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Abstract

Multi-label learning (MLL) refers to the problem
of tagging a given instance with a set of relevant
labels. In MLL, the implicit relative importance
of different labels representing a single instance is
generally different, which recently gained consider-
able attention and should be fully leveraged. There-
fore, label enhancement (LE) has been widely ap-
plied in various MLL tasks as the ability to effec-
tively mine the implicit relative importance infor-
mation of different labels. However, due to the
fact that the label enhancement process in previ-
ous LE-based MLL methods is decoupled from the
training process on the predictive models, the ob-
jective of LE does not match the training process
and finally affects the whole learning system. In
this paper, we propose a novel approach named
Fusion Label Enhancement for Multi-label learn-
ing (FLEM) to effectively integrate the LE process
and the training process. Specifically, we design a
matching and interaction mechanism which lever-
ages a novel interaction label enhancement loss to
avoid that the recovered label distribution does not
match the need of the predictive model. In the
meantime, we present a unified label distribution
loss for establishing the corresponding relationship
between the recovered label distribution and the
training of the predictive model. With the proposed
loss, the label distributions recovered from the LE
process can be efficiently utilized for training the
predictive model. Experimental results on multiple
benchmark datasets validate the effectiveness of the
proposed approach.

1 Introduction

Learning with ambiguity has become one of the hot top-
ics among the machine learning communities [Geng, 2016;
Gao et al., 2017]. Multi-label learning (MLL) is a common
choice to deal with the label ambiguity problem, because an
instance can be annotated by multiple labels simultaneously
in MLL [Zhang and Zhou, 2014; Liu et al., 2021]. In MLL,
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(a) IRI: sand > sky > tree

(b) IRI: tree > sky > sand

Figure 1: Exemplar images which have been annotated with multi-
ple labels sand, sky and tree. The implicit relative importance (IRI)
information is marked in the images.

each class label is treated as a logical indicator of whether the
corresponding label is relevant or irrelevant to the instance,
i.e., +1 represents relevant to the instance and -1 represents ir-
relevant to the instance. Such label represented by -1 or +1 is
called logical label. During the past years, multi-label learn-
ing techniques have been widely applied to various fields such
as document classification [Liu et al., 2017], video concept
detection [Lo et al., 2011], image classification [Lanchantin
et al., 2021], fraud detection [Wang et al., 2020] etc.

In real-world MLL problems, the implicit relative impor-
tance of each possible label is generally different. For exam-
ple, as shown in Fig.1 which has two images annotated with
three positive labels sand, sky and tree. For the relevant label
variance in Fig.1(a), the importance of sand should be greater
than that of sky and tree, because sand can describe the im-
age more apparently. Meanwhile, in Fig.1(b), the importance
of tree should be greater than that of other labels. Therefore,
the implicit relative importance information of different la-
bels provides more accurate information for MLL and should
be fully mined and leveraged.

Recently a novel technology named label distribution
which can model the implicit relative importance of different
labels has been proposed [Geng, 2016]. Formally speaking,
given an instance x, label distribution assigns each y € Y
a real value dY, (label description degree), which indicates
the importance of y to . Since label distribution extends
the supervision from binary to distribution, it is more appli-
cable for real-world scenarios. Unfortunately, many train-
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ing sets only contain simple logical labels rather than la-
bel distributions due to the difficulty of obtaining the la-
bel distributions directly. Therefore, the technology of la-
bel enhancement (LE) [Xu et al.,, 2021al has been pro-
posed. The aim of LE is to recover the label distributions
from the logical labels in the training set via leveraging the
topological information of the feature space and the corre-
lation among the labels. Recently LE has attracted increas-
ing research attention due to its potential to address the la-
bel ambiguity problem in machine learning and success in
many real-world multi-label applications [Xu et al., 2020;
Xu et al., 2021b].

Most of the existing LE-based MLL methods have two
stages: 1) the numerical labels are first reconstructed, and 2)
the predictive model is trained by levering the reconstructed
labels. In these approaches, LE is independent of the training
of the predictive model. When solving specific tasks, LE may
not meet the needs of the training process on the predictive
model. Other LE methods are one-stage approaches. These
methods implement LE and the training process on the pre-
dictive model iteratively. However, these methods lack con-
trol over the interaction and matching between LE and the
training process, i.e., the label enhancement process is decou-
pled from the training process, which finally affects the whole
learning system. Therefore, it is essential to effectively inte-
grate the label enhancement process and the training process
to avoid the mismatch between the two processes.

