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Abstract

Graph neural network (GNN) is popular now to
solve the tasks in non-Euclidean space and most
of them learn deep embeddings by aggregating the
neighboring nodes. However, these methods are
prone to some problems such as over-smoothing
because of the single-scale perspective field and the
nature of low-pass filter. To address these limi-
tations, we introduce diffusion scattering network
(DSN) to exploit high-order patterns. With observ-
ing the complementary relationship between multi-
layer GNN and DSN, we propose Hierarchical Dif-
fusion Scattering Graph Neural Network (HDS-
GNN) to efficiently bridge DSN and GNN layer
by layer to supplement GNN with multi-scale in-
formation and band-pass signals. Our model ex-
tracts node-level scattering representations by in-
tercepting the low-pass filtering, and adaptively
tunes the different scales to regularize multi-scale
information. Then we apply hierarchical repre-
sentation enhancement to improve GNN with the
scattering features. We benchmark our model on
nine real-world networks on the transductive semi-
supervised node classification task. The experi-
mental results demonstrate the effectiveness of our
method.

1 Introduction

As the generalization of CNN to non-Euclidean space, Graph
Neural Networks (GNNs) have been widely studied in re-
cent years. Starting from the success of GCN on semi-
supervised node-level task [Kipf and Welling, 20171, vari-
ous efficient graph-based models have been proposed to solve
graph-related tasks, such as link prediction [Zhang and Chen,
2018], node classification [Velickovi¢ et al., 2018], graph
classification [Lee et al., 2019]. Based on these fundamental
tasks, GNNs are widely applied in various fields, such as traf-
fic forecasting [Jiang and Luo, 2021] and neuroscience [Kong
etal., 2021].

*Contact Author
'The codes are available at https://github.com/Anfankus/hds-gnn
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Most existing GNNs encode graph representation in mes-
sage passing criteria, i.e. propagating and aggregating neigh-
boring nodes to learn deep representations of the central node
[Kipf and Welling, 2017; Hamilton et al., 2017; Veli¢kovic
et al., 2018]. However, recent studies reveal that GNN acts
as actually a low-pass filter on graph signal [Li et al., 2018;
Nt and Maehara, 2019; Balcilar et al., 2021a], which makes
nodes undistinguishable when stacking multiple layers, and
leads to oversmoothing problem. Additionally, GNNs usually
perform on a fixed range of neighbors and directly aggregate
the shallow representations of the neighboring nodes. This
kind of approaches lack multi-scale information for learning
intrinsic properties and is limited to a local receptive field,
which prevents information propagation over long distances.

To overcome the weaknesses mentioned above, we intro-
duce diffusion scattering network (DSN) [Gama et al., 2018]
to provide multi-scale band-pass signals for GNNs. DSN
is a variant of scattering network [Mallat, 2012] that uti-
lizes diffusion wavelet [Coifman and Maggioni, 2006] to per-
form multi-scale analysis and build stable representations of
graph signals. Some recent works have studied the applica-
tion of scattering networks to graph tasks. [Gao et al., 2019;
Zou and Lerman, 2020] aggregates the wavelet coefficients
built from all scattering paths to just one representation.
[Gama et al., 2018] builds a diffusion GNN that only applies
the first layer of scattering network as the convolution op-
erator, and each layer of the model corresponds to a different
scattering scale. And [Min et al., 2020; Min et al., 2021] only
select the scattering features which are built through several
pre-defined paths to provide fragmented band-pass signals.
Most of these works rely on the handcrafted scattering fea-
tures and none of them make use of the hierarchical proper-
ties of the scattering network, which is also important for a
distinguishable representation.

Our method is elicited by an interesting observation be-
tween multi-layer GNN and DSN, that is the deeper layers of
GNN continually smooth the signals while the deeper layers
of DSN extract finer signals. And this observation naturally
leads to a hierarchical fusing approach. In this work, we pro-
pose a novel graph learning model named Hierarchical Diffu-
sion Scattering Graph Neural Network (HDS-GNN) to build
the adaptive node-level scattering features, and bridge DSN
and GNN by fusing representations layer by layer. Addition-
ally, we adaptively weigh the different scales to strengthen
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the useful scales and reduce the impact of noise.
In summary, our contributions in this work are:

e By intercepting the low-pass filtering in the scattering
network, we extract node-level information from DSN,
which also contains multi-scale band-pass signals. And
we apply inter-scale weighting to adaptively regularize
the different scales.

