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Abstract

In this work we introduce reinforcement learn-
ing techniques for solving lexicographic multi-
objective problems. These are problems that in-
volve multiple reward signals, and where the goal
is to learn a policy that maximises the first reward
signal, and subject to this constraint also maximises
the second reward signal, and so on. We present a
family of both action-value and policy gradient al-
gorithms that can be used to solve such problems,
and prove that they converge to policies that are
lexicographically optimal. We evaluate the scal-
ability and performance of these algorithms em-
pirically, demonstrating their practical applicabil-
ity. As a more specific application, we show how
our algorithms can be used to impose safety con-
straints on the behaviour of an agent, and compare
their performance in this context with that of other
constrained reinforcement learning algorithms.

1 Introduction
Reinforcement learning (RL) algorithms learn to solve tasks
in unknown environments by a process of trial and error,
where the task typically is encoded as a scalar reward func-
tion. However, there are tasks for which it is difficult (or even
infeasible) to create such a function. Consider, for example,
Isaac Asimov’s three Laws of Robotics – the task of following
these laws involves multiple (possibly conflicting) objectives,
some of which are lexicographically (i.e. categorically) more
important than others. There is, in general, no straightfor-
ward way to write a scalar reward function that encodes such
a task without ever incentivising the agent to prioritise less
important objectives. In such cases, it is difficult (and often
unsuitable) to apply standard RL algorithms.

In this work, we introduce several RL techniques for solv-
ing lexicographic multi-objective problems. More precisely,
we present both a family of action-value algorithms and a
family of policy gradient algorithms that can accept multi-
ple reward functions R1, . . . , Rm, and that learn a policy π
such that π maximises expected discounted R1-reward, and
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among all policies that do so, π also maximises expected dis-
counted R2-reward, and so on. These techniques can easily
be combined with a wide range of existing RL algorithms.
We also prove the convergence of our algorithms, and bench-
mark them against state-of-the-art methods for constrained
reinforcement learning in a number of environments.

1.1 Related Work
Lexicographic optimisation in Multi-Objective RL (MORL)
has previously been studied by [Gábor et al., 1998], whose
algorithm is a special case of one of ours (cf. Footnote 3).
Our contribution extends this work to general, state-of-the-
art RL algorithms. Unlike [Gábor et al., 1998], we also
prove that our algorithms converge to the desired policies,
and provide benchmarks against other state-of-the-art algo-
rithms in more complex environments. Other MORL al-
gorithms combine and trade off rewards in different ways;
for an overview, see [Roijers et al., 2013; Liu et al., 2015].
Lexicographic optimisation more generally is a long-studied
problem – see, e.g. [Mitten, 1974; Rentmeesters et al., 1996;
Wray and Zilberstein, 2015].

A natural application of lexicographic RL (LRL) is to learn
a policy that maximises a performance metric, subject to sat-
isfying a safety constraint. This setup has been tackled with
dynamic programming in [Lesser and Abate, 2018], and has
also been studied within RL. For example, [Tessler et al.,
2019] introduce an algorithm that maximises a reward sub-
ject to the constraint that the expectation of an additional
penalty signal should stay below a certain threshold; [Chow et
al., 2017] introduce techniques to maximise a reward subject
to constraints on the value-at-risk (VaR), or the conditional
value-at-risk (CVaR), of a penalty signal; and [Miryoosefi et
al., 2019] discuss an algorithm that accepts an arbitrary num-
ber of reward signals, and learns a policy whose expected dis-
counted reward vector lies inside a given convex set.

Our contributions add to this literature and, unlike the
methods above, allow us to encode safety constraints in a
principled way without prior knowledge of the level of safety
that can be attained in the environment. Note that lexico-
graphic optimisation of two rewards is qualitatively different
from maximising one reward subject to a constraint on the
second, and thus the limit policies of LRL and the algorithms
above will not, in general, be the same. Other methods also
emphasise staying safe while learning; see e.g. [Achiam et
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al., 2017; Thomas et al., 2013; Polymenakos et al., 2019]. In
contrast, our algorithms do not guarantee safety while learn-
ing, but rather learn a safe limit policy.