In light of the above observations, we propose Fusion La-
bel Enhancement for Multi-label learning (FLEM), in which
label enhancement and the training process on the predic-
tive model are performed simultaneously and interactively.
Specifically, we first design a matching and interaction mech-
anism which leverages a novel interaction label enhancement
loss to avoid the mismatch between the label enhancement
process and the training process. Meanwhile, we establish
the relationship between LE and the training process by em-
ploying a novel unified label distribution loss. With the pro-
posed loss functions, the label enhancement information can
be can effectively utilized to guide the training process on the
predictive model. By simultaneously performing LE and the
training process, the problem of mismatch between the two
processes can be well addressed, and the performance of the
model can be effectively improved.

2 Related Work

Multi-label learning (MLL) has attracted increasing inter-
est recently. Traditional MLL approaches can be roughly
grouped into three types based on the thought of the order
of label correlations: first-order, second-order and high-order
[Zhang and Zhou, 2014]. The first-order approaches decom-
pose MLL into a series of binary classification and neglect the
fact that the information of one label may be helpful for the
learning of another label [Boutell et al., 2004]. The second-
order approaches consider the correlations between pairs of
class labels, but they only focus on the difference between
the relevant label and irrelevant label [Fiirnkranz et al., 2008].
The high-order approaches consider the correlations among
label subsets or all the class labels [Wang et al., 2019]. But
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these approaches take the equal label importance assumption.

Some researchers try to assign each label different im-
portance through class frequencies. [Wu et al., 2020] pro-
poses a distribution-balanced loss for multi-label tasks by
re-balancing weights and mitigating the over suppression of
negative labels. [Ridnik et al., 2021] designs an asymmetric
loss that uses different v values to weight positive and neg-
ative samples in focal loss. [Huang et al., 2021] combines
negative-tolerant regularization (NTR) [Wu et al., 2020] and
class-balanced focal loss (CB) [Cui ef al., 2019] and presents
a novel loss function named CB-NTR. Balanced softmax
method [Zhang et al., 2021] turns the multi-label learning
loss into comparisons of relevant label scores and irrelevant
label scores, and balances the importance of each label auto-
matically. However, these methods are based on elaborately
designed rules that can not dynamically adjust the importance
of labels based on the given instances. Meanwhile, these ap-
proaches ignore the correlations between labels.

Label enhancement (LE) is a recent method proposed for
mining the implicit relative importance among different la-
bels and the correlation between them. Many novel label en-
hancement methods have been proposed in recent years [Xu
et al.,2021a; Xu et al., 2020]. These methods can be broadly
categorized into two directions: two-stage approaches and
one-stage approaches. GLLE [Xu ef al., 2021a] and LEVI
[Xu er al., 2020] are representative algorithms of two-stage
approaches. They assume that the label distribution space
should share a similar topological structure with the feature
space. The main concern of these approaches is they sep-
arate the label enhancement process from the model train-
ing process, which leads to label enhancement may not meet
the needs of model training. LEMLL [Shao et al., 2018]
and VALEN [Xu er al., 2021b] are representative algorithms
of one-stage approaches. They perform label enhancement
and the training process on the predictive model iteratively.
However, these approaches lack control over the interaction
and matching between label enhancement and model training,
which may cause the mismatch between the model training
and label enhancement.

In the next section, a novel LE approach for multi-label
learning will be introduced. Different from existing label
enhancement approaches, a novel matching and interaction
mechanism is designed to perform the label enhancement
process and the training process on the predictive model si-
multaneously and avoid the mismatch between them.

3 The FLEM Approach

First of all, the main notations used in this paper are listed as
follows. The instance variable is denoted by «, the particular
i-th instance is denoted by x;, the label variable is denoted by
y, the particular j-th label value is denoted by y;, the logical
label vector of I; is denoted by I; = (141,142, ...,1%)™, where
c is the number of possible labels. The description degree of
y to x is denoted by d¥, and the label distribution of x; is

denoted by d; = (d¥,d¥2,. dyc)T.

