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Abstract
Named entity recognition (NER) is a fundamental
information extraction task that seeks to identify
entity mentions of certain types in text. Despite nu-
merous advances, the existing NER methods rely
on extensive supervision for model training, which
struggle in a low-resource scenario with limited
training data. In this paper, we propose a new
data augmentation method for low-resource NER,
by eliciting knowledge from BERT with prompt-
ing strategies. Particularly, we devise a label-
conditioned word replacement strategy that can
produce more label-consistent examples by captur-
ing the underlying word-label dependencies, and a
prompting with question answering method to gen-
erate new training data from unlabeled texts. The
experimental results have widely confirmed the ef-
fectiveness of our approach. Particularly, in a low-
resource scenario with only 150 training sentences,
our approach outperforms previous methods with-
out data augmentation by over 40% in F1 and prior
best data augmentation methods by over 2.0% in
F1. Furthermore, our approach also fits with a zero-
shot scenario, yielding promising results without
using any human-labeled data for the task.

1 Introduction
Named entity recognition (NER), an essential information ex-
traction task, aims to identify named entities of certain types
(e.g., PERSON) in texts [Grishman and Sundheim, 1996].
The state-of-the-ar methods for NER are based on supervised
learning, demanding a good amount of labeled data for model
training [Lample et al., 2016]. However, in a real-world sce-
nario, it is prohibitively expensive to collect large sets of la-
beled data in many domains (e.g., bio-medicine, military),
which significantly limits the applicability of existing NER
methods [Mayhew et al., 2017; Hou et al., 2020].

Recently, there is a rise of interest in investigating data
augmentation (DA) methods to address tasks in low-resource
scenarios [Wei and Zou, 2019; Xie et al., 2019]. For natural
language processing (NLP), the most successful DA meth-
ods are based on word manipulation, showing good per-
formance in sentence-level tasks such as text classification,
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Figure 1: Illustration of our DA method for low-resource NER, by
eliciting knowledge from BERT with two prompting mechanisms.

paraphrase identification, and others [Wei and Zou, 2019;
Xie et al., 2019; Chen et al., 2020]. However, it is challenging
to apply such DA methods to NER, a token-level task sensi-
tive to word manipulation — for example, a word substitution
operation may result in a mismatch between the word and the
original label [Dai and Adel, 2020; Ding et al., 2020].

In this paper, we introduce a new DA approach for low-
resource NER, with knowledge elicitation from BERT [De-
vlin et al., 2019]. Intuitively, we may easily use BERT to cre-
ate a new training example by “altering” an existing one. For
instance, given a labeled sentence “James is due to leave for
Nepal” with “James” marked as a PERSON, we can replace
“James” with a placeholder [MASK], and then use BERT
to fill in the blank. When BERT predicts a person name
“Green”, we obtain a perfectly new training example “Green
is due to leave for Nepal”. However, we may also encounter
noisy case because BERT simply evaluates whether a word
fits into contexts, such as “He is due to leave for Nepal”,
where “He” fits in the context well but is not a name.

To address the above issue, we devise two prompting
mechanisms for better training data generation, and an un-
certainty driven method for noise reduction. Our first prompt-
ing mechanism is a label-conditioned word replacement strat-
egy, which incorporates the definition of an entity type (e.g.,
“name of person, family, ..., and fiction” for PERSON) into
the word replacement process; we show that this strategy
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can effectively capture label-word dependencies and gener-
ate label-consistent words. Our second prompting strategy
uses a question answering (QA) style prompt, which can di-
rectly generate new training samples from unlabeled texts.
For example, we may use a prompt question “Who is refer-
enced in texts?” to query a BERT model pre-trained on QA
datasets for identifying PERSON entities in a sentence. We
show this strategy is supplementary to the prior one and can
yield promising results even in a zero-shot scenario. In ad-
dition, we devise an uncertainty-guided self-training method
to reduce noise in the generated data. In particular, we set up
an iterative framework for training in which at each step only
credible examples, as judged by an uncertainty mechanism
[Gal and Ghahramani, 2016], are supplied to the training set.
We show this method can considerably reduce the effects of
noise in the data and robustify the learning process.