2 Background
Reinforcement Learning. The RL setting is usually for-
malised as a Markov Decision Process (MDP), which is a
tuple ⟨S,A, T, I, R, γ⟩ where S is a set of states, A is a set
of actions, T : S × A ⇝ S is a transition function, I is an
initial state distribution over S, R : S×A×S ⇝ R a reward
function, where R(s, a, s′) is the reward obtained if the agent
moves from state s to s′ by taking action a, and γ ∈ [0, 1] is
a discount factor. Here, f : X ⇝ Y denotes a probabilistic
mapping f from X to Y . A state is terminal if T (s, a) = s
and R(s, a, s) = 0 for all a.

A (stationary) policy is a mapping π : S ⇝ A that
specifies a distribution over the agent’s actions in each state.
The value function vπ(s) of π is defined as the expected γ-
discounted cumulative reward when following π from s, i.e.
vπ(s) := Eπ [

∑∞
t=0 γ

tR(st, at, st+1) | s0 = s]. When γ =
1, we instead consider the limit-average of this expectation.
The objective in RL can then be expressed as maximising
J(π) :=

∑
s I(s)vπ(s). Given a policy π we may also define

the q-function qπ(s, a) := Es′∼T (s,a) [R(s, a, s′) + vπ(s
′)]

and the advantage function aπ(s, a) := qπ(s, a)− vπ(s).

Value-Based Methods. A value-based agent has two main
components: a Q-function Q : S × A → R that predicts
the expected future discounted reward conditional on taking
a particular action in a particular state; and a bandit algorithm
that is used to select actions in each state. The Q-function can
be represented as a lookup table (in which case the agent is
tabular), or as a function approximator.

There are many ways to update the Q-function. One popu-
lar rule is Q-Learning [Watkins, 1986]:

Q(st, at)←
(
1− αt(st, at)

)
·Q(st, at)

+ αt(st, at) ·
(
rt + γmax

a
Q(st+1, a)

)
,

where t is the time step and αt(st, at) is a learning rate.
One can replace the term maxa Q(st+1, a) in the rule above
with Q(st+1, at+1) or Ea∼π(s)[Q(st+1, a)] (where π is the
policy that describes the agent’s current behaviour) to obtain
the SARSA [Rummery and Niranjan, 1994] or the Expected
SARSA [van Seijen et al., 2009] updates respectively.

Policy-Based Methods. In these methods, the policy
π(·; θ) is differentiable with respect to some θ ∈ Θ ⊂ Rx,
and θ is updated according to an objective K(θ). If using
KA2C(θ) := J(θ) then we may estimate this using:

KA2C(θ) := E
t

[
log π(at | st; θ) ·Aθ(st, at)

]
,

where Aθ is an estimate of aθ. One often computes Aθ by
approximating vθ with a function V parameterised by some
w ∈ W ⊂ Ry , and using the fact that the expected tem-
poral difference error δt := rt + γvθ(st+1) − vθ(st) (or
rt+ vθ(st+1)− vθ(st)−J(θ) when γ = 1) equals aθ(st, at)

[Bhatnagar et al., 2009]. Such algorithms are known as
Actor-Critic (AC) algorithms [Konda and Tsitsiklis, 2000].1

More recently, other policy gradient algorithms have used
surrogate objective functions, which increase stability in
training by penalising large steps in policy space, and can be
viewed as approximating the natural policy gradient [Amari,
1998; Kakade, 2001]. One common such penalty is the Kull-
back–Leibler (KL) divergence between new and old policies,
as employed in one version of Proximal Policy Optimisation
(PPO) [Schulman et al., 2017], leading to:

KPPO(θ) := E
t

[ π(at | st; θ)
π(at | st; θold)

Aθ(st, at)

