
graph clustering methods by escaping Feature Twist.

2 Related Work
We discuss the broad category of deep graph clustering and
the more specific category of variational graph auto-encoders.

2.1 Deep Graph Clustering
ARGAE [Pan et al., 2018] (Adversarially Regularized Graph
Auto-Encoder) harnesses adversarial training to impose a
Gaussian distribution on the latent representations using a
discriminator. After that, the clustering assignments are com-
puted by applying k-means on the embedded codes. Since the
latent manifolds are curved at the end of the training process,
we do not expect k-means to identify the clustering structures
effectively. DAEGC [Wang et al., 2019] (Deep Attentional
Embedded Graph Clustering) leverages an attention graph en-
coding mechanism. Unlike ARGAE, DAEGC is trained to
learn clustering-oriented features by minimizing joint clus-
tering and reconstruction after the pretraining phase. How-
ever, DAEGC falls short of any consideration to the coarse
geometric transformation associated with the transition from
pretraining to clustering. AGE [Cui et al., 2020] (Adap-
tive Graph Encoder) smooths the input feature matrix with
a Laplacian filter computed based on the adjacency matrix.
Then, the filtered signal feeds a fully connected neural net-
work, which is trained to construct an adaptive and clustering-

oriented graph. However, performing pseudo-supervision di-
rectly without self-supervision increases the amount of Fea-
ture Randomness [Mrabah et al., 2022].

2.2 Variational Graph Auto-Encoders

The previously discussed methods assume a deterministic en-
coding process to build the node embeddings. Neverthe-
less, modeling the uncertainty inherent to real-world graphs
in the latent space is crucial for solving the clustering task.
For example, it is essential to assess the confidence asso-
ciated with critical predictions on medical graphs [Yang et
al., 2021]. The variational graph auto-encoding constitutes
a prominent strategy with solid probabilistic foundations to
address this problem. It models the uncertainty with random
variables from predefined distributions. In another advanta-
geous aspect, this strategy is among the mainstream solutions
for generative modeling, such as molecule generation [Liu
et al., 2018]. Furthermore, variational graph auto-encoders
have theoretically-grounded objective functions by maximiz-
ing lower bounds of the input graph log-likelihood. These
lower bounds are derived in a principled way, which avoids
tuning unrequired hyperparameters for balancing the differ-
ent components of the objective function.

VGAE [Kipf and Welling, 2016] is the first variational
graph auto-encoder model. Although it has found success in
many applications, this method has several limitations. First,
VGAE does not consider the clustering meta-prior [Bengio
et al., 2013] for building the inference and generative mod-
els. Consequently, the features learned by this method are not
clustering-oriented (no clustering objective derived in the ev-
idence lower bound). Several studies exploit VGAE in solv-
ing the clustering task by applying k-means on the embedded
codes. However, this strategy is problematic because the la-
tent manifolds are curved at the end of the training process,
and there is no systematic way to identify the most relevant
metric to capture the latent similarities for any dataset. There-
fore, it is critical to flatten the embedded manifolds before
applying a Euclidean-based clustering algorithm, such as k-
means. Second, VGAE adopts a simplistic decoding style
based on the inner-product of the node embedding. This as-
sumption implies that the generated edges do not integrate in-
formation from the neighbourhood-level and the cluster-level.

GMM-VGAE [Hui et al., 2020] is a variational graph
auto-encoder that can model a multi-category latent struc-
ture with Gaussian Mixture Models. Unlike VGAE, GMM-
VGAE establishes the clustering meta-prior explicitly by in-
troducing random variables representing the different clus-
ters. Hence, a clustering objective emerges in the lower
bound derivation, which in turn promotes the learning of
clustering-oriented features. However, the latent codes of this
model lie on curved manifolds at the end of the pretraining
phase. Thus, performing joint clustering and feature learning
based on GMM flattens the embedded manifolds inappropri-
ately: the coarse geometric transformation of the clustering
manifolds as shown by our experiments (see Section 4.2).
Similar to VGAE, GMM-VGAE has a naive generative model
that overlooks the neighbourhood-level and the cluster-level
information. This aspect restricts the decoding flexibility.
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3 Proposed Method
To address FT, we propose a variational graph auto-encoder
(VGAE) trained in three phases. Our proposed model, FT-
VGAE (VGAE supplied with a mechanism against FT), is de-
signed to perform embedded clustering without twisting the
curved structures while flattening the latent manifolds. We
start this section by introducing important notations.