T X)) ) Ty
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3.1 Overview

In FLEM, the label enhancement process and the training pro-
cess on the predictive model are performed simultaneously.
Specifically, FLEM adopts a predictive model f (-) for per-
forming the MLL task and a label distribution estimator g (-)
for label enhancement. The predictive model f (-) and the
label distribution estimator g (-) are trained simultaneously
during the whole training stage. For training the label distri-
bution estimator, FLEM adopts three strategies to guide it to
generate label distributions effectively. For avoiding incon-
sistency between LE and the training process on the predic-
tive model, FLEM employs a matching and interaction mech-
anism which leverages a novel interaction label enhancement
loss from the perspective of instances. For training the pre-
dictive model, FLEM integrates a novel unified label distribu-
tion loss to build a corresponding relationship between label
distribution and the training of the predictive model. The al-
gorithmic description of FLEM is given in Algorithm 1.

3.2 Label Enhancement

The existing MLL methods simply divide the label set into
relevant labels and irrelevant labels, which can not be ex-
tended to the form of label distribution. Therefore, we need
to recover the label distributions from the given logical label
vectors, so as to guide the training of the predictive model.

In FLEM, the label distribution estimator g (-) is used to re-
cover the label distributions. For generating the recovered la-
bel distribution, g (-) needs to use the topological information
in both feature space and label space, so as to better obtain the
correlation between labels according to the feature informa-
tion. Therefore, we adopt two modules g and g, for feature
embedding and label embedding, which transform feature in-
formation and label information into continuous embedding
values respectively. For the instance x;, we define the pre-
dicted values for label enhancement as

d; = gp (C(gr (x:), 91 (1y))), )]

where gp is the module of g for decoding, C (-, -) is the con-
catenation operation. Then the recovered label distribution
vector d; can be obtained by the softmax operation on d;.

Training Strategies

In order to enable the label distribution estimator to generate
a reasonable estimate of label distribution, we propose the
following three training strategies. Each of them can lead to
effective optimization.

1) The Similarity Strategy. The first strategy trains g(-) by
matching the similarities of instances in feature space and la-
bel space. Specifically, the similarity matrix A of a batch of
instances can be obtained by:

Amn =S (:Bm» wn) 5 (2)

where S is cosine similarity, x,, and x,, are the m-th and n-
th instances. Meanwhile, by estimating the label distribution
vector of these instances, we can obtain the similarity matrix
Z of the predicted values for label enhancement:

Zmn =S (djna d;kL) ) (3)
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where d;, and d, are the predicted values for label enhance-
ment of the m-th and n-th instances. Then the distance be-
tween A and Z is minimized to train the label distribution
estimator. In FLEM, we adopt the following loss:

1 M M
[:LE = W Z Z (Amn - Zmn)27 (4)

m=1n=1

where M is the number of instances.

2) The Threshold Strategy. The second strategy is based on
the criterion that the minimum description degree of relevant
labels is not less than the maximum description degree of ir-
relevant labels. Therefore, for a batch of instances, the loss
function is:

M
1 * . *
Lig = 7 E 1 [max (nrenéixg g — pglﬁlis di’: + e, Oﬂ ,
1=
(5)

where ()5 and 2,4 are the sets of relevant and irrelevant

labels respectively, da and di’j are predicted values for label
enhancement and ¢ is the threshold.

3) The Label Distribution Strategy. The third strategy consid-
ers that the output of the predictive model is useful for train-
ing the label distribution estimator. Specifically, it optimizes
the Kullback-Leibler (KL) divergence between the output of
the predictive model and the label distribution estimator:

Mo 0 ()
Lrg = i ZIZIPZ log dﬁ’ , (6)
i=1 j=

where P is the j-th element of the output of the predictive
model for instance ¢ through the softmax operation.

Matching and Interaction Mechanism

Using label distribution to guide multi-label model training
faces an urgent problem, i.e., how to ensure that the generated
label distribution is the recovered label distribution required
for predictive model training. The existing label enhancement
approaches adopt two-stage or iterative methods, which leads
to the separation of the training processes of the predictive
model and the label distribution estimator. In fact, the label
distribution estimator can use the information of the predic-
tive model to guide its own training, so as to realize matching
and interaction.

The most important problem is how the label distribution
estimator interacts with the predictive model. An efficient
way is to align their training processes to achieve training
matching. Inspired by asymmetric focal loss [Ridnik et al.,
2021] which is a powerful approach to balance the impor-
tance of different instances, we design the interaction label
enhancement loss for each training instance x;:

I 1 i {(1 _pj)’ij IOg (p;) ) ] € ons
IN=—= - , ;
(pj)’y lOg (1 _p;) , J€ Qneg

where p; is the prediction of the predictive model through the
sigmoid operation, p7 is the prediction of the label distribu-
tion estimator through the sigmoid operation, v+ and y— are
two hyper-parameters to control each part of the loss function.