−κ · DKL(π(st; θ) ∥ π(st; θold))
]
,

where κ is a scalar weight. Such algorithms enjoy both state
of the art performance and strong convergence guarantees
[Hsu et al., 2020; Liu et al., 2019].
Multi-Objective Reinforcement Learning. MORL is con-
cerned with policy synthesis under multiple objectives.
This setting can be formalised as a multi-objective MDP
(MOMDP), which is a tuple ⟨S,A, T, I,R, γ⟩ that is defined
analogously to an MDP, but where R : S × A × S ⇝ Rm

returns a vector of m rewards, and γ ∈ [0, 1]m defines m
discount rates. We define Ri as (s, a, s) 7→ R(s, a, s)i.

3 Lexicographic Reinforcement Learning
In this section we present a family of value-based and policy-
based algorithms that solve lexicographic multi-objective
problems by learning a lexicographically optimal policy.
Given a MOMDP M with m rewards, we say that a pol-
icy π is (globally) lexicographically ϵ-optimal if π ∈ Πϵ

m,
where Πϵ

0 = Π is the set of all policies inM, Πϵ
i+1 := {π ∈

Πϵ
i | maxπ′∈Πϵ

i
Ji(π

′) − Ji(π) ≤ ϵi}, and Rm−1 ∋ ϵ ≽ 0.
We similarly write Θϵ

i+1 to define global lexicographic ϵ-
optima for parametrised policies, but also Θ̃ϵ

i+1 := {θ ∈
Θϵ

i | maxθ′∈N i(θ) Ji(θ
′) − Ji(θ) ≤ ϵi} to define local lex-

icographic ϵ-optima, where N i(θ) ⊆ Θ̃ϵ
i is a compact local

neighbourhood of θ, and Θϵ
0 = Θ̃ϵ

−1 = Θ. When ϵ = 0 we
drop it from our notation and refer to lexicographic optima
and lexicographically optimal policies simpliciter.

3.1 Value-Based Algorithms
We begin by introducing bandit algorithms that take as in-
put multiple Q-functions and converge to taking lexicograph-
ically optimal actions.
Definition 1 (Lexicographic Bandit Algorithm). Let S be a
set of states, A a set of actions, Q1, . . . , Qm : S × A → R
a sequence of Q-functions, and t ∈ N a time parameter. A
lexicographic bandit algorithm with tolerance τ ∈ R>0 is a
function B : (S ×A→ R)m × S × N⇝ A, such that

lim
t→∞

Pr(B(Q1, . . . , Qm, s, t) ∈ ∆τ
s,m) = 1,

where ∆τ
s,0 = A and ∆τ

s,i+1 := {a ∈ ∆τ
s,i | Qi(s, a) ≥

maxa′∈∆τ
s,i

Qi(s, a
′)− τ}.

1Due to the choice of baseline [Sutton et al., 1999], we describe
here the classic Advantage Actor-Critic (A2C) algorithm.
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Intuitively, a lexicographic bandit algorithm will, in the
limit, pick an action a such that a maximises Q1 (with toler-
ance τ ), and among all actions that do this, action a also max-
imises Q2 (with tolerance τ ), and so on. An example of a lexi-
cographic bandit algorithm is given in Algorithm 1, where the
exploration probabilities ϵs,t should satisfy limt→∞ ϵs,t = 0
and

∑∞
t=0 ϵs,t =∞ for all s ∈ S.

We can now introduce Algorithm 2 (VB-LRL), a value-
based algorithm for lexicographic multi-objective RL. Here B
is any lexicographic bandit algorithm. The rule for updating
the Q-values (on line 6) can be varied. We call the following
update rule Lexicographic Q-Learning:
Qi(s, a)←

(
1− αt(s, a)

)
·Qi(s, a) +

αt(s, a) ·
(
Ri(s, a, s

′) + γi max
a∈∆τ

s,i

Qi(s
′, a)