We consider a non-directed attributed graph G =
(V, E , X), where V = {v1, v2, ..., vN} is a set of N nodes,
eij ∈ E indicates that there is an edge between the ith and
jth nodes, and X ∈ RN×J is the attribute matrix. Each row
of this matrix xi ∈ RJ denotes the vector associated with
the ith node, and J is the dimension of the input space. We
consider that the set V can be grouped into Nc clusters. Let
A = (aij) ∈ RN×N be the adjacency matrix of G and D the
degree matrix of A. Thus, aij = 1 if (vi, vj) ∈ E and aij = 0
otherwise. We adopt GCN [Kipf and Welling, 2017] layers
for mapping the input graph to low-dimensional representa-
tions Z ∈ RN×d according to the layer-wise mechanism:

Z(l) = fϕ(Z
(l−1), A|W (l)) = ϕ(D̃− 1

2 ÃD̃− 1
2Z(l−1)W (l)), (1)

where Ã = A + I , D̃ = D + I , and I ∈ RN×N is the
identity matrix. Z(l) represents the output matrix of the lth

layer and Z(0) = X . ϕ denotes the activation function and
W =

{
W (l)

}
is the set of trainable weights. The architecture

of our model consists of two encoding heads specified as:

Z(1) = fReLU(X,A|W (0)), (2)

Z(2)
µ = fLinear(Z

(1), A|W (1)
µ ) ∈ RN×d, (3)

Z(2)
σ = fLinear(Z

(1), A|W (1)
σ ) ∈ RN×d. (4)

Following the variational auto-encoder framework, our ap-
proach maximizes an evidence lower bound of the input graph
log-likelihood for each training phase. These bounds depend
on the designed inference and generative models. We explain
the different phases in the following subsections.

3.1 First Phase
For this phase, we develop a slight variant of the variational
model proposed by Kipf and Welling in [2016]. The inference
model is defined by the distribution q(Z|X,A) parameterized
by two encoding layers:

q(Z|X,A) =

N∏
i=1

q(zi|X,A) =

N∏
i=1

N (zi|µzi , diag(σ2
zi)), (5)

where µzi = Z
(2)
µ [i, :] and σ2

zi = Z
(2)
σ [i, :] are the mean

vector and the variance vector, respectively, of a multivari-
ate Gaussian distribution associated with zi. The generative
model of this phase is defined by the distribution p(A,Z) fac-
torized in a decoding style p(A,Z) = p(A|Z)p(Z) such that:

p(Z) =

N∏
i=1

p(zi) =

N∏
i=1

N (zi|0, I), (6)

p(A|Z) =
N∏
i=1

N∏
j=1

p(aij |zi, zj) =
N∏
i=1

N∏
j=1

Ber(βij), (7)

where βij = Sigmoid(zTi zj) is the parameter of a Bernoulli
distribution Ber(βij) associated with each generated edge.

Given the design choices of the generative and inference
models, we formulate a variational lower bound of the input
graph log-likelihood as follows:

L1 =
N∑

i,j=1

Ezi,zj∼q(.|X,A)

[
log

(
p(aij |zi, zj)

)]

− 2N
N∑
i=1

KL
(
q(zi|X,A)||p(zi)

)
.

(8)

The first term of L1 is the adjacency reconstruction. The
gradient of this term can be estimated by Monte Carlo sam-
pling and the reparameterization trick [Kingma and Welling,
2014]. The second term of is a regularization function. The
full derivation of this bound is provided in Appendix B.