e We propose a new framework to bridge DSN and GNN,
named Hierarchical Diffusion Scattering Graph Neu-
ral Network (HDS-GNN). HDS-GNN supplements the
backbone GNN with scattering features layer by layer to
enhance graph representation. This approach effectively
exploits the complementary properties of DSN and GNN
layer by layer.

e Our model is evaluated on nine real-world networks.
The experimental results demonstrate the effectiveness
of our model, as well as a significant improvement over
the backbone GNNss.

2 Background

Note. When we consider a graph G = {V, £, W}, it usually
contains three elements: nodes, edges and edge weights. Ev-
ery node v; € V has a d-dimension feature x; and X € Rnxd
is the feature matrix of all nodes. Every edge (v;,v;) € &
where ¢ # j is an undirected edge connecting v; and v; with
an edge weight w;; € W. Also, the connectivity of G can
be represented by an adjacency matrix A or a weighted adja-
cency matrix W. For node-level task, every node has a class
label y; € Y; for graph-lavel task, every graph has a class
label ).

2.1 Graph Neural Network

Graph neural network is well-studied recently to embed graph
structured data. Most current GNNs [Kipf and Welling, 2017,
Veli¢kovié et al., 2018; Hamilton et al., 2017] follow mes-
sage passing mechanism which aggregates the local neigh-
borhoods and updates the target node:

H{*Y = upd(H, agg({HP, u e N(v)}) (D)

where H, denotes the representation of node v; agy(...)
aggregates the neighbor nodes N(v), which can be re-
placed by any neighbor sampling method, and outputs a
message; upd(v, message) updates H, according to the
message and v itself. For example, GCN [2017] set

agg =3, 1/v/({du + D) (dy + DH and upd = (1/(d,, +
1)H1(,l) + agg)©W; GAT [2018] learns coefficients in agg
based on attention mechanism.

2.2 Diffusion Scattering Network

The scattering transform [Mallat, 2012; Bruna and Mallat,
2013] is a multi-resolution analysis method to build stable
representations of images (such as translation invariance and
rotation invariance) with wavelets. And the diffusion scatter-
ing network generalizes it to the non-Euclidean domain by
leveraging graph diffusion wavelet.

The graph diffusion wavelet is defined by the power of dif-
fusion operator to accomplish multi-resolution analysis. The
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Figure 1: Comparison in frequency domain

symmetric diffusion operator defined in [Gama er al., 2018]
is: Tsym = %(I + D’%WD*%); and the random walk oper-
ator defined in [Gao et al., 20191 is: T, = 3(I + WD™1),
where both D denote the digonal degree matrix. With the
multiple powers of the diffusion operator, a series of multi-
scale wavelet filters can be constructed according to [Coifman
and Maggioni, 2006] :

S S )
where j denotes orders. Then, we can build a filter bank
¥ = {¢y,...,1 s} with both spatial and spectral localiza-
tion. The diffusion wavelet coefficients are obtained with
the filter bank: ¥ ;(G, x) = {Yoz, ..., jz}. The diffusion
scattering transform @ ; 1. (G, x) is constructed by cascading
the wavelet operator ¥, a point-wise nonlinearity operator p
and a low-pass operator U, where L denotes layers and J de-
notes orders. The scattering representation of each layer in
the scattering network is:

d)O = UCC,
¢15 =Up¥,(G,z) =Up¥x (3)
Gy =Up® .. pW0s=U(p®)z,0<1<L

Yo=1-Tp; =T (I-T"")=T

3 Graph Signal Processing in GNN and DSN

Due to the aggregation of direct neighbors, GNNs actually
act as a low-pass filter on spectral [Balcilar et al., 2021a;
Nt and Maehara, 2019; Li et al., 2018] which smoothes the
graph signal, and the smoothness is also considered as the
key to success of GNNs [Balcilar ef al., 2021b]. This suc-
cess is based on a premise that adjacent nodes are similar,
which is not completely feasible for some real-world net-
works, e.g., nodes of different classes connected together [Xu
et al., 2019]. This kind of connectivity corresponds to high-
frequency signals in the spectral domain, and reasonable use
of these signals can be an effective way to enhance GNNs. In
addition, as GNN going deeper, the signal is smoother. As il-
lustrated in Figure 1, the low-pass band of GCN is narrowed
layer by layer. This leads to a worse ability to distinguish
nodes and eventually leads to oversmoothing.