)
,

where ∆τ
s,0 = A, ∆τ

s,i+1 := {a ∈ ∆τ
s,i | Qi(s, a) ≥

maxa′∈∆τ
s,i

Qi(s, a
′)− τ}, and τ ∈ R>0 is the tolerance pa-

rameter.2 This rule is analogous to Q-Learning, but where
the max-operator is restricted to range only over actions
that (approximately) lexicographically maximise all rewards
of higher priority. We can also use SARSA or Expected
SARSA. Alternatively, we can adapt Double Q-Learning
[Hasselt, 2010] for VB-LRL. To do this, we let the agent
maintain two Q-functions QA

i , QB
i for each reward. To up-

date the Q-values, with probability 0.5 we set:

QA
i (s, a)←

(
1− αt(s, a)

)
·QA

i (s, a) +

αt(s, a) ·
(
Ri(s, a, s

′) + γi ·QB
i

(
s′, argmax

a′∈∆τ
s,i

QA
i (s

′, a′)
))

,

and else perform the analogous update on QB
i , and let

Qi(s, a) := 0.5
(
QA

i (s, a) + QB
i (s, a)

)
in the bandit algo-

rithm. Varying the bandit algorithm or Q-value update rule in
VB-LRL produces a family of algorithms with different prop-
erties.3 We can now give our core result for Algorithm 2. All
our proofs are included in the supplementary material.4

Theorem 1. In any MOMDP M, if VB-LRL uses a lex-
icographic bandit algorithm and either SARSA, Expected
SARSA, or Lexicographic Q-Learning, then it will converge
to a policy π that is lexicographically optimal if:

1. S and A are finite,
2. All reward functions are bounded,
3. Either γ1, . . . , γm < 1, or every policy leads to a termi-

nal state with probability one,
4. The learning rates αt(s, a) ∈ [0, 1] satisfy the condi-

tions
∑

t αt(s, a) = ∞ and
∑

t αt(s, a)
2 < ∞ with

probability one, for all s ∈ S, a ∈ A,
5. The tolerance τ satisfies the condition that 0 < τ <

mini,s,a̸=a′ |qi(s, a)− qi(s, a
′)|.

2There are several places where VB-LRL makes use of a toler-
ance parameter τ . In the main text of this paper, we assume that the
same tolerance parameter is used everywhere, and that it is a con-
stant. In the supplementary material, we relax these assumptions.

3The LRL algorithm in [Gábor et al., 1998] is equivalent to Al-
gorithm 2 with Algorithm 1, Lexicographic Q-Learning, and τ = 0.

4Available at https://github.com/lrhammond/lmorl.

Algorithm 1 Lexicographic ϵ-Greedy

input: Q1, . . . , Qm, s, t
1: with probability ϵs,t do a ∼ unif(A)
2: else
3: ∆← A
4: for i ∈ {1, . . . ,m} do
5: x← maxa′∈∆ Qi(s, a

′)
6: ∆← {a ∈ ∆ | Qi(s, a) ≥ x− τ}
7: a ∼ unif(∆)

8: return a

Algorithm 2 Value-Based Lexicographic RL

input:M = ⟨S,A, T, I,R, γ⟩
1: initialise Q1, . . . , Qm, t← 0, s ∼ I
2: while Q1, . . . , Qm have not converged do
3: a← B(Q1, . . . , Qm, s, t) ▷ Algorithm 1
4: s′ ← T (s, a)
5: for i ∈ {1, . . . ,m} do
6: update Qi

7: if s′ is terminal then s ∼ I else s← s′

8: t← t+ 1
9: return π = s 7→ limt→∞ B(Q1, . . . , Qm, s, t)

We also show that VB-LRL with Lexicographic Double Q-
Learning converges to a lexicographically optimal policy.

Theorem 2. In any MOMDP, if VB-LRL uses Lexicographic
Double Q-Learning then it converges to a lexicographically
optimal policy π if conditions 1–5 in Theorem 1 hold.

Condition 4 requires that the agent takes every action in
every state infinitely often. Condition 5 is quite strong – the
upper bound on this range can in general not be determined
a priori. However, we expect VB-LRL to be well-behaved as
long as τ is small. We motivate this intuition with a formal
guarantee about the behaviour of VB-LRL for arbitrary τ .