The experimental results have well confirmed the effec-
tiveness of our method. Particularly, in a low-resource sce-
nario with only 150 labeled examples, our approach scores
61.2%, 36.2%, and 71.4% in F1 on three benchmarks, out-
performing prior best DA methods by more than 2.0% in
F1 absolutely and methods without DA by more than 40%
in F1. Furthermore, our method yields encouraging results
in a zero-shot scenario without the requirement of any hu-
man labeled data. We have made our code available at https:
//github.com/jianliu-ml/fewNER for further investigation.

To summarize, we have three contributions:

• We investigate a new DA method for low-resource NER,
based on knowledge elicitation from BERT using two
prompting mechanisms. As the first study to investigate
the use of prompting mechanisms for DA in NER, our
work may inspire more studies in this research line.

• We devise two prompting strategies, based on label-
conditioned word replacement and question answering
respectively, for training data generation. We also devise
an uncertainty-guided self-training strategy for noise re-
duction. To the best of our knowledge, this is the first
effort introducing uncertainty modeling in DA for NER.

• We report promising results on three real-world NER
datasets and conduct extensive analysis to provide in-
sight into the reasons behind our method’s efficacy.

2 Related Work
Low-Resource NER. The question of how to train a NER
model in low-resource environments remains an unresolved
one in NLP. Existing research has addressed low-resource
NER with distantly supervision [Plank and Agić, 2018],
cross-lingual projection [Mayhew et al., 2017; Xie et al.,
2018], and meta-learning [Hou et al., 2020], which however
require huge domain expertise. Motivated by the success of
data augmentation (DA) in computer vision [Wei and Zou,
2019], several works have studied DA for low-resource NER.
Particularly, [Dai and Adel, 2020] use label-wise token re-
placement, synonym replacement, and mention replacement
to generate new training examples; [Ding et al., 2020] train
a language modeling objective combining words and labels
to generate new examples. However, because NER is a fine-

grained token-level task, the above approaches often need so-
phisticated criteria to ensure word-label consistency, which
limits their applicability. Unlike previous works, we present
a new DA approach for low-resource NER that can elicit
knowledge from BERT and does not require considerable hu-
man intervention. Our method can generate more reliable
instances while simultaneously considering noise reduction
through an uncertainty-guided self-training mechanism.
The Prompting Mechanism for Learning. The “pre-train,
prompt and predict” paradigm has recently gained popularity
in NLP research [Liu et al., 2021], which typically builds a
template prompt with some slots and then use a pre-trained
language model (e.g., BERT [Devlin et al., 2019]) to fill the
slots for performing a task. The existing studies have apply
this paradigm to address tasks including open-domain ques-
tion answering, text classification, and others [Jiang et al.,
2020; Schick and Schütze, 2021]. To the best of our knowl-
edge, this is the first study to investigate data augmentation
via prompting methods for low-resource NER. Our approach
may inspire future work on other related tasks, such as low-
resource relation extraction and event extraction.

3 Approach
Figure 2 depicts the overview of our method, which includes
two prompting regimes for new training data generation, and
an uncertainty-guided self-training strategy for noise reduc-
tion. The technical details of our approach follow.

3.1 Label-Conditioned Word Replacement
Let (X , Y ) be a labeled example with X = [w1, ..., wn] being
a sentence of n words and Y = [l1, ..., ln] being the entity la-
bel sequence in BIO schema. Our goal is to create a new sen-
tence X̂ that matches the original label sequence Y by replac-
ing some words in X . Here we propose a label-conditioned
pre-training mechanism to capture word-label dependencies
— after randomly masking a word in the sentence, we re-train
a BERT model to recover it, but use the definition1 of the en-
tity type as a prompt. Assuming “James is due to leave for
Nepal” is a training sentence to re-train BERT and if James is
masked, we construct the following input to BERT:

[CLS] pmt [SEP]

The masked sentence︷ ︸︸ ︷
[MASK] is due to leave for Nepal (1)

where pmtli indicates the definition of PERSON, i.e.,
“Named person or family”. In this way, the recovery of a
word is conditioned not only on contexts, but also on the
entity label, and therefore the BERT mode is tuned to favor
words matching the labels. For new data generation, we ran-
domly mask a word in a sentence and generate a substitution
by sampling from the predictive probabilities. We limit the
number of generated examples to T for each sentence.