As introduced above, graph scattering network extracts
multi-scale band-pass signals by cascading wavelet operators
and is able to provide high frequency signals that GNN lacks.
Recent works [Min et al., 2020; Min et al., 2021] extract
scattering features with several pre-defined scattering path,
resulting in fixed-width band-pass signals, as shown in Fig-
ure 1(b). These methods only add fixed scattering features
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Figure 2: The architecture of proposed HDS-GNN. Illustration for J = 3 and L = 3. The input graph G on both sides is the same. The one
on the left is the input of the scattering network, and the other one on the right is the input of the backbone GNN. For the first layer Lo, only
one scale representation F'° is obtained so that there is no need for inter-scale weighting. For deeper layers, the shared weight A is applied
for different scales. At the last layer, we connect a classifier (i.e., a GCN layer) to achieve the node classification task.

to each layer of GNN, and do not consider the progressive
relationship between layers, that is, the deeper layer of scat-
tering network can extract more refined features. As shown
in Figure 1(c), our method provide finer scattering features
for smoother GNN features as the network deepens. This
allows the model to maintain sufficiently subtle differences
when smooth the overall signal. Our follow-up experiments
verifies this observation.

4 The Proposed Method

4.1 The Overall Structure of the Proposed Model

Figure 2 shows the overall structure of the proposed Hier-
archical Diffusion Scattering Graph Neural Network (HDS-
GNN), where J = 3,L = 3 for illustration. The model
mainly consists of three parts: 1) graph diffusion scatter-
ing network, which builds node-level multi-scale rich repre-
sentation from input graph signal G; 2) inter-scale weight-
ing, which makes an adaptive use of different scales with
shared weights; and 3) hierarchical representation enhance-
ment, which supplements GNN with the scattering features
layer by layer to build an enhanced representation. Lastly, a
classifier is connected for node classification.

4.2 Node-Level Features of the Scattering Network

In this subsection, we first discuss the properties of the dif-
fusion scattering network (DSN) and then introduce our ap-
proach to obtaining node-level scattering features.

Diffusion operator T is constructed by normalized adja-
cency matrix, and represents diffusion probabilities within
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Figure 3: Internal steps of a scattering network layer. The node-level
feature (in the dashed box) is extracted for subsequent learning.

one hop (or random walk probability within one step); simi-
larly, T* represents probabilities within k hops (i.e. k steps).
T*z can be seen as a low-pass filter due to the sum operation
on every row of X. As shown in Equ.2, the wavelet operator
Y = T? "' — T? represents the difference in probability
distribution between radius 27! and 27, and ¢z represents
the band-pass signals between the scale 27! and 27; the base
of 2 is for convenient calculation. The signal can be itera-
tively decomposed by cascading the nonlinearity and wavelet
operators to build a multilayer network. The deeper layer can
be considered as an enhancement of the previous one, which
captures finer information on the previous layer.
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A = {1, 1,22}

Figure 4: An illustration of shared inter-scale weighting in one layer.
For layer-wise weight sharing, A is shared within one layer. For
global weight sharing, A is also shared with other layers.

Similar to the structure of convolution neural network,
which typically is convolution-activation-pooling, diffusion
scattering network also consists of three parts: wavelet oper-
ators W, nonlinearity p, low-pass operator U. Figure 3 shows
the detailed steps in one layer of the scattering network. The
network extracts the node-level rich features after ¥ and p,
and then builds the graph-level stable features after U. To
accomplish nodes-level tasks, we apply absolute value as the
nonlinearity and take the node-level rich features directly as
the scattering features:

{F(O) (G,z) ==,

4
FOGz)= |« FUD| = @« |... [®z|...| @
where |- | is point-wise absolute value operator and F'() is the
scattering features in layer [ of the scattering network. Each
layer of scattering features contains a set of band-pass sig-
nal information from scale 1, namely 29 to scale 27. These
multi-scale features correspond to neighbors from near to far
in the spatial domain, and frequency bands from high to low
in the spectral domain.