3.2 Second Phase
In the first phase, our model learns low-dimensional and
curved embedded manifolds. However, because of the
curved aspect, the latent clusters are hard to discover using
Euclidean-based methods. Unlike previous approaches, we
avoid flattening the latent structures by performing embed-
ded clustering directly after the first phase. Instead of that,
our second phase smooths the local curvatures while empha-
sizing the global curved structures. To achieve this goal, local
neighbourhoods are merged following the assumption:

∀(i, l) ∈ [|1, N |]× [|1, Nm|] q(zi|X,A) = q(λl(zi)|X,A), (9)
where Nm denotes the neighbourhood size, and λl is a func-
tion that returns for each embedded point zi its lth nearest
neighbour in the latent space. Similar to the first phase, we
keep the same inference and generative models, and we es-
tablish another lower bound of the input graph log-likelihood.
We derive the second bound by enforcing the neighbourhood
assumption. The obtained function is formulated as follows:

L2 =
1

Nm

N∑
i,j=1

Nm∑
l=1

Ezi,zj∼q(λl(.)|X,A)

[
log

(
p(aij |zi, zj)

)]

− 2
N

Nm

N∑
i=1

Nm∑
l=1

KL
(
q(λl(zi)|X,A)||p(zi)

)
.

(10)
The first term of the second bound constructs each edge

eij from the input graph by considering the local neighbour-
hood of the embedded points zi and zj . Whereas for the first
phase, only zi and zj are considered for generating the edge
eij . Similar to the first phase, the gradient of the first term
can be estimated by Monte Carlo sampling and the reparame-
terization trick. The second term is a regularization. The full
derivation of this bound is provided in Appendix C.
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3.3 Third Phase
In the third phase, we alternate between maximizing two ob-
jective functions L3 and L4. Both of them constitute distinct
lower bounds of the input graph log-likelihood, and they are
derived based on different assumptions on the inference and
generative models. The goal is to perform embedded cluster-
ing without twisting the curved structures while flattening the
latent manifolds. We assess the level of the transformation by
monitoring the ID of the different clusters.

L3 combines embedded over-clustering and adjacency re-
construction simultaneously. Let O = (o1, ..., oN ) be a se-
quence of N i.i.d. discrete random variables, where oi de-
scribes the over-clustering assignments of the variable zi. L3

is optimized by simultaneously learning the encoder training
weights and a set of over-clustering centers {Ωj}No

j=1. No

denotes the number of over-clustering centers, which are ini-
tialized based on k-means. The generative model of L3 is
described by the distribution p(A,O,Z) that factorizes as:

p(A,O,Z) = p(A|Z) p(O|Z) p(Z), (11)
where p(Z) and p(A|Z) are defined similar to the first phase
according to Eq. (6) and Eq. (7), respectively. p(O|Z) is de-
fined by the product of Student’s t-distributions to capture the
similarities between the latent codes and the over-clustering
centers. The distribution p(O|Z) is articulated as:

p(O|Z) =
N∏
i=1

p(oi|zi), (12)

p(oi = j|zi) =
(1 + ∥zi − Ωj∥2)−1∑
j′(1 + ∥zi − Ωj′∥2)−1

. (13)

The inference model for L3 is described by the distribution
q(Z,O|X,A) = q(O|Z) q(Z|X,A), such that q(Z|X,A) is
expressed according to Eq. (5). As for q(O|Z), it enlarges the
top assignment scores of p(O|Z) similar to [Xie et al., 2016]:

q(O|Z) =
N∏
i=1

q(oi|zi), (14)

q(oi = j|zi) =
p(oi = j|zi)2/

∑
i′ p(oi′ = j|zi′)∑

j′

(
p(oi = j′|zi)2/

∑
i′ p(oi′ = j′|zi′)

) . (15)

Given the specified inference and generative models, we
formulate a lower bound of the input graph log-likelihood in
Eq. (16). The full derivation of this bound is provided in
Appendix D. The third term is the over-clustering objective.

L3 =

N∑
i,j=1

Ezi,zj∼q(.|X,A)

[
log

(
p(aij |zi, zj)

)]

− 2N
N∑
i=1

KL
(
q(zi|X,A)||p(zi)

)
− 2N

N∑
i=1

Ezi∼q(.|X,A)

[
KL

(
q(oi|zi)||p(oi|zi)

)]
.