3.2 Prompting with Question Answering
Given that label-conditioned word replacement still requires
some labeled data for model training and can only generate

1We obtain the entity type definitions from the spacy project and
use “other” as a prompt for words labeled as O.
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Figure 2: The overview of our approach, which contains two prompting mechanisms for new training data generation (top) and an uncertainty-
guided self-training regime for noise reduction (bottom).

Type Strategy Prompt Representation

PER
Label Condition “Named person or family.”
Query Style “Who is the named person or family

mentioned in texts?”

LOC

Label Condition “Name of politically or geographi-
cally defined location.”

Query Style “Which politically or geographically
... are mentioned in texts?”

Table 1: The prompt representations of different methods.

instances similar to the existing ones, we devise a query-style
prompting mechanism that can generate novel examples from
unlabeled texts. The central idea is to use inquiry questions
as prompts to “annotate” entities in texts, based on a BERT
model pre-trained on large scale question answering (QA)
datasets [Rajpurkar et al., 2018]. For example, to recognize
PERSON entities in plain texts, we create a query: Who is the
named person or family mentioned in texts? (derived from
the definition of PERSON) and use it as a prompt to query a
BERT model. Particularly, we create the following sequence:

[CLS] query question [SEP] unlabeled sentence (2)

and encode it to H ∈ RN×d with N being the sequence’s
length and d being BERT’s dimension. Then we locate a
PERSON entity by computing two vectors specifying the
probabilities of the starting and ending positions:

pstart = softmax(Hwstart + bstart) (3)
pend = softmax(Hwend + bend) (4)

where wstart ∈ Rd, bstart ∈ RN , wend ∈ Rd, and bend ∈
RN are mode parameters. We consider the identified entities,
coupled with the texts, as new training data. Table 1 compares
the prompt representations of different prompting methods.

3.3 Noise Reduction via An Uncertain-Guided
Self-Training Strategy

Despite their effectiveness, the above methods can introduce
noise because no hard constraints are imposed. We develop

a self-training framework [Scudder, 1965] combining uncer-
tainty modeling [Gal and Ghahramani, 2016] for noise re-
duction. Let the labeled dataset be DL, and the automatically
generated dataset by the two prompting strategies be DU . Our
self-training framework repeats the following steps:

1. Train a NER model M on DL.
2. Use M to pseudo-annotate examples in DU .
3. Select a set of reliable examples from DU and move

them into DL; repeat the above steps until convergence.
Defining a universally good criterion for selecting reliable ex-
amples in step 3) remains an open challenge. Here we devise
an uncertainty-guided method [Gal and Ghahramani, 2016]
with an exploration-exploration trade-off strategy.
Uncertainty-Guided Confidence Ranking. We leverage
recent advances in uncertainty modeling [Gal and Ghahra-
mani, 2016] to evaluate the reliability of an example. Assume
(X̂ , Ŷ ) ∈ DU is an automatically generated example, with X̂

= [ŵ1, ..., ŵn] being the sentence and Ŷ = [l̂1, ..., l̂n] being
the entity label sequence. We first pseudo-predict a label for
each word using the current NER model, with dropout layers
activated and perform K times in total. Assume Li = [p̃i1,
..., p̃iK] is the obtained set containing K predicted labels2 for
the ith word w̃i. According to [Gal and Ghahramani, 2016],
the variance of Li reflects the model’s uncertainty on its pre-
diction for ŵi. Given this, we define a token-wise criterion
measuring the current model’s confidence that ŵi matches l̂i:

Ctoken(ŵi, l̂i) = n(l̂i)/K (5)

where n(l̂i) is frequency of l̂i in Li. Based on this token-wise
criterion, we then define a sentence-level criterion to assess
the degree of match between X̂ and Ŷ :

Certainty(X̂, Ŷ ) =
1

n

∑n

i=1
Ctoken(ŵi, l̂i) (6)

where n is the length of X̂ . A higher score implies the current
model is more certain that X̂ and Ŷ complement each other.