(7

j=1



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Algorithm 1 FLEM algorithm Dataset Nirain ~ Nuat Niest D L F
Input: The MLL training set D = {(«;,1;)};_,, the number AAPD 53840 1000 1000 512 54 text
o = Reuters 5827 1943 3019 512 90 text

f epoch T, the number of iteration I, hyper-parameters « :

or ep , » iyper-p VOC07 2501 2510 4952 2048 20 image
and f3; voc12 5516 200 5823 2048 20  image
et i . €OoCo14 78081 4000 40137 2048 80  image
1: Initialize the parameters of the label distribution estima- COCOI7 113266 4000 4952 2048 80 image
tor g(-) and the predictive model f(-). CUB 5794 200 5794 2048 312 image
NUS 146000 4000 60260 2048 81  image

2: fort=1,..,T do
3:  Shuffle training set D = {(=;,1;)},_, into I mini-

batches;
4. fork=1,....1do
5: Obtain label distribution d; for each example x; by

Eq. (1) and the softmax operation;

Update f and g by forward computation and back-
propagation by fusing Eq. (8) and Eq. (10);

7:  end for

8: end for

Output: The predictive model f(-).

a

The interaction loss matches the label distribution estima-
tor with the training process of the predictive model from
the perspective of instances. Specifically, it can distinguish
“easy” instances and “hard” instances, and place a higher
weight of loss on ‘“hard-to-distinguish”, which may have
more inter-class information. With the knowledge from both
models, the label distribution estimator can effectively gen-
erate label distributions that meet the needs of the training
process on the predictive model. Then the whole training loss
for the label distribution estimator can be given:

ELDEZOKLLE+(1*0¢)£IN~ (8)

3.3 Classifier Training

Unified Label Distribution Loss

With the recovered label distribution vector d;, the implicit
relative importance information can be can utilized to guide
the training of the predictive model. Since the label distribu-
tion is introduced, we can optimize the predictive model from
a global perspective. Specifically, we minimize the following
unified label distribution loss to guide the training of f (-):

[y VAR
Lip=-3" [ Y dktogdz (=) ). O
=1 \ j=1
where n is the number of instances, sz(-j ) is the output logit
of the predictive model for the i-th instance and Z; =

P sl(-k). The unified label distribution loss Lrp estab-
lishes a corresponding relationship between the recovered la-
bel distribution vector and the output of the model. Com-
pared with the losses of existing MLL approaches, it is more
effective by using the distribution information of labels. In
particular, we have the following theorem.

Theorem 1. L;p gives an upper bound for cross-entropy
loss.

Since logical labels are effectively extended to label distri-
bution, our unified label distribution loss is a generalization
form of cross-entropy loss. It also indicates that if accurate

Table 1: Characteristics of multi-label datasets. Nirain, Novals
Niest, D, L denote the number of training samples, validation sam-
ples, testing samples, feature dimensions and labels respectively. F'
denotes the domain of the dataset.

label distribution information can be obtained, it can effec-
tively guide the training of the model.

Training Process

As mentioned in Section 3.1, in FLEM, the predictive model
f (+) and the label distribution estimator g (-) are trained si-
multaneously. For the training of the predictive model, we
not only concern the distance between the recovered distri-
bution and the expected label distribution, but also the sign
consistency of them. It leads to the minimization of

Lors =pLp + (1 —5)Lsc, (10)

where Lg¢ can be any loss function that can lead to sign con-
sistency. For generality, we adopt the vanilla binary cross-
entropy loss:

1 . log (pj) ) ] € ons
Lsc=—- 11

¢ Cjz_:l{log(l_pj)a jEQneg7 ( )
where p; is the prediction of the predictive model through the
sigmoid operation. The gradient-based optimization method
can be used to optimize the model parameters. It should be
noticed that when using Eq.(10) to update f(-), it will not
update g(-), i.e. the stop-gradient operation is performed on
each term about g(-) for Eq.(10). Meanwhile, using Eq.(8) to
update g(-) will not update f(-) either.

In FLEM, f is set as linear classifier, gz, g7, and gp are set
as three-layer-neural networks with a residual structure. In
the prediction stage, given a new instance x*, the prediction
of the model can be obtained by f (x*).