(16)

L4 formulates a clustering-oriented lower bound of the in-
put graph log-likelihood. Let C = (c1, ..., cN ) be a sequence
of N i.i.d. discrete random variables, where ci describes the
clustering assignments of zi. L4 is optimized by simultane-
ously learning the training weights and a set of clustering cen-
ters {Φj}Nc

j=1. The clustering centers are initialized based on
k-means. The generative model of L4 is described by the
distribution p(A,C,Z) = p(A|Z) p(C|Z) p(Z), such that
p(Z) and p(A|Z) keep the same definitions provided for L3,
p(C|Z) =

∏N
i=1 p(ci|zi), and p(ci|zi) is expressed as:

p(ci = j|zi) =
(1 + ∥zi − Φj∥2)−1∑
j′(1 + ∥zi − Φj′∥2)−1

. (17)

The inference model of L4 is defined by the distribution
q(Z,C|X,A) = q(C|Z) q(Z|X,A), such that q(Z|X,A) is
defined in Eq. (5). Moreover, we reduce the intracluster vari-
ance by enforcing the following clustering assumption:

∀i ∈ [|1, N |] q(zi|X,A) = q(γ(zi)|X,A), (18)
where γ is a function that returns for each latent code the cor-
responding clustering center. The distribution q(C|Z) factor-
izes as q(C|Z) =

∏N
i=1 q(ci|zi) and q(ci|zi) is expressed as:

q(ci = j|zi) =
p(ci = j|zi)2/

∑
i′ p(ci′ = j|zi′)∑

j′

(
p(ci = j′|zi)2/

∑
i′ p(ci′ = j′|zi′)

) . (19)

Given the specified inference and generative models, we
formulate the fourth lower bound in Eq. (20). The full deriva-
tion of this bound is provided in Appendix E. The first term
constructs the input graph edges by considering the similari-
ties between the latent centers. The second term is a regular-
ization, and the third term represents the clustering objective.

L4 =
N∑

i,j=1

Ezi,zj∼q(γ(.)|X,A)

[
log

(
p(aij |zi, zj)

)]

− 2N
N∑
i=1

KL
(
q(γ(zi)|X,A)||p(zi)

)
− 2N

N∑
i=1

Ezi∼q(.|X,A)

[
KL

(
q(ci|zi)||p(ci|zi)

)]
.

(20)

3.4 Algorithm
For the first phase, we train for a fixed number of iterations
T1. For the second phase, we train for T2 iterations. At the
end of this phase, we load the training weights of the itera-
tion with the lowest average ID value. For the third phase, we
train the model until the average ID becomes equal to LID. At
the end of the third phase, we load the training weights of the
iteration with the lowest average ID value among the ten iter-
ations with the best clustering quality according to the unsu-
pervised metric DBI [Davies and Bouldin, 1979]. Eventually,
we perform spectral clustering [Ng et al., 2002] on the final
latent codes to get the clustering assignments. The full algo-
rithm and its complexity analysis are provided in Appendix F
and Appendix G, respectively, due to page limit restrictions.
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Method Cora Citeseer Pubmed USA Air-Traffic Europe Air-Traffic Brazil Air-Traffic
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

GAE 61.3 44.4 38.1 48.2 22.7 19.2 63.2 24.9 24.6 43.9 13.6 11.8 47.6 19.9 12.7 62.6 37.8 30.8
ARGE 64.0 44.9 35.2 57.3 35.0 34.1 68.1 27.6 29.1 48.5 25.1 17.6 50.1 23.7 16.6 67.2 43.8 38.0
ARVGE 63.8 45.0 37.4 54.4 26.1 24.5 63.5 23.2 22.5 48.2 24.7 20.0 51.1 22.2 16.2 63.4 43.8 38.5
DGI 71.3 56.4 51.1 68.8 44.4 45.0 53.3 18.1 16.6 52.2 22.9 21.7 48.6 16.1 12.3 64.9 31.0 30.4
AGC 68.9 53.7 48.6 67.0 41.1 41.9 69.8 31.6 31.9 48.1 20.6 14.2 33.3 09.5 04.0 39.7 24.1 08.1
DAEGC 70.4 52.8 49.6 67.2 39.7 41.0 67.1 26.6 27.8 46.4 27.2 18.4 53.6 30.9 23.3 71.0 47.4 41.2
GIC 72.5 53.7 50.8 69.6 45.3 46.5 67.3 31.9 29.1 49.7 22.1 19.9 40.4 09.4 06.2 40.5 23.5 14.1
AGE 76.1 59.9 54.5 70.1 44.3 45.4 71.1 31.6 33.4 50.9 22.5 18.2 54.2 30.8 19.6 40.9 20.0 16.2
VGAE 64.7 43.4 37.5 51.9 24.9 23.8 69.6 28.6 31.7 45.8 23.6 15.7 49.9 23.5 16.7 64.1 38.0 30.7
GMM-VGAE 71.5 53.1 47.4 67.5 40.7 42.4 71.1 29.9 33.0 48.1 21.9 13.2 51.1 27.5 21.7 70.2 46.0 41.9
FT-VGAE 77.4 61.0 58.2 70.8 44.5 46.7 72.5 33.0 35.5 53.7 27.5 22.8 55.1 31.4 26.3 73.3 47.6 44.4