2Due to the activated dropout layers, elements in Li may differ.
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Exploration-Exploitation Trade-Off. In practice, always
selecting the most certain examples may not be a good solu-
tion, because the certain-most examples are too easy to con-
tribute additional information, and this usually slows down
learning and results in sub-optimal performance (as shown in
our experiments). To balance speed and efficiency, we de-
sign an exploration-exploiting trade-off strategy, by defining
a selection weight for each example:

w(X̂,Ŷ ) =
expCertainty(X̂,Ŷ)∑

X,Y ∈DU
expCertainty(X,Y)

(7)

We sample out N examples based on the above weight at each
training iteration — this method biases the selection process
towards picking more certain samples for exploiting but also
allows for picking less certain examples for exploration. In
evaluations, we show this method outperforms both certain-
first and uncertainty-first strategies.

4 Experimental Setups
Datasets and Evaluations. We use three NER datasets for
evaluation: CoNLL 2003 [Tjong Kim Sang and De Meul-
der, 2003], OntoNotes 5.0 [Hovy et al., 2006], and a real-
world low-resource dataset, MaScip [Mysore et al., 2019].
Among them, CoNLL 2003 defines four coarse-grained entity
types: PER (Person), LOC (Location), ORG (Organization),
and MISC (Miscellaneous); OntoNotes 5.0 defines 18 fine-
grained types, including CARDINAL, MONEY, PRODUCT,
and others; MaScip [Mysore et al., 2019] defines 21 entity
types (e.g., Material, Number, Operation, Amount-Unit) in-
volved in materials synthesis procedures. Table 2 gives statis-
tics of the three datasets. As for evaluation, following [Ding
et al., 2020], for each dataset we sample out 50, 150, and
500 sentences (at least one mention of each entity type is in-
cluded) to create the small (S), medium (M), and large (L)
training sets (we use F to indicate the full training set), and
we use precision (P), recall (R), and F1 as evaluation metrics.

Implementations. In our approach, we use BERT-base
cased version [Devlin et al., 2019] as the backbone consider-
ing NER is a case-sensitive task. In label-conditioned word
replacement, we empirically set T = 10, meaning to expand
the original labeled data set by 10 times. In our prompting
with question answering method, we train a BERT model
on SQuAD datasets [Rajpurkar et al., 2018] and sample out
100,000 unlabeled sentences from WikiPedia for new data
generation (For example, on CoNLL 2003, the numbers of
retrieved entities for each type are PER:5633, ORG:3978,
LOC: 2342, MISC: 1197). In the uncertainty-guided self-
training method, we set the number of forward passes K
to 10, chosen from [5, 10, 20] and select N = 200 (chosen
from [50, 100, 200, 300]) examples at each iteration. We
use the development set to tune the best iteration step. We
evaluate the impact of our method on two typical NER mod-
els: (i) BiLSTM-CRF [Lample et al., 2016], which combines
Long Short-Term Memory (LSTM) networks [Hochreiter and
Schmidhuber, 1997] with a CRF tagger [Lafferty et al., 2001]
for NER. We use GloVe embeddings [Pennington et al., 2014]
and we set the batch size to 50 (chosen from [10, 20, 50, 100])

Dataset Split # Sen. # Token # Entity

CoNLL 2003
Train 14,987 204,567 23,499
Dev 3,466 51,578 5,942
Test 3,684 46,666 5,648

OntoNotes 5.0
Train 59,924 1,088,503 81,828
Dev 8,528 147,724 11,066
Test 8,262 152,728 11,257

MaScip
Train 1,910 61,750 18,874
Dev 109 4,158 1,190
Test 158 4,585 1,259

Table 2: Data statistics of the NER datasets used in this study.

and the learning rate to 1e-2 (chosen from [1e-1, 1e-2, 1e-3,
1e-4]). (ii) BERT based entity tagger (to clear confusion, we
denote it as Transformer). The batch size is set to 10 (chosen
from [2, 5, 10, 20]), and the learning rate is set to 1e-5 (cho-
sen from [5e-6, 1e-5, 5e-5, 1e-4]). We apply Adam [Kingma
and Ba, 2015] for model optimization.
DA Methods for Comparison. We compare our approach
with the following DA methods: 1) EDA [Wei and Zou,
2019], a DA method for text classification, which adopts syn-
onymous word substitution, word insertion, and shuffling for
data generation. [Ding et al., 2020] adapt it to low-resource
NER. 2) BDA [Zhou et al., 2019], a DA method for text
classification that directly uses BERT for lexical substitution,
which does not consider label information. 3) CBT [Kumar
et al., 2020], a DA method for text classification that lever-
ages sentence-level labels as condition signals. We adapt this
method for NER using entity labels (rather than label defini-
tions) as condition signals. 4) FlipDA [Zhou et al., 2021], a
DA method using a generative model and a classifier to gener-
ate label-flipped data. We denote our approach by PromptDA
and use LC and QA to indicate label-conditioned word re-
placement and prompting with QA respectively. We use UC
to indicate the uncertainty-guided self-training method.