4 Experiments

In this section, the efficiency and the performance of FLEM
are evaluated in multiple MLL datasets. All methods are im-
plemented by PyTorch. All the computations are performed
on a GPU server with NVIDIA Tesla V100, Intel Xeon Gold
6240 CPU 2.60 GHz processor and 32 GB GPU memory. Our
code is available at: https://github.com/ailearn-ml/FLEM.

4.1 Datasets and Preprocessing

To evaluate the proposed approach, we conduct experiments
on several real-world datasets, including AAPD [Yang et
al., 2018], Reuters [Debole and Sebastiani, 2005], VOCO07,
VOCI12 [Everingham et al., 2015], COCO14, COCO17 [Lin
et al., 2014], CUB [Wah et al., 2011] and NUS [Chua ef al.,
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Algorithm AAPD Reuters VOCo07 VOC12 CoCo14 CoCo17 CUB NUS Avg. Rank

ML-KNN [Zhang and Zhou, 20071~ 0.0448(11) ~ 0.0138(12) ~ 0.0281(11)  0.0323(11)  0.0363(11) ~ 0.0369(11)  0.1011(11)  0.0232(11) 11.1
RAKEL [Tsoumakas e al., 20111~ 0.0861(12) ~ 0.0094(11) ~ 0.0586(12) ~ 0.0801(12)  0.1205(12)  0.1071(12)  0.2244(12)  0.0869(12) 11.9
FL [Lin er al., 2020] 0.0282(7)  0.0042(5)  0.0249(7)  0.0235(6)  0.0196(6)  0.0218(8)  0.0867(8)  0.0145(5) 6.5

CB [Cui et al., 2019] 0.0294(10)  0.0043(6)  0.0249(7)  0.0240(9)  0.0195(5)  0.0221(10)  0.0867(8)  0.0147(7) 7.8

R-FL [Wu et al., 2020] 0.0281(5) 0.0043(6) 0.0254(9) 0.0239(8) 0.0197(8) 0.0214(6) 0.0865(7) 0.0147(7) 7.0

DB [Wu et al., 2020] 0.0286(8)  0.0043(6)  0.0255(10)  0.0256(10)  0.0199(9)  0.0214(6)  0.0862(6)  0.0145(5) 75

Bs [Zhang et al., 2021] 0.0288(9)  0.0041(3)  0.0244(5)  0.0238(7)  0.0200(10)  0.0219(9)  0.0870(10)  0.0143(4) 7.1
LEVI [Xu et al., 2020] 0.0281(5)  0.0045(9)  0.0244(5)  0.0231(4)  0.0196(6)  0.0209(2)  0.0852(4)  0.0156(10) 5.6
VALEN [Xu et al., 2021b] 0.0276(3)  0.0045(9)  0.0242(3)  0.02293)  0.01944)  0.0209(2)  0.0857(5)  0.0153(9) 4.8
FLEM-S (Ours) 0.0276(3)  0.0040(1)  0.0239(2)  0.0226(1)  0.0191(1)  0.0207(1)  0.08503)  0.0138(2) 1.8
FLEM-T (Ours) 0.0271(1)  0.0040(1)  0.0243(4)  0.0228(2)  0.0192(2)  0.0209(2)  0.0849(2)  0.0139(3) 2.1
FLEM-D (Ours) 0.0271(1)  0.0041(3)  0.0237(1)  0.0231(4)  0.0192(2)  0.02092)  0.0848(1)  0.0137(1) 1.9

Table 2: Performance of each comparing algorithm on Hamming loss (].).
Algorithm AAPD Reuters VOC07 VOC12 COCO14 COCO17 CUB NUS Avg. Rank

ML-KNN [Zhang and Zhou, 20071~ 0.0677(11) ~ 0.0324(12)  0.0531(11)  0.0612(11)  0.0809(11)  0.0730(11)  0.1721(11)  0.0370(11) 11.1
RAKEL [Tsoumakas e al., 20111 0.0742(12) ~ 0.0232(11) ~ 0.0598(12)  0.0807(12) ~ 0.1177(12)  0.1071(12)  0.2395(12)  0.0806(12) 11.9
FL [Lin et al., 2020] 0.0555(7)  0.0113(8)  0.0228(9)  0.0160(8)  0.0264(7)  0.0331(9)  0.1099(10)  0.0185(6) 8.0