Proposition 1. In any MOMDP, if VB-LRL has tolerance
τ > 0, uses SARSA, Expected SARSA, or Lexicographic Q-
Learning, and conditions 1–4 in Theorem 1 are met, then:

1. J1(π
∗)−J1(πt) ≤ τ

1−γ−λt, for some sequence {λt}t∈N
such that limt→∞ λt = 0,

2. J2(π
∗)−J2(πt) ≤ τ

1−γ−ηt, for some sequence {ηt}t∈N
such that limt→∞ ηt = 0,

where πt is the policy at time t and π∗ is a lexicographically
optimal policy.

Proposition 1 shows that we can obtain guarantees about
the limit behaviour of VB-LRL without prior knowledge of
the MOMDP when we only have two rewards, or are primar-
ily interested in the two most prioritised rewards. We discuss
this issue further in the supplementary material. Note also
that while Algorithm 2 is tabular, it is straightforward to com-
bine it with function approximators, making it applicable to
high-dimensional state spaces.
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3.2 Policy-Based Algorithms
We next introduce a family of lexicographic policy gradient
algorithms. These algorithms use one objective function Ki

for each reward function, and update the parameters of π(·; θ)
with a multi-timescale approach whereby we first optimise θ
using K1, then at a slower timescale optimise θ using K2

while adding the condition that the loss with respect to K1

remains bounded by its current value, and so on. To solve
these problems we use the well-known Lagrangian relaxation
technique [Bertsekas, 1999].

Suppose that we have already optimised θ′ lexicograph-
ically with respect to K1, . . . ,Ki−1 and we wish to now
lexicographically optimise θ with respect to Ki. Let kj :=
Kj(θ

′) for each j ∈ {1, . . . , i − 1}. Then we wish to solve
the constrained optimisation problem given by:

maximise Ki(θ),

subject to Kj(θ) ≥ kj − τ, ∀ j ∈ {1, . . . , i− 1},
where τ > 0 is a small constant tolerance parameter, in-
cluded such that there exists some θ strictly satisfying the
above constraints; in practice, while learning we set τ =
τt to decay as t → ∞. This constraint qualification
(Slater’s condition [Slater, 1950]) ensures that we may in-
stead solve the dual of the problem by computing a sad-
dle point minλ≽0 maxθ Li(θ, λ) of the Lagrangian relaxation
[Bertsekas, 1999] where:

Li(θ, λ) := Ki(θ) +

i−1∑
j=1

λj

(
Kj(θ)− kj + τ

)
.

A natural approach would be to solve each optimisation prob-
lem for Li, where i ∈ {1, . . . ,m}, in turn. While this would
lead to a correct solution, when the space of lexicographic
optima for each objective function is large or diverse, this
process may end up being slow and sample-inefficient. Our
key observation here is that by instead updating θ at different
timescales, we can solve this problem synchronously, guar-
anteeing that we converge to a lexicographically optimal so-
lution as if done step-by-step under fixed constraints.

We set the learning rate η of the Lagrange multiplier to ηi

after convergence with respect to the ith objective, and assume
that for all learning rates ι ∈ {α, β1, . . . , βm, η0, . . . , ηm}
and all i ∈ {1, . . . ,m} we have:

ιt ∈ [0, 1],
∞∑
t=0

ιt =∞,
∞∑
t=0

(ιt)
2 <∞ and

lim
t→∞

βi
t

αt
= lim

t→∞

ηit
βi
t

= lim
t→∞

βi
t

ηi−1
t

= 0.