5 Experimental Results
Table 3 summarizes the results on CoNLL 2003, OntoNotes
5.0, and MaSciP, using the small (S), medium (M), large
(L), and full (F) settings. The effectiveness of our approach
has been justified. For example, in the M setup with 150
training examples only, our approach (with BiLSTM-CRF
architecture) scores 61.2%, 36.2%, and 71.4% in F1 on the
three datasets, outperforming previous methods without DA
by more than 40% in F1 and prior best DA methods by 2.0%
in F1. Furthermore, we note that the two prompting strategies
are complementary, and that their combination produces the
best result. When we compare the two prompting strategies,
we note label conditioned word replacement (LC) is more ef-
fective than prompting with question answering (QA), which
could be due to the latter strategy introducing more noise.
Impact of Uncertainty-Guided Self-Training. Figure 3
compares our uncertainty-guided strategy (denoted by U)
with easy-first (E) strategy, hard-first (H) strategy, and a
method training on all generated data (ALL). The perfor-
mance is based on the development sets of CoNLL 2003
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CoNLL 2003 OntoNotes 5.0 MaSciP

Method S M L F S M L F S M L F

BiLSTM+CRF - 13.3 27.2 91.7 - 0.2 17.1 88.0 52.4 70.0 72.6 76.3
w/ EDA [Ding et al., 2020] 6.3 45.5 62.4 90.1 8.3 11.7 42.9 85.2 58.4 66.3 72.1 75.8
w/ BDA [Zhou et al., 2019] 13.4 58.8 64.1 90.6 12.8 33.9 49.5 87.7 62.1 69.4 72.6 76.1
w/ CBT [Kumar et al., 2020] 13.1 59.2 63.7 91.3 13.5 34.8 49.2 87.5 62.4 68.7 73.4 76.5

w/ PromptDA (LC) 12.6 51.4 55.8 91.0 13.3 31.6 48.6 87.1 60.1 69.2 73.1 77.0
w/ PromptDA (QA) 11.3 41.0 53.1 90.8 12.2 29.8 41.2 87.5 58.4 68.7 73.3 77.0
w/ PromptDA (LC+QA) 14.9 60.0 66.7 91.5 13.7 35.5 50.4 88.2 62.7 70.2 73.3 76.9
w/ PromptDA (LC+QA) + UC 15.2 61.2 67.2 91.2 14.1 36.2 51.1 87.5 62.0 71.4 74.3 77.3

Transformer - 55.0 58.8 92.4 - 3.7 52.4 90.3 57.6 71.1 73.0 76.5
w/ EDA [Ding et al., 2020] 1.1 61.4 64.2 91.3 5.9 22.1 54.8 87.0 58.8 70.0 72.9 76.0
w/ BDA [Zhou et al., 2019] 35.6 65.9 68.4 92.0 11.6 39.2 56.7 89.1 59.9 71.5 73.3 76.8
w/ CBT [Kumar et al., 2020] 35.5 66.0 68.9 91.5 12.4 41.9 58.2 89.5 60.1 70.7 72.4 77.0
w/ FlipQA [Zhou et al., 2021] 43.7 66.5 69.6 91.1 12.3 42.0 58.3 89.4 61.0 70.3 71.1 77.2

w/ PromptDA (LC) 33.1 58.2 67.0 91.6 12.1 40.1 57.7 87.2 63.0 71.4 73.1 77.3
w/ PromptDA (QA) 23.5 56.9 66.9 92.0 11.7 38.8 56.1 87.9 61.2 70.9 73.1 77.8
w/ PromptDA (LC+QA) 43.4 66.9 69.7 91.9 12.4 42.4 58.8 87.6 63.2 71.7 73.4 76.9
w/ PromptDA (LC+QA) + UC 44.1 67.2 70.1 92.5 13.2 42.8 59.3 88.3 72.7 71.9 73.2 78.1