4.3 Shared Weighting Across Scales

The previous subsection discusses the scattering network
from a horizontal perspective, i.e., the information of every
layer and the relationship between layers. From the vertical
perspective, the diffusion scattering network is built as a tree
structure, so we use “parent” and “child” to represent the re-
lationship between nodes. In this section, we introduce the
shared weighting to adaptively regularize different scales.

As shown in Figure 4, we set a learnable weight A =
{Ao, ..., Ay} for every scale to make an adaptive use of them.
In this way, the scales containing useful details will be en-
larged, while the scales containing noise will be reduced. The
main purpose of A is to weight different “scales”, namely
inter-scale weighting. Therefore, A is applied to the child
nodes from the same parent node and shared across parent
nodes in the whole tree, namely global shared weights. Con-
sidering the progressive relationship between model layers,
the weight sharing is also applied within each layer, namely
layer-wise shared weights. Then, a linear projection is ap-
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plied on the weighted representation with a learnable matrix
© € R¥*Fhia where Fy,;q is the dimension of hidden features.

In order to formulate this step, we first define the node in
the scattering network. Every non-root node in the scattering
network is produced by a sequence of wavelet decomposi-
tion, which is a permutation of wavelet operators in the filter
bank. We denote this sequence with a scattering path p =
(1), ..., ¥, ) where [ is the layer number of the node. And we
define the one-step path set as P = {(v;);0 < ¢ < J}, simi-
larly, the two-step path set is P? = {(v;,1;);0 <i,5 < J}.
For completeness, we define the zero-step path set as ), which
corresponds to the root of the scattering network. Thus,
Vp € {(Z) +P+P+ .. —l—Pl} and we can use p to corre-
spond to every node in the scattering network. Therefore, the
inter-scale weighting is defined as:

S(O) — F(O)(—)(O)
SO = concat ({MFLp 00 0<k<T}) o

p'ePli-1

= concat (AF((I), @(l))
p'ePL-1 c(p’)

where concat is concatenation operation and SO is the

weighted DSN feature of layer [; F), denotes the scattering

feature of the node that corresponds to scattering path p; ¢(p)

denotes the child nodes of the node p.

4.4 Hierarchical Representation Enhancement

As we discussed before, the deeper layer of DSN contains the
more refined scales and more detailed information, while the
deeper layer of GNN contains smoothness over a wider range,
which corresponds to a lower frequency signal. Based on this
complementary property between DSN and GNN by layers,
we propose to enhance GNN representations with DSN fea-
tures layer by layer. In particular, we concatenate the repre-
sentations of DSN and GNN layer by layer to build a new
representation:

HH) = 4 (SU) | GNN (A7 H”))) ©6)

where o (-) is a nonlinear activation function and || represents
the concatenation operation. For example, if the GCN [Kipf
and Welling, 2017] is used as the backbone network (HDS-
GCN), the propagation process can be described as:

H+) — & (5(1) I D—%gp—émw@(z)) %

After the multi-layer feedforward propagation, the node-level
embedding fused with multi-scale band-pass signals can be
obtained. Then a classifier is followed to accomplish the
downstream task. In particular, one GCN layer is connected
to achieve semi-supervised node classification:

Y = softmax (GCN (H(L)>> ®)
L = cross_entropy (Y [mask,:],Y [mask, ]) 9)

As shown in Figure 2, Y € R"* s the output of the clas-
sifier, where C' is the number of classes; L is cross entropy
loss for node classification; mask is the node mask that only
makes training nodes visible.
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Datasets Cora Citeseer Pubmed DBLP Amazon Amazon  Coauthor Cornell Texas
Computers  Photo CS