We also assume that τt = o(βm
t ) in order to make sure

that Slater’s condition holds in the limit with respect to all
learning rates. Using learning rates βi and η = ηi we may
compute a saddle point solution to each Lagrangian Li via the
following (estimated) gradient-based updates:

θ ← Γθ

[
θ + βi

t

(
∇θK̂i(θ) +

i−1∑
j=1

λj∇θK̂j(θ)
)]

,

λj ← Γλ

[
λj + ηt

(
k̂j − τt − K̂j(θ)

)]
∀ j ∈ {1, . . . , i− 1},

Algorithm 3 Policy-Based Lexicographic RL

input:M = ⟨S,A, T, I,R, γ⟩
1: initialise θ, w1, . . . , wm, λ1, . . . , λm

2: t← 0, η ← η0, s ∼ I
3: while θ has not converged do
4: t← t+ 1, a ∼ π(s), s′ ∼ T (s, a)
5: for i ∈ {1, . . . ,m} do
6: if K̂i(θ) has not converged then k̂i ← K̂i(θ)
7: else η ← ηi

8: update wi (if using a critic) and λi

9: update θ
10: if s′ is terminal then s ∼ I else s← s′

11: return θ

where Γλ(·) = max(·, 0), Γθ projects θ to the nearest point
in Θ, and ˆ is used to denote a Monte Carlo estimate. We next
note that by collecting the terms involved in the updates to θ
for each i, at time t we are effectively performing the simple
update θ ← Γθ[θ +∇θK̂(θ)], where:

K̂(θ) :=
m∑
i=1

citK̂i(θ) and cit := βi
t + λi

m∑
j=i+1

βj
t ,

and where we assume that
∑m

j=m+1 β
j
t = 0. It is therefore

computationally simple to formulate a lexicographic optimi-
sation problem from any collection of objective functions by
updating a small number of coefficients cit at each timestep
and then linearly combining the objective functions.

Finally, in many policy-based algorithms we use a critic
Vi (or Qi) to estimate each K̂i and so must also update the
parameters wi of each critic. This is typically done on a faster
timescale using the learning rate α, for instance via the TD(0)
update for Vi given by wi ← wi + αt

(
δit∇wi

Vi

)
, where δit

is the TD error for Vi at time t [Sutton and Barto, 2018]. A
general scheme for policy-based LRL (PB-LRL) is shown in
Algorithm 3, which may be instantiated with a wide range of
objective functions Ki and update rules for each wi.

Below, we show that PB-LRL inherits the convergence
guarantees of whatever (non-lexicographic) algorithm corre-
sponds to the objective function used. Note that when m = 1,
PB-LRL reduces to whichever algorithm is defined by the
choice of objective function, such as A2C when using KA2C

1 ,
or PPO when using KPPO

1 . By using a standard stochastic ap-
proximation argument [Borkar, 2008] and proceeding by in-
duction, we prove that any such algorithm that obtains a local
(or global) ϵ-optimum when m = 1 obtains a lexicograph-
ically local (or global) ϵ-optimum when the corresponding
objective function is used in PB-LRL.

Theorem 3. Let M be a MOMDP, π a policy that is twice
continuously differentiable in its parameters θ, and assume
that the same form of objective function is chosen for each
Ki and that each reward function Ri is bounded. If using
a critic, let Vi (or Qi) be (action-)value functions that are
continuously differentiable in wi for i ∈ {1, . . . ,m} and sup-
pose that if PB-LRL is run for T steps there exists some limit
point w∗

i (θ) = limT→∞ Et[wi] for each wi when θ is held
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fixed under some set of conditions C onM, π, and each Vi.
If limT→∞ Et[θ] ∈ Θϵ

1 (respectively Θ̃ϵ
1) under conditions

C when m = 1, then for any fixed m ∈ N we have that
limT→∞ Et[θ] ∈ Θϵ

m (respectively Θ̃ϵ
m), where each ϵi ≥ 0

is a constant that depends on the representational power of
the parametrisations of π (and Vi or Qi, if using a critic).