CB [Cui et al., 2019] 0.0598(9)  0.0111(6)  0.0222(8)  0.0156(7)  0.0265(8)  0.0319(8)  0.1092(9)  0.0185(6) 7.6

R-EL [Wu et al., 2020] 0.0589(8)  0.0123(10)  0.0242(10)  0.0165(10)  0.0265(8)  0.0318(7)  0.1088(8)  0.0184(5) 8.3

DB [Wu et al., 2020] 0.0620(10)  0.0099(5)  0.0216(7)  0.0161(9)  0.0276(10)  0.0331(9)  0.1084(7)  0.0187(8) 8.1

Bs [Zhang et al., 2021] 0.0541(6) 0.0095(4) 0.0201(5) 0.0155(6) 0.0249(6) 0.0299(6) 0.1077(6) 0.0160(4) 54
LEVI [Xu et al., 20201 0.0486(3)  0.0118(9)  0.0205(6)  0.0146(4)  0.0237(2)  0.0298(5)  0.1057(3)  0.0210(9) 5.1
VALEN [Xu et al., 2021b] 0.04894)  0.0111(6)  0.0199(3)  0.0146(4)  0.0245(5)  0.0297(4)  0.1076(5)  0.0210(9) 5.0
FLEM-S (Ours) 0.0522(5)  0.0092(2)  0.0194(2)  0.01403)  0.0239(4)  0.0286(2)  0.10584)  0.0149(3) 3.1
FLEM-T (Ours) 0.0483(2)  0.0094(3)  0.0199(3)  0.0138(1)  0.0238(3)  0.0286(2)  0.1048(2)  0.0148(2) 23
FLEM-D (Ours) 0.0432(1)  0.0091(1)  0.0189(1)  0.01392)  0.0231(1)  0.0279(1)  0.10391)  0.0139(1) 1.1

Table 3: Performance of each comparing algorithm on Ranking loss ({).

2009]. For AAPD and Reuters, we use the feature extracted
by pre-trained XML-CNN [Liu et al., 2017]. For the other
datasets, ResNet-50 pre-trained on ImageNet is used to ex-
tract the feature of instances. Following common practices
[Liu et al., 2017; Lanchantin et al., 2021], these datasets are
split into training set, validation set and testing set. Statistics
of these real-world datasets are given in Table 1.

4.2 Comparing Algorithms and Evaluation
Metrics

We compare our methods with several traditional and state-
of-the-art MLL and LE technologies. The compared methods
include: 1) ML-KNN [Zhang and Zhou, 2007]: a classical ap-
proach, which adopts kNN into MLL. 2) Random k-labelsets
(RAKEL) [Tsoumakas et al., 2011]: a high-order approach
which transforms MLL into an ensemble of multi-class learn-
ing problems. 3) Focal loss (FL) [Lin et al., 2020]: a simple
but widely used strategy for classification. 4) Class-balanced
loss (CB) [Cui et al., 2019]: a class-wise re-weighting guided
by the effective number of each class E,, = (1—8")/(1—7).
5) Rebalanced focal loss (R-FL) [Wu er al., 2020]: a com-
bination of re-balanced weighting and focal loss. 6) Distri-
bution balance loss (DB) [Wu et al., 2020]: a recently pro-
posed distribution-balanced loss for MLL. 7) Balanced soft-
max method (BS) [Zhang et al., 2021]: a balanced loss func-
tion for MLL. 8) Label enhancement via variational inference
(LEVI) [Xu et al., 2020]: an advanced technology for LE-
based MLL, which has been proved to be effectively applied
to MLL. 9) VAriational Label ENhancement (VALEN) [Xu et
al., 2021b]: a recent LE technology, whose training strategy
for the predictive model is set to the same strategy as LEVI

3777

in our experiments. Among them, ML-KNN and RAKEL are
representative traditional MLL algorithms, LEVI and VALEN
are advanced LE-based MLL technologies, and the others are
recent methods proposed for MLL. For all of these state-of-
the-art algorithms, we train linear classifiers for classifica-
tion tasks. The optimization process spans over 30 epochs
using the AMSGrad variant [Reddi et al., 2018] of AdamW
[Loshchilov and Hutter, 2017] with a weight decay of 0.0001.
The learning rate is set to 0.001 for all algorithms. For FLEM,
hyperparameters « and 3 are are selected by grid search from
the set {0.0001, 0.001,0.01,0.1}.