Nodes 2,708 3,327 19,717 17,716 13,381 7,487 18,333 183 183
Edges 5,429 4,732 44,338 105,734 245,778 119,043 81,894 295 309
Features 1,433 3,703 500 1,639 767 745 6,805 1703 1703
Classes 7 6 3 5 10 8 15 5 5
GCN 81.5* 70.3%* 79.0%* 76.2 83.3 91.7 92.8 52.3 56.9
JKNet 81.1* 69.8* 78.1% 71.2* 83.9* 90.7* 91.3* 54.9* 56.2*
GAT 83.0* T72.5% 79.0* 77.4 81.1 91.3 88.4 56.9 57.4
APPNP 83.3* 71.8% 80.1%* 81.1 70.8 90.1 90.2 57.1 56.7
LanczosNet 79.5% 66.2%* 78.3* - - - - - -
Sc-GCN 84.2% T1.7% 79.4* 81.5* 85.8 92.9 92.1 60.0 60.9
GSAN 84.0* 71.3* 79.8% 82.6%* 81.7 91.1 92.4 62.7 58.2
HDS-GCN(g)  84.6 72.6 79.9 84.0 86.4 92.7 93.5 64.6 67.3
HDS-GCNy,) 84.2 73.0 79.6 83.7 86.9 94.2 93.8 63.7 67.2
HDS-GAT g, 84.3 72.1 80.6 824 89.2 94.4 93.5 64.6 68.2
HDS-GAT 1, 84.1 71.8 80.3 834 89.1 93.7 934 65.5 73.6

Table 1: (1)Datasets statistics (row 1-4). (2)Accuracy results (in percentage) on nine benchmarks (the other rows). The top two results are
overlined, and the best results are marked in bold. HDS-GNNs are the variants of our model with different backbones. In this experiment, we
choose GCN and GAT as the backbones. (G) and (L) represent global shared weights and layer-wise shared weights respectively. Most of the
results are from our re-testing with official code; * denotes the results from our re-implementation; * denotes the results from the published

papers; OOM denotes Out-of-Memory on our CUDA device.

5 Evalution and Experiment

Datasets

We choose nine benchmarks for experiments: (1) four cita-
tion networks: Cora, Citeseer, Pubmed [Sen et al., 2008]
and DBLP [Bojchevski and Giinnemann, 2018]; (2) two
co-purchase networks: Amazon Computers and Amazon
Photo [Shchur erf al., 2018]; (3) one co-authorship network:
Coauthor CS [Shchur et al., 2018]. (4) two WebKB net-
works: Cornell and Texas [Pei et al., 2019]. The statistical
summary can be found in Table 1.

Experimental Settings

Our experimental setup examines the semi-supervised node
classification task in the transductive setting. We use sparse
splitting (20 per class/500/1000) [Kipf and Welling, 2017] for
citation networks, co-purchase networks and co-authorship
network, and use dense splitting (60%/20%/20%) [Pei et al.,
2019] for WebKB networks. We test all models 10 times and
record the average numbers. We use the Adam as the train-
ing optimizer and the tool hyperopt [Bergstra et al., 2013]
for hyper-parameter searching. We set the maximum train-
ing epoch to 300 and use early stopping when validation loss
does not decrease for consecutive 20 epochs. The learned
weights of models used for testing are the checkpoint which
has the lowest validation loss in training progress. All the
experiments run in PyTorch on NVIDIA 3090.

5.1 Comparison Experiment

We test our model with GCN and GAT as backbones, namely
HDS-GCN and HDS-GAT, on the benchmarks mentioned
above. Besides, global-shared weighting is denoted by (G)
and layer-wise shared weighting is denoted by (L).

Baselines

We choose multiple baseline models on node classification
task for a comparison: GCN [Kipf and Welling, 20171,
JKNet [Xu et al., 2018], GAT [Veli¢kovi¢ et al., 2018], AP-
PAP [Klicpera et al., 2018], LanczosNet [Liao et al., 2019],
Sc-GCN [Min et al., 2020] and GSAN [Min et al., 2021].
We keeps the experimental results recorded in the published
papers as much as possible, and the rest of the results are re-
tested based on the official codes. For JKNet we reimplement
a 2~4 layers model with pyg [Fey and Lenssen, 2019] be-
cause no official code was found. The hyperparameter tuning
of re-testing models follows the same way with our models
and the best results are recorded.

Results

As shown in Table 1, our models achieve the highest accu-
racy in all used datasets. HDS-GCN achieves the best perfor-
mance on four datasets (Cora, Citeseer, DBLP, Coauthor CS)
and HDS-GAT achieves the best performance on the other
five (Pubmed, Amazon Computers, Amazon Photo, Cornell,
Texas).