Table 3: Results (a 5-run average) on CoNLL 2003, OntoNotes, and MaScip. The best scores are in bold and the second best are underlined.
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Figure 3: Impact of our uncertainty-guided self-training strategy on
CoNLL 2003 (left) and OntoNotes 5.0 (right).

and OntoNotes 5.0. From the results, our uncertainty-guided
method outperforms other methods in terms of both conver-
gence speed and the final F1. For example, on CoNLL 2003,
it achieves the highest F1 with 8 to 14 training steps and
outperforms other methods by at most 2.0% in F1. We ob-
serve interesting results by comparing the easy-first and hard-
first strategies: The easy-first strategy, which always selects
the most certain examples for training, results in the slow-
est learning rate, maybe because the most certain cases are
too easy to provide more knowledge for learning. However,
the hard-first strategy demonstrates contradictory behaviors:
it performs well on CoNLL 2003 but poorly on OntoNotes
5.0. Because the hard-first strategy always chooses the most
uncertain data for training, it can quickly capture complemen-
tary patterns to the existing data for CoNLL 2003, which has
fewer entity types and more clean generated data. On the
other hand, it suffers from noise for OntoNotes 5.0, which
has more entity types and more noisy generated examples.

Dataset Entity Type w/o DA CBT LC LC+QA

CoNLL

PER 64.9±0.1 73.4±0.1 76.0±0.2 77.0±0.4

ORG 41.8±1.5 50.9±0.2 51.3±1.3 52.0±1.1

LOC 33.6±2.4 60.0±0.4 59.5±0.1 61.1±0.2

MISC 33.6±1.6 31.0±0.2 31.3±0.3 31.0±1.1

OntoNotes

CARDINAL 11.2±2.7 31.2±1.1 33.0±0.4 33.1±0.9

GPE 2.5±2.2 40.0±2.7 42.3±3.1 49.4±0.2

MONEY 10.1±1.1 38.2±1.6 40.7±2.1 45.8±0.9

NOPR 40.5±2.5 39.3±1.3 39.3±4.2 41.0±0.8

ORDINAL 20.2±3.4 44.0±1.6 42.6±1.0 46.5±2.4

DATE 7.7±3.0 37.9±0.9 36.1±0.6 36.8±1.3

PERCENT 16.6±1.1 58.9±0.9 58.1±1.6 57.8±0.1

MaSciP

Material 66.1±1.6 61.2±0.5 68.3±0.4 69.5±0.9

Brand 64.9±2.2 65.1±2.1 67.2±3.5 69.7±0.2

Nonrecipe 57.5±3.3 62.3±1.2 67.9±1.2 66.3±1.3

Number 66.5±1.1 68.1±2.4 65.2±4.1 65.8±0.9

Amount-Unit 56.6±1.1 58.2±1.1 55.4±2.8 55.8±0.9

Table 4: Performance breakdown on two typical entity types.

6 Discussion
We perform in-depth studies to explore the reasons behind our
approach’s effectiveness. To simplify discussion, we choose
the medium training set (M) setting.

Per-Type Performance. Table 4 shows performance break-
down on different entity types. Particularly, on CoNLL
2003, our method performs well on PER, ORG, and LOC,
but MISC. The reason is that MISC’s definition is rela-
tively vague (i.e., “events, nationalities, products, or works
of art”) and does not have a consistent pattern, which de-
grades our method using entity type definition as prompt. On
OnotoNotes 5.0, our method yields better performance for
common types such as GPE and MONEY, but value types
such as DATE and PERCENT; we observe a similar pattern
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Figure 4: Results of zero-shot NER on OntoNotes 5.0.

on MsScip, with performance on Material and Brand being
better than performance on value types such as Number and
Amount-Unit. The underlying reason is that common entity
types such as GPE and MONEY have more clear and ex-
pressive definitions than value types such as DATE (“times
smaller than a day”) and PERCENT (“percentage, includ-
ing %’), and such expressive definitions provide more prior
knowledge to instruct our method for data augmentation.