In the remainder of the paper, we consider two particular
variants of Algorithm 3, in which we use KA2C

i and KPPO
i re-

spectively, for each i. We refer to the first as Lexicographic
A2C (LA2C) and the second as Lexicographic PPO (LPPO).
We conclude this section by combining Theorem 3 with cer-
tain conditions C that are sufficient for the local and global
convergence of A2C and PPO respectively, in order to ob-
tain the following corollaries. The proofs of these corollaries
contain further discussion and references regarding the con-
ditions required in each case.
Corollary 1. Suppose that each critic is linearly
parametrised as Vi(s) = w⊤

i ϕ(s) for some choice of
state features ϕ and is updated using a semi-gradient TD(0)
rule, and that:

1. S and A are finite, and each reward function Ri is
bounded,

2. For any θ ∈ Θ, the induced Markov chain over S is
irreducible,

3. For any s ∈ S and a ∈ A, π(a | s; θ) is twice continu-
ously differentiable,

4. Letting Φ be the |S| × c matrix with rows ϕ(s), then Φ
has full rank (i.e. the features are independent), c ≤ |S|,
and there is no w ∈W such that Φw = 1.

Then for any MOMDP with discounted or limit-average ob-
jectives, LA2C almost surely converges to a policy in Θ̃ϵ

m.
Corollary 2. Let π(a | s; θ, χ) ∝ exp

(
χ−1f(s, a; θ)

)
and suppose that both f and the action-value critics Qi are
parametrised using two-layer neural networks (where χ is a
temperature parameter), that a semi-gradient TD(0) rule is
used to update Qi, and that Qi replaces Ai in the standard
PPO loss KPPO, both of which updates use samples from the
discounted steady state distribution. Further, let us assume
that:

1. S is compact and A is finite, with S ×A ⊆ Rd for some
finite d > 0, and each reward function Ri is bounded,

2. The neural networks have widths µf and µQi respec-
tively with ReLU activations, initial input weights drawn
from a normal distribution with mean 0 and variance 1

d ,
and initial output weights drawn from unif([−1, 1]),

3. We have that qπi (·, ·) ∈
{
Qi(·, ·;wi) | wi ∈ Ry

}
for any

π ∈ Π,
4. There exists c > 0 such that for any z ∈ Rd and ζ > 0

we have that Eπ

[
1(|z⊤(s, a)| ≤ ζ)

]
≤ cζ

∥z∥2
for any

π ∈ Π.
Then for any MOMDP with discounted objectives, LPPO al-
most surely converges to a policy in Θϵ

m. Furthermore, if
the coefficient of the KL divergence penalty κ > 1 then
limµf ,µQi

→∞ ϵ = 0.

1 4 8 12 161k
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Figure 1: We plot the learning time of LRL as the number of
episodes until convergence (y axis) against the number of reward
signals (x axis). We use randomly generated MOMDPs with 256 or
512 states, four actions, and a varying number of rewards. For each
trial we generate 30 MOMDPs, and record the number of episodes
it takes for each agent’s long-run average reward per episode to
converge to a stable value. The algorithms are Lexicographic Q-
Learning (blue), Lexicographic Expected SARSA (orange), Lexico-
graphic Double Q-Learning (green), Lexicographic PPO (red), and
Lexicographic A2C (purple).

4 Experiments
In this section we evaluate our algorithms empirically. We
first show how the learning time of LRL scales with the num-
ber of reward functions. We then compare the performance
of VB-LRL and PB-LRL against that of other algorithms for
solving constrained RL problems. Further experimental de-
tails and additional experiments are described in the supple-
mentary material, and documented in our codebase.5

4.1 Scaling with the Number of Rewards
Our first experiment (shown in Figure 1) shows how the learn-
ing time of LRL scales in the number of rewards. The data
suggest that the learning time grows sub-linearly as additional
reward functions are added, meaning that our algorithms can
be used with large numbers of objectives.