Table 1: Comparing the clustering performance between different graph clustering methods. Best methods in bold and second best underlined.

4 Experiments
We select six datasets for our experiments: three citation net-
works [Sen et al., 2008] (Cora, Citeseer, and Pubmed) and
three air traffic networks [Sen et al., 2008] (Brazil Air Traf-
fic, US Air Traffic, and Europe Air Traffic). The data de-
scription and preprocessing are discussed in Appendix I. Our
comparison covers ten deep graph clustering models: GAE,
VGAE [Kipf and Welling, 2016], ARGE, ARVGE [Pan et
al., 2018], DGI [Veličković et al., 2019], AGC [Zhang et al.,
2019], DAEGC [Wang et al., 2019], GMM-VGAE [Hui et
al., 2020], GIC [Mavromatis and Karypis, 2021], and AGE
[Cui et al., 2020]. The clustering results of DGI are obtained
by running k-means on the latent codes. For each baseline,
we use the code of the original paper, and we set the hyper-
parameters as suggested by the authors or we tune them if
no recommendations are provided. All experiments are per-
formed under the same hardware and software environments
as described in Appendix J. For evaluation, we employ three
standard clustering metrics, namely ACC, NMI, and ARI,
and two geometric ones, namely ID and LID. We provide a
full description of ID and LID in Appendix K. The archi-
tecture, learning rates, and all the other hyper-parameters of
FT-VGAE are specified and discussed in Appendix H. The
training layers are initialized from uniform distributions. Our
code is available on https://github.com/nairouz/FT-VGAE.

4.1 Clustering Results
In Table 1, we compare FT-VGAE with several state-of-the-
art graph clustering methods on six datasets. For each model,
we report the best results among ten trials. Initially, we fo-
cus on the first part of the table (i.e., the first 8 rows), which
considers methods with different architectures and objective
functions. As we can see, FT-VGAE yields better results
than these models. Despite the differences in various factors,
the improvement brought by FT-VGAE suggests the impor-
tance of tackling FT for solving the graph clustering prob-
lem. In the second part (i.e., the last three rows) of Table
1, we perform a more conclusive comparison between three
variational graph auto-encoders (VGAE, GMM-VGAE, and
FT-VGAE). VGAE (one training phase), GMM-VGAE (two
training phases), and FT-VGAE (three training phases) have
the same architecture, they maximize similar objective func-
tions (i.e., lower bounds of the input graph log-likelihood).
We observe from Table 1 that FT-VGAE outperforms VGAE

and GMM-VGAE by a considerable margin. For instance, the
difference in clustering performance between FT-VGAE and
GMM-VGAE is higher than 10% in terms of ARI on Cora.
Unlike VGAE and GMM-VGAE, FT-VGAE stands out by its
capacity to tackle the FT problem. Further analysis and com-
parison with these variational models in terms of execution
time are available in Appendix L.

4.2 Feature Twist

GMM-VGAE FT-VGAE

GMM-VGAE FT-VGAE

Figure 1: ID and LID of GMM-VGAE and FT-VGAE on Cora (first
row) and Citeseer (second row). Average ID: average ID of the
clustering manifolds. LID: number of dimensions that can capture
90% of the covariance matrix (linear correlations) estimated based
on PCA (Principal Component Analysis). Pi indicates the ith phase.