Four widely-used MLL evaluation metrics are selected in
this experiment, i.e., Hamming loss, Ranking loss, Coverage
and Average precision. For each algorithm, we select the
model that obtains the optimal Hamming loss on the valida-
tion set for testing.

4.3 Performance Comparison

Tables 2, 3, 4 and 5 tabulate the experimental results of dif-
ferent algorithms on the eight MLL datasets evaluated by four
evaluation metrics, and the best performance on each dataset
is highlighted by boldface. In Tables 2, 3, 4 and 5, “FLEM-S”,
“FLEM-T” and “FLEM-D” refer to the FLEM algorithm using
the three strategies proposed in section 3.2 respectively. For
each evaluation metric, “|” indicates the smaller the better
while “1” indicates the larger the better. The ranks are given
in the parentheses right after the performance values. The
average rank of each algorithm over all the datasets is also
calculated and given in the last row of each table.

From Tables 2, 3, 4 and 5, it can be observed that FLEM
is superior to existing MLL algorithms in almost all cases.
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Algorithm AAPD Reuters VOC07 VOCI2 COCO14 COoCOo17 CUB NUS Avg. Rank
ML-KNN [Zhang and Zhou, 2007]  0.1554(12)  0.0471(12) ~ 0.0857(12) ~ 0.0977(11) ~ 0.1798(12) ~ 0.1703(12)  0.5943(11)  0.0793(11) 11.6
RAKEL [Tsoumakas et al., 2011] 0.1337(8)  0.0337(11)  0.0848(11)  0.1055(12)  0.1792(11)  0.1660(11)  0.6889(12)  0.1070(12) 11.0
FL [Lin et al., 2020] 0.1273(7) 0.0213(8) 0.0514(9) 0.0445(8) 0.0899(7) 0.1052(9)  0.5303(10)  0.0457(7) 8.1
CB [Cui er al., 2019] 0.1340(9) 0.0200(6) 0.0507(7) 0.0441(7) 0.0901(8) 0.1035(7) 0.5199(8) 0.0451(6) 73
R-EL [Wu et al., 2020] 0.1357(10)  0.0230(10) ~ 0.0537(10)  0.0457(10)  0.0902(9) 0.1051(8) 0.5152(5) 0.0448(5) 8.4
DB [Wu et al., 2020] 0.1406(11)  0.0194(5) 0.0513(8) 0.0451(9)  0.0939(10)  0.1080(10)  0.5246(9) 0.0460(8) 8.8
BS [Zhang et al., 2021] 0.1239(6) 0.0180(3) 0.0478(4) 0.0439(6) 0.0861(5) 0.0980(4) 0.5016(1) 0.0402(4) 4.1
LEVI [Xu et al., 2020] 0.1193(4) 0.0218(9) 0.0483(6) 0.0428(4) 0.0841(3) 0.1000(5) 0.5175(6) 0.0489(9) 5.8
VALEN [Xu er al., 2021b] 0.1180(3) 0.0207(7) 0.0478(4) 0.0429(5) 0.0864(6) 0.1002(6) 0.5190(7)  0.0495(10) 6.0
FLEM-S (Ours) 0.1217(5) 0.0182(4) 0.0474(2) 0.0420(2) 0.0841(3) 0.0965(3) 0.5072(3) 0.0381(2) 3.0
FLEM-T (Ours) 0.1160(2) 0.0173(1) 0.0476(3) 0.0417(1) 0.0839(2) 0.0962(2) 0.5092(4) 0.0383(3) 2.3
FLEM-D (Ours) 0.1065(1) 0.0177(2) 0.0464(1) 0.0420(2) 0.0826(1) 0.0948(1) 0.5060(2) 0.0368(1) 1.4

Table 4: Performance of each comparing algorithm on Coverage ().