4.2 Lexicographic RL for Safety Constraints
Many tasks are naturally expressed in terms of both a perfor-
mance metric and a safety constraint. Our second experiment
compares the performance of LRL against RCPO [Tessler et
al., 2019], AproPO [Miryoosefi et al., 2019], and the actor-
critic algorithm for VaR-constraints in [Chow et al., 2017],
in a number of environments with both a performance metric
and a safety constraint. These algorithms synthesise slightly
different kinds of policies, but are nonetheless sufficiently
similar for a relevant comparison to be made. We use VB-
LRL with a neural network and a replay buffer, which we call
LDQN, and the PB-LRL algorithms we evaluate are LA2C
and LPPO. The results are shown in Figure 2.

The CartSafe environment from gym-safety6 is a version of
the classic CartPole environment. The agent receives more
reward the higher up the pole is, whilst incurring a cost if the
cart is moved outside a safe region. Here the LRL algorithms,
RCPO, and AproPO all learn quite safe policies, but VaR AC
struggles. Of the safer policies LDQN gets the most reward

5Available at https://github.com/lrhammond/lmorl.
6Available at https://github.com/jemaw/gym-safety.
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(roughly matching DQN and A2C), followed by RCPO and
AproPO, and then LA2C and LPPO. The latter two minimise
cost more aggressively, and thus gain less reward.
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(a) CartSafe Reward
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Figure 2: We plot the average reward and cost (y axis) against the
number of environment interactions (x axis). In each environment,
RCPO, AproPO, and VaR AC were tasked with maximising reward
subject to a constraint on the cost, bounds on both the reward and
cost, or a bound on the probability of the cost exceeding a certain
constant. The LRL algorithms were tasked with minimising cost
and, subject to that, maximising reward. Each algorithm was run ten
times in each environment.

The GridNav environment, again from gym-safety (based
on an environment in [Chow et al., 2018]), is a large grid-
world with a goal region and a number of “unsafe” squares.
The agent is rewarded for reaching the goal quickly, and in-
curs a cost if it enters an unsafe square. Moreover, at each
time step, the agent is moved in a random direction with
probability 0.1. Here LDQN is the safest algorithm, but it
also fails to obtain any reward. LA2C, LPPO, RCPO, and
VaR AC are similar in terms of safety, but LA2C and LPPO
obtain the most reward, VaR AC a fairly high reward, and
RCPO a low reward. AproPO has low safety and low reward.

Finally, in the Intersection environment from highway-env7

the agent must guide a car through an intersection with dense
traffic. We give the agent a reward of 10 if it reaches its des-
tination, and a cost of 1 for each collision that occurs (which
is slightly different from the environment’s original reward
structure). This task is challenging, and all the algorithms
incur approximately the same cost as a random agent. How-
ever, they still manage to increase their reward, with LA2C
and RCPO obtaining the most reward out of the constrained
algorithms (roughly matching that of DQN and A2C). This
shows that if optimising the first objective is too difficult, then
the LRL algorithms fail gracefully by optimising the second
objective, even if it has lexicographically lower priority.

5 Discussion and Conclusions
We introduced two families of RL algorithms for solving lex-
icographic multi-objective problems, which are more general
than prior work, and are justified both by their favourable
theoretical guarantees and their compelling empirical perfor-
mance against other algorithms for constrained RL. VB-LRL
converges to a lexicographically optimal policy in the tabu-
lar setting, and PB-LRL inherits convergence guarantees as a
function of the objectives used, leading to locally and glob-
ally lexicographically ϵ-optimal policies in the case of LA2C
and LPPO respectively. The learning time of the algorithms
grows sub-linearly as reward functions are added, which is an
encouraging result for scalability to larger problems. Further,
when used to impose safety constraints, the LRL algorithms
generally compare favourably to the state of the art, both in
terms of learning speed and final performance.

We conclude by noting that in many situations, LRL may
be preferable to constrained RL for reasons beyond its strong
performance, as it allows one to solve different kinds of prob-
lems. For example, we might want a policy that is as safe as
possible, but lack prior knowledge of what level of safety can
be attained in the environment. LRL could also be used e.g. to
guide learning by encoding prior knowledge in extra reward
signals without the risk of sacrificing optimality with respect
to the primary objective(s). These applications, among oth-
ers, provide possible directions for future work.
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