In Figure 1, we study the training process of FT-VGAE and
GMM-VGAE on Cora and Citeseer from a geometric per-
spective based on two metrics ID and LID. We observe an
abrupt transition in ID for GMM-VGAE when the training
goes from the self-supervision task (i.e., phase one) to the
pseudo-supervision task (i.e., phase two). Specifically, the
embedded manifolds undergo substantial transformation in a
few iterations: from curved (strong difference between ID
and LID) low-dimensional (much lower than the embedded
space dimension) manifolds to flattened higher-dimensional
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structures. Such an abrupt transition brings geometric deteri-
oration caused by the inappropriate flattening (twisting) of the
curved structures as explained in Appendix A. As opposed to
GMM-VGAE, FT-VGAE has a smooth transition in ID be-
tween the different phases. The second phase of FT-VGAE
makes the average ID decrease by merging the local neigh-
bourhoods while globally maintaining the curved structures
(see the difference between ID and LID in the second phase
in Figure 1). The third phase flattens the latent manifolds
slowly by combining clustering and over-clustering to avoid
twisting the curved structures.

4.3 Ablation Study

Dataset Metrics P1 P1 & P2 P1&P3 P1&P2&P3

ACC 60.1 55.6 76.4 77.4
Cora NMI 47.1 46.4 59.4 61.0

ARI 23.9 22.9 55.8 58.2
ACC 61.9 70.0 70.5 70.8

Citeseer NMI 34.4 43.2 44.3 44.5
ARI 34.0 45.5 46.5 46.7
ACC 70.7 72.1 70.1 73.3

Pubmed NMI 31.3 32.6 32.1 47.6
ARI 32.9 35.1 32.5 44.4

Table 2: Ablation study of FT-VGAE. Pi indicates the ith phase.

In Table 2, we show the results of four ablation experiments
conducted on three datasets to tease out the effectiveness of
our contributions. First, we observe that performing P1&P2

does not necessarily give better results than P1 alone. In fact,
P2 widens the gap between the average ID and LID, which
can make the clustering structures more difficult to discover
even with spectral clustering. Second, we observe that per-
forming P1&P3 does not necessarily yield better results than
P1&P2 or even P1 alone. This result suggests that combin-
ing clustering and over-clustering without the second phase is
not necessarily sufficient to escape FT. Third, we observe that
performing P1&P2&P3 gives consistently better results than
P1&P2 and P1&P3. These results substantiate the suitability
of performing P3 after P2. Hence, it is important to flatten the
local curves during the second phase before slowly flattening
the global structures during the third phase.

4.4 Sensitivity
We study the sensitivity of FT-VGAE to the hyperparameters
No(≪ N) and Nm(≪ N) on Cora and Citeseer. We expect
that too large values for these hyper-parameters leads to lower
clustering results. Therefore, we select No and Nm from
the ranges [3, 5, 7, 9, 11] and [50, 100, 150, 200, 250], respec-
tively. As we can see in Figure 2, our model yields strong
results in terms of ACC and NMI for a wide range of values.

4.5 Visualisation
As we can see in Figure 3, the second phase promotes the
separation between the different clusters. Furthermore, we
observe that the third phase makes the clustering structures
more pronounced by introducing pseudo-supervision.

ACC NMI

ACC NMI

Figure 2: Sensitivity of FT-VGAE to Nm and No in terms of ACC
and NMI. Top row: results on Cora; bottom row: results on Citeseer.

Phase 1 Phase 2 Phase 3

Phase 1 Phase 2 Phase 3

Figure 3: T-SNE visualizations of the latent representations. Top
row: results on Cora; bottom row: results on Citeseer.

5 Conclusion
This work studies the variation of the intrinsic dimension
under the transition regime from self-supervision to pseudo-
supervision. We find that the latent clusters undergo a coarse
geometric transformation: from curved low-dimensional to
flattened higher-dimensional structures. We establish empiri-
cally that this inappropriate flattening, namely, Feature Twist,
leads to clustering deterioration. To alleviate this problem,
we propose a principled variational auto-encoder framework
with three training phases. The first phase learns the curved
manifolds. After that, the second phase flattens the local
structures while emphasizing the globally curved shape. The
third phase then gradually flattens the global structures while
preserving the local configurations. Through relevant empir-
ical results, we show that our method outperforms several
state-of-the-art approaches by escaping Feature Twist.
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