Compared with GCN, our model (HDS-GCN) outperforms
by 12.3% at most on Cornell (in absolute accuracy), by 0.9%
at least on Pubmed, and by 4.92% on average. Compared
with GAT, our model (HDS-GAT) outperforms by 15.8% at
most on Texas, by 1.1% at least on Cora, and by 5.87% on
average. Our method improves GNN on most datasets, es-
pecially on texas and Cornell because these two have more
high-frequency information that GNN cannot effectively uti-
lize. It can be noticed that HDS-GAT is outperformed at least
0.4% on Citeseer by GAT. However, in our retesting experi-
ment of GAT with the official code, only an average accuracy
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Figure 5: Accuracy results of ablation study on two submodules.
Red is for model without inter-scale weighting and orange is for
model without diffusion scattering network.

result of 71.3% is achieved, which is outperformed by HDS-
GAT by 0.8% at most.

Compared with Sc-GCN [Min et al., 2020], our model also
outperforms it by 6.3% at most on Texas, by 0.4% at least on
Cora, and by 2.5% on average. This result verifies that more
complete scattering features have better expressive ability.

5.2 Ablation Study

Effect of Submodules

As introduced before, our model can be regarded as three
submodules: diffusion scattering network (DSN), inter-scale
weighting (SW) and hierarchical enhancement. In this sub-
section, we start with the complete proposed model and then
remove the sub-modules one by one. The submodule hierar-
chical enhancement is actually a fusion approach and not ca-
pable for this study and it will be evaluated in the next eval-
uation. In this experiment, we apply global shared weights
and set GCN and GAT as the backbones.

We show the results in Figure 5. It is clear that the clas-
sification accuracy of the model improves with the addition
of every submodule (i.e. from left to right). For most of
the datasets, hierarchical scattering features provide more im-
provement due to the band-pass signals. But for Cora, the
scale-weighting provides more improvement, which is be-
cause Cora network is assortative [Balcilar et al., 2021b] and
the weighting can reduce some unwanted high-frequency in-
formation in the added multi-scale signals.

Effect of Fusion Strategies

In this subsection, we aim to make an evaluation of “fusion”
and answer a question: does it really work to hierarchically
fuse finer features to deeper backbone? We first evaluate
the role of the fusion method and then evaluate the role of the
finer features.

(1) Global fusion, or non-hierarchical fusion, provides
full-scale scattering representations S = concat}—;'(S") to
GNN at once. We build two variants to perform comparison.
GoDS-GNN denotes that S are fused to the first layer of the
backbone, i.e. H(®) = (X ||S); G DS-GNN denotes that S
are fused to the last layer, ie. H(X) = (HE=D||S). The
rest of the experimental settings are the same as the last ab-
lation. As shown in Figure 6, it is obvious that the hierarchi-
cal fusion model (blue) outperforms all global fusion models
(green). This result demonstrates the effectiveness of hierar-
chical fusion. Interestingly, in terms of fusing globally, Gg
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Figure 6: Accuracy results of ablation study on fusion methods.
Green is for global fusion and yellow is for scale-invariant fusion.

are outperformed by Gy, in almost all experiments. This is
mainly because, after being filtered by GNN, there is only the
low frequency of S left in Gy, which undoubtedly loses the
band-pass signal in S.

(2) In order to know if finer scattering features improve
deeper GNN layers, we replace all of F'©) with only F(*)§ <
L for fusing with scale-invariant band-pass signals. As shown
in Figure 6, all the results with scale-invariant signals (yel-
low) are lower than the results with finer-by-layers signals
(blue), which proves our basic observation. Besides, it can
be observed the results with finer features are usually lower,
which may be because the shallower GNN layers can only ob-
tain coarser latent representations and cannot effectively use
finer features. And another interesting observation from the
figure is that GDS-GNN performs better than scale-invariant
models in most cases, which indicates the full-scale scattering
features are usually better than single-scale features (an ex-
ception is on the Cora dataset, which because its homophily
makes it insensitive to feature scales and more sensitive to
fusion method).

6 Conclusion

In this work, we discuss the limitations of current GNN mod-
els and elicit an observation of multi-layer GNN and DSN.
Based on this, we propose a novel model (HDS-GNN) to
augment GNN representation with node-level scattering rep-
resentations. For future work, we may explore the efficient
calculation and more complex fusion method that would also
benefit the model.
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