Results of Zero-Shot NER. Considering that our prompt-
ing with question answering strategy can directly generate
new training data from unlabeled texts, we study whether
it can be applied to the zero-shot scene. Figure 4 shows
the type-wise F1 (each type is evaluated independently) of
the BiLSTM+CRF model on OntoNotes 5.0, trained on the
automatically generated data solely. Our method demon-
strates very promising results, for example, achieving over
40% in F1 on PER, GPE, LAW, and DATE without any la-
beled data. By comparing different entities types, we show
that our method benefits both common types and rare types
(such as MONEY, PERCENTAGE, PRODUCT) as long as
they have clear definitions, but on types having a vague defi-
nition such as EVENT.

Data Fidelity Check. Table 5 explores data fidelity check,
by comparing the words generated by BDA, CBT, and our la-
bel conditioned prompting approach (LC). By exploring E1
and E2, we show our method generates more label-consistent
words (with a ratio of 80% and 90%) than BDA and CBT.
E3 and E4 are more interesting cases, where we deliberately
design ambiguous contexts and give models different labels
for word generation (For example, in E3, the [MASK] can
be filled with either a PER or ORG entity). From the re-
sults, our approach outperforms other methods for generating
words matching the given labels — particularly, in E4, even
an incorrect LOC label is given, our method generate wrong
words matching the label, justifying its ability to capture the
word-label dependencies. Lastly, in Table 6, we show exam-
ples generated by our prompting with QA method. Our ap-
proach can yield ideal examples such as E1, E4, E5, E6, E7,
but also flawed ones such as E2, E9, and E3, where “Shapiro
and Clark” and “Colorado and San Francisco” should be sep-
arated as two entities and “someone who is disabled” is not
an entity. These cases imply further improvement direction.

7 Conclusion
In this work, we propose a new data augmentation method for
low-resource NER, by eliciting knowledge from BERT with

E1: The 53-year-old [Johnson]PER was hospitalized ...

BDA man, woman, girl, boy, child ... (0%)
CBT man, victim, Collins, Cuban, patient ... (50%)
LC Collins, King, Miller, Pope, Wilson ... (80%)

E2: [Frankfurt]LOC was one bright spot in Europe.

BDA That, This, Paris, It, London ... (60%)
CBT Rome, It, London, This, Paris ... (70%)
LC Paris, London, France, Rome, Italy ... (90%)

E3: [MASK] buys a gaming company ZeniMax.

BDA He, She, It, he, Micheal, Joe, Jack ...
CBT (PER) He, Trump, Clinton, Obama, Putin ...
LC (PER) Brandy, Wilson, Jones, Taylor, Martin ...
CBT (ORG) Microsoft, Dell, Russian, Intel, Nokia ...
LC (ORG) Microsoft, Nokia, Atari, Nintendo, Intel ...

E4: [MASK] eats the cake.

BDA He, She, Everyone, Peter, Alex ...
CBT (PER) Everyone, He, She, Everybody, Alex ...
LC (PER) Whoever, Oscar, Brady, Clinton, Heinz ...
CBT (LOC) Who, Everyone, McDonald, Everybody,

Clinton ...
LC (LOC) Finland, Turkey, Sweden, Japan, Britain ...

Table 5: Data fidelity check. The underlined words indicates words
that do not match the given label.

Type Generated Examples

PER
E1: More than once, [Judge Kennedy Powell], who is ...
E2: The exchange between [Shapiro and Clark] over ...
E3: they ’re having with [someone who is disabled]

ORG

E4: The [Negro League] is a pleasant diversion from ...
E5: [Eli Lilly] shares fell 7, to 50 .
E6: ... secretary of the [Communist Party Central Commit-
tee] says that ...

LOC
E7: [San Francisco] native Harry Glover Hughes, a ...
E8: Nothing could be ... from [Japan]’s agenda.
E9: [Colorado and San Francisco] lost their third ...

Table 6: Examples generated by our prompting with QA method.

two prompting mechanisms. Our method can produce more
label-consistent data or new examples from unlabeled texts
without considerable human intervention. We also devise an
uncertainty-guided self-training method for noise reduction.
The results on three datasets have justified our method’s ef-
fectiveness. In the future, we would apply our method to
other related extraction tasks such as relation extraction.
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