Algorithm AAPD Reuters VOC07 VOCI12 COCO14 COCO17 CUB NUS Avg. Rank
ML-KNN [Zhang and Zhou, 2007]  0.4450(11)  0.3307(12)  0.6949(11)  0.6472(11)  0.3520(11)  0.3844(11)  0.1273(12)  0.2850(11) 11.3
RAKEL [Tsoumakas ef al., 20111 0.3519(12)  0.3314(11) ~ 0.5606(12)  0.4590(12)  0.2076(12)  0.2534(12)  0.1765(11)  0.1525(12) 11.8
FL [Lin et al., 2020] 0.4994(5) 0.3800(9) 0.8341(9) 0.8656(8) 0.6994(7) 0.6724(8) 0.2903(8) 0.4927(7) 7.6
CB [Cui er al., 2019] 0.4839(8) 0.3804(8) 0.8370(8) 0.8654(9) 0.6996(6) 0.6715(9) 0.2905(7) 0.4916(8) 7.9
R-EL [Wu et al., 2020] 0.4816(9)  0.3684(10)  0.8327(10)  0.8650(10)  0.6981(8) 0.6741(7) 0.2902(9)  0.4845(10) 9.1
DB [Wu et al., 2020] 0.4683(10)  0.3837(7) 0.8449(5) 0.8658(7) 0.6955(9) 0.6744(6) 0.2942(4) 0.4872(9) 7.1
Bs [Zhang ez al., 2021] 0.4918(7) 0.4021(3) 0.8439(6) 0.8679(6)  0.6870(10)  0.6667(10)  0.2849(10)  0.4940(6) 73
LEVI [Xu et al., 2020] 0.5018(3) 0.3936(4) 0.8421(7) 0.8699(4) 0.7021(4) 0.6837(4) 0.2935(6) 0.5063(5) 4.6
VALEN [Xu ez al., 2021b] 0.4971(6) 0.3842(6) 0.8453(3) 0.8702(1) 0.7026(3) 0.6836(5) 0.2941(5) 0.5075(4) 4.1
FLEM-S (Ours) 0.5006(4) 0.4024(1) 0.8458(2) 0.8700(3) 0.7027(2) 0.6852(2) 0.2951(3) 0.5109(3) 25
FLEM-T (Ours) 0.5053(1) 0.4024(1) 0.8450(4) 0.8702(1) 0.7028(1) 0.6841(3) 0.2953(2) 0.5113(2) 1.9
FLEM-D (Ours) 0.5040(2) 0.3910(5) 0.8478(1) 0.8697(5) 0.7020(5) 0.6855(1) 0.2961(1) 0.5143(1) 2.6

Table 5: Performance of each comparing algorithm on Average precision (macro-averaged) (1).

Algorithm Hamming loss | Ranking loss | Coverage | Average precision 1

FLEM-I 0.0242 0.0210 0.0492 0.8441
FLEM-II 0.0241 0.0198 0.0472 0.8444
Ours 0.0237 0.0189 0.0464 0.8478

Table 6: Performance of FLEM in different cases on VOCO07.

This result indicates that the label enhancement method in
FLEM is effective and can help the model significantly im-
prove classification performance. Meanwhile, compared with
the advanced LE methods, FLEM has achieved better results
in almost all metrics. This observation demonstrates that the
matching and interaction mechanism proposed in this paper
is effective and can well match the label enhancement with
the model training to improve the performance of the model.

When looking at the average ranks over all the eight real-
world datasets, FLEM achieves rather competitive perfor-
mance over other algorithms. All three methods proposed
in this paper can exceed existing methods. When compared
with these state-of-the-art algorithms, FLEM achieves st in
96.9% cases. Thus, FLEM possesses rather superior perfor-
mance over the state-of-the-art algorithms across all the eval-
uation measures.

4.4 Ablation Study

We further conduct an ablation study to verify the effective-
ness of the unified label distribution loss and the interaction
label enhancement loss. Based on the Label Distribution
strategy proposed in section 3.2, we evaluate three cases of
our method: 1) FLEM-I: without the unified label distribu-
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tion loss, 2) FLEM-II: without the interaction label enhance-
ment loss and 3) Ours: the proposed FLEM. Table 6 tabulates
the experimental results of different versions on the VOCO07
dataset, and the best performance on each comparison is high-
lighted by boldface. From Table 6, we can find that both the
interaction label enhancement loss and the unified label distri-
bution loss are beneficial to improve the performance, which
proves the validity of the proposed matching and interaction
mechanism and the unified label distribution loss.

5 Conclusions

This paper proposes a novel label enhancement method for
multi-label learning. By utilizing a novel matching and inter-
action mechanism, the mismatch between label enhancement
and classifier training is effectively avoided. In the mean-
time, a novel unified label distribution loss is proposed for
guiding MLL models to learn with the recovered label dis-
tributions. Extensive experimental results demonstrate that
FLEM can bring significant performance improvements over
the existing MLL methods. In future work, we will further
explore the theory of FLEM, promote the versatility of FLEM
and design more effective methods.
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